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Abstract 
INTRODUCTION: Fault detection in transmission lines is critical for keeping the grid stable and reliable. This research 
offers a new methodology, the Wavelet Transform-Enhanced Random Forest Fault Classification System with STATCOM 
Integration (WERFCS-SI), to solve the shortcomings of existing fault detection approaches. 
OBJECTIVES: The integration of STATCOM-compensated transmission lines improves fault detection capabilities. The 
Wavelet Transform finds faults by analysing approximation and detail coefficients, allowing for multiresolution analysis 
and exact fault localisation. 
METHODS: Feature selection approaches, such as information gain, are used to discover and keep relevant features, 
increasing classification accuracy. 
RESULTS: Due to its ability to process complex, high-dimensional data and identify minute feature connections, Random 
Forest (RF) is utilised for classification tasks. The proposed approach improves RF model performance while maintaining 
precision. 
CONCLUSION: The integrated technique simplifies fault categorisation, increasing accuracy and efficiency by detecting 
problems in the transmission line system. 
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1. Introduction

A three-phase STATCOM (Static Synchronous 
Compensator) compensated gearbox line is an advanced 
solution in power systems engineering. As the demand for 
stable and dependable electrical power transmission grows, 
utilities and industries increasingly rely on modern 
technologies such as STATCOM to efficiently regulate 
voltage and reactive power across transmission lines [1]. A 
STATCOM device uses power electronics to dynamically 
adjust an electrical system's voltage and reactive power flow. 
In the context of a three-phase transmission line, the 
STATCOM regulates voltage levels, corrects power factor 
imbalances, and reduces voltage fluctuations, improving the 
power grid's overall stability and reliability [2]. A 
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STATCOM is installed in a three-phase transmission line by 
integrating it at important spots, usually substations or key 
junction points. The STATCOM can inject or absorb reactive 
power as needed by monitoring and controlling system 
parameters in real time, effectively correcting for fluctuations 
in load demand or grid disturbances [3]. One of the primary 
benefits of using a STATCOM in three-phase transmission 
systems is its capacity to deliver fast and exact reactive power 
adjustment, which improves voltage stability, reduces losses, 
and increases overall network efficiency [4]. STATCOMs 
also provide operational flexibility, allowing seamless 
connection with existing infrastructure and compatibility 
with multiple control schemes to optimise performance under 
varying operating situations [5]. Wavelet transform is a 
powerful mathematical technique for analysing signals and 
images at different sizes, providing information about their 
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frequency and spatial features [6]. Unlike standard Fourier 
transform, which decomposes a signal into sine and cosine 
functions of fixed frequencies, wavelet transform uses small 
wavelets, or localised oscillations, to capture both frequency 
and position information simultaneously [7]. This makes it 
ideal for analysing signals with non-stationary or transitory 
properties. The wavelet transform's ability to accurately 
describe signals in terms of time and frequency is one of its 
main benefits [8]. This means it can reliably detect transitory 
elements in a signal while delivering detailed frequency 
content at various time points [9]. This makes it important in 
signal processing, data compression, and picture analysis, 
where knowing temporal and frequency dynamics is essential 
[10]. The DWT sequentially filters and downsamples the 
signal to extract information at various resolutions. In 
contrast, the CWT gives a continuous representation of the 
signal by convolving it with a scaled and translated version of 
the wavelet function [11]. The versatility of the wavelet 
transform has made it widely applicable in many fields, such 
as geophysics, biomedical engineering, signal processing, 
and image analysis [12]. Its capacity to capture both global 
and local aspects of signals and images makes it an essential 
tool for extracting meaningful information from complex data 
[13]. Furthermore, its computing efficiency and flexibility 
have made it a key component in modern data analysis 
methodologies, allowing researchers and practitioners to 
understand the underlying structure and dynamics of many 
events better [14]. The wavelet transform has become an 
effective flaw identification technique in many engineering 
applications because it can simultaneously evaluate signals in 
the time and frequency domains [15]. A signal is broken down 
into component wavelets via the wavelet transform; wavelets 
are small, frequency- and time-localized functions that 
resemble waves [16]. This decomposition technique extracts 
features at several scales, enabling the detection of abrupt 
shifts or abnormalities that indicate system failures [17]. 
Wavelet transformations can effectively identify minute 
variations linked to issues amongst background noise or 
normal functioning because they capture the high-frequency 
and low-frequency components of a signal with different 
resolutions [18]. The wavelet transform is often employed 
with sophisticated signal processing methods such as time-
frequency analysis, feature extraction, and algorithmic 
pattern recognition in identifying defects applications [19]. 
These techniques allow for identifying specific fault 
signatures or patterns within complicated signals, which aids 
in detecting and diagnosing flaws before they worsen [20]. 
Furthermore, wavelet transform has advantages such as 
computing efficiency, scalability, and adaptation to different 
signal sources, making it ideal for real-time fault detection 
systems used in various industrial contexts. Its capacity to 
handle non-stationary signals and localise characteristics in 
both temporal and frequency domains makes it a top choice 
for identifying problems in dynamic systems where standard 
approaches may fail [21]. In conclusion, wavelet transforms 
play an important role in fault identification by providing a 
solid foundation for analysing signals with complicated 
dynamics and finding fault signatures among the noise and 
normal variations. It is a vital instrument for guaranteeing 

significant components' reliability, security, and 
effectiveness across various engineering disciplines due to its 
efficacy and versatility [22]. In ML and data analysis, feature 
selection is a crucial step that enhances computational 
efficiency, interpretability, and model performance. It 
comprises narrowing down the original set of variables or 
attributes needed to create a model predicting the most 
pertinent feature subset [23]. This method helps mitigate the 
effects of the "curse of dimensionality," suggesting that too 
many features can lead to overfitting, increased 
computational cost, and poor generalisation performance. 
The basic goal is to keep only the most important elements 
and delete redundant or useless ones. By lowering the 
dataset's dimensionality, feature selection enhances model 
interpretability by focusing on the most informative variables 
[24]. Methods for selecting features include filtering, 
wrapping, and embedding. The technique used is determined 
by the type of dataset, computational resources available, and 
analytic objectives. Feature selection can result in significant 
computational savings, particularly in high-dimensional data 
or resource-constrained contexts [25]. Feature selection 
speeds up machine learning models' training and inference 
phases by focusing computational resources on the most 
relevant features, making them more useful in real-world 
applications. In ML and data analysis pipelines, feature 
selection is a crucial pre-processing phase that facilitates the 
creation of prediction models that are more accurate, 
efficient, and comprehensible [26]. Random forests are a 
powerful ensemble learning technique utilised in various 
sectors, including finance and healthcare, to handle 
complicated datasets with high-dimensional feature spaces 
[27]. They excel in fault classification, a key activity in 
engineering and industrial applications that categorises 
instances based on specified quality properties [28]. Random 
forests can manage vast amounts of data with varying 
characteristics and imbalanced datasets, making them useful 
in real-world applications. Random forests reduce majority 
prejudice by aggregating predictions from many decision 
trees trained on bootstrapped samples. Their inherent feature 
selection capability helps them perform well in fault 
classification since each decision tree analyses only a subset 
of features at each split, leading to more diversified and less 
correlated trees. This decreases the risk of overfitting while 
improving generalisation performance [29]. However, 
because of the complexity and diversity of fault 
signals,  effectively classifying faults within these systems 
remains a significant issue. High accuracy is frequently 
difficult for traditional fault classification techniques in the 
presence of noise and non-stationary signal characteristics. In 
fault classification applications, interpretability is critical, 
and random forests provide insights into feature importance, 
allowing engineers and domain experts to determine which 
features have the greatest impact on classification judgments. 

This research contributes the following: 
• Introducing a novel method that combines Wavelet

Transform (WT) and Random Forest (RF) for fault detection 
in compensated transmission lines with STATCOM 
integration, thereby enhancing accuracy and efficiency.  
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• Utilizing information gained for feature selection
improves classification accuracy by focusing on relevant fault 
signal characteristics and enhancing fault detection 
performance. 

• Overcoming limitations such as the assumption of
feature independence and the complexity of travelling wave-
based detection,  the methodology that has been proposed 
provides a thorough approach to fault identification and 
classification, specifically for compensated transmission 
lines.  

The organisation of this research is as follows: Section 1 
provides a detailed introduction to the study. Section 2 
represents a literature review based on fault classification 
phenomena. Section 3 indicates a thorough explanation of the 
proposed model. Section 4 provided an analysis of the 
experimental results, and finally, Section 5 concluded with 
the Conclusion section. 

2. Literature Survey

Aker E. et al. [30]  provided a method for defect identification 
and categorisation for shunt-compensated STATCOM 
transmission lines that makes use of Naive Bayes (NB) and 
Discrete Wavelet Transform (DWT) classifiers. The db4 
Daubechies mother wavelet was utilised to process three-
phase fault current waveforms and extract information such 
as energy levels and standard deviation (SD). These 
characteristics were then used to train classifiers for fault type 
classification, such as Multi-Layer Perceptron Neural 
Networks (MLP), Bayes, and NB. NB's limitation is its 
assumption of feature independence, which may not be 
accurate in real-world data, and its potential bias in handling 
imbalanced datasets. 

Mishra.S et al. [31]  examined how well four signal 
decomposition procedures performed to support Fault 
Location Methods (FLMs) in FACTS-compensated systems 
for fault localisation. The methods that were discussed were 
the S-transform (ST), the Empirical Mode Decomposition 
(EMD), the Intrinsic Time Decomposition (ITD), and the 
Estimation of Signal Parameters via the Rotational Invariance 
Technique (ESPRIT). A 500 kV system fitted with a 100 
MVAr FACTS device was used to simulate and analyse 
several scenarios, including series, shunt, and series-shunt 
FACTS-compensated networks. Travelling wave-based fault 
detection excels in precise fault location but is costlier, 
sensitive to fault types and noise, and requires complex data 
analysis. 

Duku Otuo-Acheampong et al. [32]  presented a method 
for evaluating the dynamic security of transient stability 
utilising Thyristor Controlled Series Capacitor (TCSC) 
devices. This method relied on severity indices to analyse 
power system faults, employing time domain analysis 
simulations for enhanced readiness in anticipating system 
behaviour during disturbances. Due to its effective 
convergence, the Flower Pollination Algorithm (FPA) was 
utilised to discover the best location for TCSCs and the 
appropriate parameter settings. The suggested method was 
used to analyse the effects of three-phase short circuit faults, 

fault locations, and clearing techniques on the IEEE 14-bus 
system. The analysis revealed that TCSC implementation 
significantly improved voltage stability and increased 
stability margins during short circuit faults on transmission 
lines. The proposed method does not determine the location 
of the fault. 

ANI HARISH et al. [33]  utilised Phase Measurement 
Units (PMU) data to concentrate on fault recognition and 
categorisation in transmission lines for wide-area backup 
protection. Using weighting, a Weighted Extreme Learning 
Machine (WELM) method was applied, considering the 
varied data distribution among various fault classes. Wavelet 
transform-based ensemble feature extraction was used to get 
input features, and Particle Swarm Optimization (PSO) was 
employed to optimise the WELM classifier. WELM's 
limitation is its reduced interpretability compared to SVM 
due to the random weight initialisation and lack of a precise 
geometric interpretation of decision boundaries. 

Zhang C et al. [34] study uses large-signal analysis to 
examine how a phase-locked loop (PLL) affects a Type-IV 
wind turbine's stability. A nonlinear reduced-order model is 
built to determine grid-synchronizing stability (GSS) 
resulting from grid faults, as demonstrated by the equal-area 
principle (EAP). To quantify the effect of system variables, 
including PLL bandwidth, on the GSS margin, critical 
clearing time (CCT) is calculated. This knowledge may be 
assessed via a Type-IV wind turbine system switching model 
in PSCAD/EMTDC and applied to PLL parameter design. 
The results could help determine PLL parameters for low-
voltage ride-through (LVRT) wind turbine design. 

Wang, X. et al. [35]; Smart cities and nations are quickly 
becoming a reality, with smart grids playing a critical role. 
However, privacy-preserving multisubset data aggregation is 
a challenge because present solutions frequently need a 
trusted third party (TTP), which can be difficult and increase 
threat exposure. This paper provides a fault-tolerant 
multisubset data aggregation system that calculates overall 
electricity usage value without TTP. The system analysis 
demonstrates that this technique prevents single data loss 
while also ensuring efficiency when new users join and 
existing users leave. The system's robustness is achieved at a 
minimal cost. 

Abdelsattar, M. et al. [36]: The need for more electricity 
has led to a focus on renewable energy sources, especially 
wind energy. Due to their ability to operate at different speeds 
and control power output, doubly fed induction generator 
(DFIG)--based wind farms are becoming increasingly 
common. Nonetheless, voltage stability is essential to a 
DFIG-based wind farm's capacity to function during grid 
delays and outages. To restore voltage levels in the Egyptian 
power system connected to the Al Zafarana-5th stage wind 
farm, this article uses a static synchronous compensator 
(STATCOM). According to simulation studies, STATCOM 
devices with fuzzy logic controllers reduce disturbances and 
grid fault effects, which makes them perfect for wind farms 
of the present and the future. 

Vimalraj, M et al. [37]: This study looks at a fixed-speed 
wind farm under an imbalanced grid voltage fault with 
squirrel cage induction generators (SCIG) connected to the 
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grid and indirect torque control (ITC) technique developed 
using STATCOM. A review of several control techniques and 
theoretical and simulation studies are included. Unbalanced 
dips in grid voltage cause more oscillations in torque 
generation. Simulation outcomes show that using a 
STATCOM for voltage correction improves voltage stability 
and reduces torque oscillations in a SCIG wind farm. 

Mosaad, M. I et al. [38] study looks at how a static 
compensator (STATCOM) can help reduce Ferro resonance 
overvoltage in grid-connected wind energy conversion 
systems (WECSs). The controller, which includes 
proportional-integral (PI) controllers and employs a modified 
flow-pollination algorithm (MFPA), is introduced to regulate 
reactive power quickly. Two test examples demonstrate the 
controller's capacity to prevent Ferro resonance overvoltage. 
The findings indicate that Ferro resonance disturbance can 
arise in power transformers used in wind farms, even when 
the transformer terminals are coupled. The suggested 
STATCOM controller optimises the wind turbine's voltage 
and speed profile while protecting system components from 
Ferro resonance overvoltage. 

3. Proposed Methodology

The WERFCS-SI is a fault detection system for transmission 
lines outfitted with Flexible Alternating Current 
Transmission System (FACTS) components. It detects faults 
using wavelet transforms, which allow for multiresolution 
analysis and exact fault localisation. This technique enhances 
accuracy by detecting minor changes produced by faults. 
STATCOM integration introduces dynamic compensation 
capabilities, which help to mitigate the consequences of 
transmission line faults and disturbances. Feature selection 
approaches like information gain improve classification 
accuracy by selecting and preserving the most informative 
properties. Random Forest (RF) is the major classifier, which 
handles complicated, multidimensional data and captures 
subtle feature associations. The ensemble learning approach 
distinguishes between different fault classes in compensated 
transmission lines, which improves overall detection 
accuracy. The WERFCS-SI technique provides a 
comprehensive solution for detecting faults in transmission 
lines, maximising performance while retaining precision and 
dependability. 

Figure 1: Workflow of WERFCS-SI technique 

3.1. STATCOM Compensated Transmission 
Line 

The STATCOM is the cornerstone of the FACTS (Flexible 
Alternating Current Transmission System) device family, 
having played a vital role for decades due to its economic and 
technological advantages. Its rapid response time, precision, 
and dependability make it a highly effective instrument for 
regulating voltage steady states and transients, outperforming 
traditional compensators. Figure 2 shows STATCOM's 
general architecture, which contains a Voltage Source 
Converter (VSC), a DC energy storage unit, and a coupling 
transformer interconnected in shunt with the AC system. 
Figure 3 depicts the STATCOM's characteristic curve, 
representing the voltage-current relationship. As a shunt-
connected device, the STATCOM functions in two modes: 
capacitive and inductive. The phase angle difference between 
line and VSC voltage determines how these modes transition. 
This phase angle difference directs the STATCOM's 
transition from capacitive to inductive mode, allowing it to 
react flexibly to changing system conditions and 
requirements. The STATCOM setup is a system for 
controlling voltage levels in an alternating current power 
system. It comprises a semiconductor device called the 
Voltage Source Converter (VSC), which uses precise 
modulation techniques to generate regulated AC voltages and 
currents. The VSC can manage voltage levels by either 
injecting or absorbing reactive power into the system. A DC 
energy storage device, such as capacitors or batteries, 
guarantees the STATCOM's quick reaction and versatility.  

Figure 2: STATCOM Configuration 

This storage unit ensures grid stability during transitory 
situations or changes in load demand. The coupling 
transformer connects the device to the alternating current 
power system, allowing for power transfer and providing 
electrical isolation. It also enables the STATCOM to function 
properly at various voltage levels and grid topologies. When 
these components are linked in shunt to the AC system, they 
form the STATCOM, which can dynamically change reactive 
power injections to regulate voltage levels. The STATCOM 
improves power system performance by increasing stability 
and dependability while reducing voltage fluctuations and 
transients. The equivalent circuit of the STATCOM 
thoroughly describes its internal components and linkages, 
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allowing for examination and comprehension of its operation. 
It comprises a Voltage Source Converter (VSC), a 
semiconductor device that regulates output voltage, and a DC 
energy storage device, usually a capacitor or battery bank. 
The coupling transformer connects the STATCOM to the AC 
network, ensuring isolation and impedance matching between 
the two systems. 

Figure 3: Equivalent Circuit of the STATCOM 

The VSC is represented by an equivalent voltage source 
and internal impedance, whereas an analogous capacitance or 
battery model represents the DC energy storage device. The 
coupling transformer is defined by its equivalent impedance 
and turns ratio, which accounts for impedance transformation 
and voltage level adjustment between the STATCOM and the 
alternating current system. The V-I characteristic curve of a 
STATCOM is an essential tool for analysing and optimising 
its operation within the power system. It sheds light on the 
link between voltage and current, demonstrating the device's 
ability to adjust voltage and accept varied levels of reactive 
power exchange. The curve's slope reflects the device's 
dynamic response capabilities, with steeper slopes suggesting 
more excellent responsiveness to changes in current or 
voltage. The STATCOM may operate in both capacitive and 
inductive modes, delivering reactive power to maintain 
voltage stability and sustain loads while also absorbing 
reactive power from the system to regulate voltage and power 
factor. The device's operating limitations specify the highest 
and lowest voltage and current levels it can manage without 
exceeding its design constraints. Understanding these 
boundaries is critical for assuring safe and dependable 
functioning within the stated parameters. The V-I 
characteristic curve is essential for increasing power system 
stability, dependability, and efficiency. 

Figure 4: STATCOM 𝑉𝑉 − 𝐼𝐼 Characteristic Curve 

STATCOMs are critical components of modern power 
systems, regulating voltage and adjusting for reactive power 
imbalances shown in Figure 4. They improve stability and 
adjust grid voltage, particularly in systems with variable 
loads or renewable energy sources. They can also help to 
reduce power quality concerns, including voltage sags, 
swells, and flicker caused by unexpected load changes or 
industrial equipment connections. STATCOMs provide 
versatility in grid operation and control by functioning in 
capacitive and inductive modes, allowing for fine-tuning 
power factor and reactive power compensation. However, 
they have drawbacks, including high initial costs, 
sophisticated management and monitoring systems 
requirements, and dependency on power electronics 
components such as voltage source converters (VSCs), prone 
to failure or malfunction. As a result, a thorough analysis of 
these criteria is critical for determining the viability of 
STATCOMs for specific applications in power system 
architecture. 

3.2. Wavelet Transform 

The wavelet transform is an effective data analysis technique 
that overcomes the limitations of the Fourier transform. It has 
been extensively used in pattern identification, image, and 
signal processing. Mallat proposed the Mallat method in 
1989, which is a rapid decomposition and reconstruction 
approach that uses an orthogonal wavelet. To accomplish 
rapid wavelet decomposition, this method filters the 
processed signal and downsamples the filtered output. The 
decomposition procedure is applied cascade-wise to multi-
level wavelets, beginning with low-frequency components 
from the previous decomposition. The associated 
decomposition approach is the opposite of the quick wavelet 
reconstruction process. The discrete wavelet transform's 
primary action is explained by equation (1). 

𝑦𝑦[𝑛𝑛] = (𝑥𝑥 ∗ 𝑔𝑔)[𝑛𝑛] = ∑ 𝑥𝑥[𝑘𝑘]𝑔𝑔[𝑛𝑛 − 𝑘𝑘]∞
𝑘𝑘=−∞   (1) 

To preserve the connection between inverse wavelet 
transform (IDWT) and wavelet transform (DWT), Equation 
(2) provides an orthogonal requirement.

|𝐻𝐻(𝑤𝑤)2| + |𝐺𝐺(𝑤𝑤)2| =1 (2) 

The wavelet transform is a sophisticated signal processing 
method that can analyse signals at several scales, providing 
benefits such as multiresolution analysis, temporal and 
frequency localisation, signal adaptation, and compression 
and data reduction. Its multiresolution capability allows for a 
thorough investigation of signal properties, particularly 
identifying high and low-frequency components. The wavelet 
function can be modified to match the features of the signal, 
allowing for more efficient analysis of various data types. 
However, some things could be improved in the wavelet 
transform, including interpretation complexity, wavelet 
parameter selection, boundary effects, and processing cost. 
The multiresolution aspect of wavelet transforms can make 
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interpretation difficult, especially for those inexperienced 
with wavelet theory. The performance of the wavelet 
transform is strongly reliant on the choice of wavelet 
parameters, which can be difficult and require domain-
specific knowledge. Boundary effects can influence analysis 
results around signal boundaries, causing feature extraction 
and reconstruction mistakes. Signal padding and boundary 
wavelets are two techniques that can help to lessen these 
effects, but they may also increase complexity. 

3.3 Feature Selection with Information Gain 

Feature selection is an essential stage in ML and data analysis 
since it aims to pick the most relevant characteristics from a 
dataset to improve model performance and reduce computing 
complexity. Information Gain is a prominent feature selection 
strategy that uses the concept of entropy from information 
theory. Entropy evaluates the uncertainty or disorder in a set 
of data, whereas Information Gain determines how much the 
presence of a specific feature reduces uncertainty in 
predicting class labels. The dataset's entropy is computed 
both before and after splitting to calculate Information Gain 
based on a feature. Features with higher information gain are 
regarded as more informative for classification tasks since 
they help to reduce confusion regarding class labels. 
Information Gain is widely utilised in decision tree methods 
like C4.5 and C5.0, which split the dataset depending on the 
feature with the highest Information Gain at each step, 
yielding a tree structure with the most informative features 
closer to the root. However, Information Gain has limits, such 
as favouring characteristics with many unique values and 
underperforming for continuous or highly linked features. As 
a result, it is frequently used in conjunction with other feature 
selection methods or as part of a more prominent feature 
engineering approach. 

 The idea of entropy serves as the foundation for the 
formula used to determine Information Gain (IG) in feature 
selection. Entropy quantifies uncertainty or disorder in a 
collection of data. The Equation (3) determines entropy H(S) 
of a set S with n possible classes: 

𝐻𝐻(𝑠𝑠) = −∑ 𝑝𝑝𝑖𝑖𝑛𝑛
𝑖𝑖=1 𝑙𝑙𝑙𝑙𝑔𝑔2(𝑝𝑝𝑖𝑖) (3) 

Information Gain is calculated as the difference between 
the entropy of the dataset before and after splitting it based on 
a particular feature. We have dataset D with feature A and n 
possible classes. Equation (4) calculates the Information Gain 
IG (A) for feature A as follows: 

𝐼𝐼𝐺𝐺(𝐴𝐴) = 𝐻𝐻(𝐷𝐷) − ∑ |𝐷𝐷𝐷𝐷|
|𝐷𝐷|

𝐻𝐻(𝐷𝐷𝐷𝐷)𝐷𝐷∈ 𝐷𝐷𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝐴𝐴)  (4) 

•𝐻𝐻(𝐷𝐷) is the entropy of dataset D before splitting
• Value (A) is the unique value of feature A
•𝐷𝐷𝐷𝐷 is the subset of D where feature A takes the value v
• |𝐷𝐷| is the total number of instances in dataset D
• |𝐷𝐷𝐷𝐷| is the number of instances in subset |𝐷𝐷𝐷𝐷|

This formula calculates the difference between the original 
dataset's entropy and the weighted sum of the entropies of the 
subsets formed by partitioning the dataset based on feature 
values (A). Splitting on feature A reduces uncertainty in 
predicting class labels, resulting in a more considerable 
Information Gain (IG). In actual applications, this method is 
frequently performed recursively for each feature to select the 
feature with the greatest Information Gain at each phase of a 
decision tree construction algorithm. In actual applications, 
this method is frequently performed recursively for each 
feature to select the feature with the greatest Information 
Gain at each phase of a decision tree construction algorithm. 

3.4 Random Forest 

RF is an ML algorithm that utilises bagging and decision 
trees. Using dividing rules, techniques such as Decision Trees 
and Classification and Regression Trees (CART) make 
predictions. Nodes reflect the splitting rules, branches 
represent the decisions, and leaves represent the final 
predictions. For every new node, data is divided into two 
branches until a halt condition is satisfied, at which point a 
CART is created. To reduce variation in partitioned data, 
every ML node is given a feature, often referred to as a 
covariate, and a splitting threshold. Making a prediction 
involves going through nodes and branches and finally 
arriving at a single leaf. Compared to RF, CART is more 
straightforward, less biased, and easier to read. However, 
their prediction accuracy is reduced because they are not 
robust and overfitting training data. Created bagging 
(bootstrap aggregation) to overcome the limitations of 
CART. Using several weak learners, like CART, bagging is 
an ensemble ML technique that creates a single stronger 
learner. Bootstrapping, also known as sampling with 
replacement, generates an enormous amount of weak learners 
by repeatedly sampling the whole data set. The average of 
all weak learners' estimations is used to compute the forecast. 
By reducing prediction error variance, bagging improves the 
accuracy and stability of the model. As a weak learner, RF 
uses CART in conjunction with bagging and random feature 
selection. The problem with bagging is that dominating traits 
can be linked to bootstrapped samples. To address this issue, 
random feature selection is applied at each step of CART 
construction. The number of features and CARTs can be 
adjusted, with a recommended value of √𝑚𝑚 for classification 
and 𝑚𝑚

3
for regression, where m is the number of covariates. 

The forecasts of the full RF model can be calculated in 
Equation (5), 

𝑍𝑍(𝑆𝑆0) = 𝑓𝑓(𝑥𝑥1(𝑆𝑆0), 𝑥𝑥2(𝑠𝑠0), … 𝑥𝑥𝑚𝑚(𝑠𝑠0)) (5) 

Where xi (𝑆𝑆0) (i = 1... m) are covariates at𝑆𝑆0. RF can 
measure variable relevance, indicating how much each piece 
of information affects model correctness. RF can also 
evaluate accuracy using out-of-bag (OOB) error statistics. A 
straightforward RF modification called RFsp adds buffer 
distance maps as variables for each observation point. To 
create a buffer distance map, Euclidean distances are 
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calculated between the centre of each forecast pixel and the 
centre of the observation pixel. In RFsp, the number of buffer 
distance maps matches the number of observations.  

Training
Set

Testing 
Set

Training Data 1 Training Data 2 Training Data n

Decision Tree 1 Decision Tree 2 Decision Tree n

Voting 

Fault classification

...

...

Figure 5: The structure of Random Forest for fault 
classification 

Standard RF does not account for spatial autocorrelation 
between observations, except through indirect connection 
with variables. We included new covariates in the RF model 
to account for the impact of adjacent data on prediction 
values. The observations and the distances between the 
nearest and predicted locations are incorporated as covariates. 
Consequently, the RFSI structure is determined in Equation 
(6): 

𝑍𝑍(𝑆𝑆0) =
𝑓𝑓(𝑥𝑥1(𝑆𝑆0), … , 𝑥𝑥𝑚𝑚(𝑆𝑆0)𝑍𝑍(𝑆𝑆1),𝑑𝑑1𝑍𝑍(𝑆𝑆2)𝑑𝑑2𝑍𝑍(𝑆𝑆3)𝑑𝑑3, … ,𝑍𝑍(𝑆𝑆𝑛𝑛),𝑑𝑑𝑛𝑛)

(6) 

Where si (i = 1... n) is the i-th nearest observation point 
from s0, di = |si - s0|. Figure 6 represents the flow diagram of 
the proposed model. 

Start

STATCOM compensated 
Transmission Line

Fault detection using  wavelet 
transform

Feature selection by Information gain

Select feature based on greatest 
Information gain

Fault classification by Random Forest

Stop

Figure 6: Flow diagram of the proposed model for the 
fault classification 

 The n-nearest places to the training location are 
determined, and their distances and observations are included 
as covariates and other environmental factors. The 
observations and distances to the n closest sites are used to 
forecast a location. 

4. Results

The study uses a confusion matrix to assess the Random 
Forest algorithm's performance in classification tasks. The 
matrix helps to identify strengths and shortcomings, as well 
as areas for progress. A comparison is made between the 
algorithm's performance and alternative methods, 
including decision trees and support vector machines, using 
metrics like accuracy, precision, recall, and F1 score. Figure 
7 shows the simulation model for the proposed work. The 
analysis emphasises the capacity to handle massive datasets 
with high dimensionality and complex variable interactions. 
However, the study reveals several drawbacks, such as 
computational complexity and overfitting susceptibility. The 
findings support the algorithm's effectiveness and add to 
machine learning approaches in categorisation problems. 

Figure 7: Simulink Diagram of the Proposed Model 

4.1. Confusion matrix 

In classification problems, the confusion matrix is a valuable 
tool for assessing the precision and effectiveness of predictive 
models. Predictions are separated into four groups: false 
positives, false negatives, true positives, and true negatives. 
Strong predictive capacity is implied by a substantial amount 
of true positives and true negatives; however, space for 
improvement is indicated by a rise in false positives or false 
negatives. The confusion matrix also computes performance 
measures like accuracy, precision, recall, and F1 score. Recall 
evaluates the model's capacity to recognise positive cases 
correctly; accuracy counts the overall correctness of the 
model's predictions; precision quantifies the percentage of 
true positive predictions between all positive predictions, and 
the F1 score offers a balanced performance assessment. "True 
Class" and "Predicted Class" assess how well an ML model 
performs in classification tasks. The "Predicated Class" is the 
model's predicted class or category, which assigns each 
instance to one of several predefined classes based on learned 
patterns and attributes. In binary classification, an email's 
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predicted class is "spam". The "True Class" refers to the 
actual class or category decided by human annotation or 
ground truth. True class labels are often included in training 
data for supervised learning. Comparing each instance's true 
class to its anticipated class evaluates the model's correctness 
and efficacy, assisting academics and practitioners in 
understanding its generalizability to previously unknown 
data. Figure 8 shows the confusion matrix for the proposed 
technique.  

Figure 8: Confusion matrix 

The confusion matrix is a method for classifying incidents 
into distinct groups. It has two classes: anticipated and true. 
True class values vary from 0 to 5, and anticipated class 
values range from 0 to 5. For the most part, the model's 
predictions are right, with 1014 occurrences categorised as 
true class 0 and 492 instances classified as true class 1. 
However, there is a significant difference in class 5, with only 
471 cases accurately identified, a decrease of 9 from the 
expected number. This disparity necessitates more inquiry 
into the mechanisms causing misclassifications in this 
category. The confusion matrix offers essential information 
about the precision and misclassifications of the model, 
allowing researchers and practitioners to find areas for 
improvement and fine-tune the model's performance. 

4.2. Comparison Results 

The section compares Random Forest's performance against 
K-Nearest Neighbours (KNN), Decision Tree, and Naive
Bayes classifiers. The accuracy%, precision%, and recall%
metrics evaluate the model's ability to accurately categorise
instances, detect true positives, and capture essential
examples from the dataset. The relative strengths and
limitations of each technique can be determined by
comparing the findings to KNN, Decision Tree, and Naive
Bayes classifiers. This aids in deciding Random Forest's
viability for a specific task and its potential advantages over
other approaches. The comparative analysis sheds light on
Random Forest's usefulness in dealing with classification
difficulties and its performance compared to other well-
known classification algorithms.

4.2.1. Accuracy Comparison 
The paper examines classification algorithms such as KNN, 
Decision Tree, and Naive Bayes and shows their accuracy 
rates. Decision Tree achieves 90% accuracy, but Naive Bayes 
obtains 79% due to conditional independence. Figure 9 shows 
the accuracy graph compared with the existing techniques.  

Figure 9: Accuracy Comparison 

The suggested method surpasses these algorithms, 
obtaining 100% accuracy, which could be attributed to 
creative feature engineering or domain-specific expertise. 
However, receiving 100% accuracy is uncommon, raising 
worries about overfitting and data leaking. More research and 
validation on other datasets are required to grasp the method's 
potential and practical uses properly. 

4.2.2. Precision Comparison: 
The graphic compares classification algorithms such as 
KNN, Decision Tree, and Naive Bayes, and the proposed 
method outperforms all. Decision Tree has a precision of 
89%, while Naive Bayes has a slightly lower precision (79%). 
Naive Bayes is widely used for classification applications, 
particularly with high-dimensional data. Figure 10 shows the 
precision graph compared with the existing techniques.  

Figure 10: Precision Comparison 
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The proposed method yields a flawless precision rate of 
100%, indicating its reliability in practice. However, reaching 
100% precision raises concerns about overfitting and data 
leaking. More research and thorough validation of various 
datasets are required to properly comprehend the method's 
capabilities and possible consequences for practical 
applications. More research and thorough validation of varied 
datasets are necessary to understand their capabilities and 
possible ramifications properly. 

4.2.3. Recall Comparison 
Based on recall metrics, the graphic compares classification 
algorithms such as KNN, Decision Tree, and Naive Bayes. 
Decision Tree has a 90% recall rate, whereas Naive Bayes has 
a slightly lower recall of 79%. However, the suggested 
method outperforms them with a 100% recall rate, making it 
a promising medical diagnosis and fault detection contender. 
Figure 11 shows the recall graph compared with the existing 
techniques.  

Figure 11: Recall Comparison 

The suggested method's effectiveness is attributable to the 
rigorous validation of independent datasets, which provide 
generalizability and reliability in real-world circumstances. 
More research and validation on other datasets are required to 
grasp the method's capabilities and possible uses correctly. 

4.2.4. Specificity Comparison: 
The graph compares the specificity value with methods such 
as KNN, Decision Tree, and Naive Bayes. Decision Tree has 
a 95% to 98% specificity, but Naive Bayes has a specificity 
of 96%. However, the proposed technique exceeds both with 
a 100% specificity rate, making it highly reliable in detecting 
negative situations. Figure 12 shows the specificity graph 
compared with the existing methods.  

Figure 12: Specificity Comparison 

4.2.5 F1 Score Comparison: 
The figure compares classification methods such as KNN, 
Decision Tree, and Naive Bayes to a suggested method based 
on the F1 Score metric. The F1 Score accurately assesses a 
classifier's performance by contrasting precision and recall. 
Decision Tree has an F1 Score of 0.9 to 0.6, indicating 
improved performance. Naive Bayes has an F1 Score of 0.78, 
although it may struggle with complicated feature 
interactions. Figure 13 shows the F1 score graph compared 
with the existing techniques.  

Figure 13: F1 Score Comparison 

The proposed method outperforms Decision Tree and 
Naive Bayes, with a perfect F1 Score of 100%.  

5. Conclusion

In conclusion, the proposed Wavelet Transform-Enhanced 
Random Forest Fault Classification System with STATCOM 
Integration (WERFCS-SI) effectively addresses the 
shortcomings of current fault detection systems in 
compensated transmission lines. Integrating STATCOM and 
using Wavelet Transform for fault detection results in precise 
fault localisation and multiresolution analysis, which 
improves fault detection capabilities. Furthermore, feature 

EAI Endorsed Transactions 
on Energy Web 

| Volume 12 | 2025 |



S. Umathe, P. Daigavane, & M. Daigavane

10 

selection strategies like information gain increase 
classification accuracy by discovering and preserving 
significant features. The Random Forest classifier improves 
classification accuracy by handling complex data and 
capturing subtle feature interactions. As a result, 
implementing the proposed model provided significant 
results in several metrics, such as accuracy, precision, recall, 
specificity and F1 score. All the metrics used in this proposed 
model, such as 100%, attained the same result. By enhancing 
signal feature extraction and robust decision-making, the 
integration of wavelet transform and random forest with 
STATCOM improves the accuracy of fault classification in 
power systems. This results in more dependable and efficient 
fault detection and system stability. Overall, the integrated 
technique simplifies fault classification, resulting in more 
accurate and efficient problem detection throughout the 
transmission line system. Further research and validation on 
various datasets are required to explore the suggested 
method's potential and applicability properly. 

Acronyms Abbreviation 
RF Random Forest 

STATCOM Static Synchronous 
Compensator 

NB Naive Bayes 
DWT Discrete Wavelet Transform 
SD Standard Deviation 
FLMs Fault Location Methods 

EMD Empirical Mode 
Decomposition 

ITD Intrinsic Time Decomposition 
MLP Multi-Layer Perceptron 

TCSC Thyristor Controlled Series 
Capacitor 

FPA Flower Pollination Algorithm 
PMU Phase Measurement Units 

WELM Weighted Extreme Learning 
Machine 

PSO Particle Swarm Optimization 
CCT Critical Clearing Time 
GSS Grid-Synchronizing Stability 
EAP Equal-Area Principle 
TTP Trusted Third Party 

SCIG Squirrel Cage Induction 
Generators 

ITC Indirect Torque Control 

WECSs Wind Energy Conversion 
Systems 

PI Proportional-Integral 

MFPA Modified Flow-Pollination 
Algorithm 

WT Wavelet Transform 
VSC Voltage Source Converter 

CART Classification And 
Regression Trees 

KNN K-Nearest Neighbours
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