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Abstract 
In this paper, an optimal generation dispatch of the Ethiopian power system using a hybrid Genetic Algorithm-Hopfield 
Neural Network (GA-HNN) is presented to reduce recursive blackouts. Reformulation of generation dispatch for a power grid 
comprising biomass, hydro, solar, waste to energy plant, wind and geothermal have been carried out. Each of these sources 
requires a mathematical formulation that considers security limits and intermittency of renewables. Modelling and simulation 
was conducted on MATLAB. According to the simulation results obtained, it can be deduced that GA-HNN based optimal 
generation dispatch of Ethiopian power system is a key solution in connection to developments needed in the adoption and 
realization of smarter grids as it concurrently increases its security level and decreases total generation cost. Generally, 
reducing the number of recursive blackouts, decreasing generation cost, allocating optimal generation level, and reducing 
computation time are prospects of employing GA-HNN based OGD. 
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1. Introduction

Sudden power outages can result in a highly regarded 
threat to the socio-economic endeavours of the 
community. Considering the Ethiopian power network, 
which is a power system of renewable energy sources, 
entertains recursive blackouts and frequent interruptions. 
An estimated 85% of customers participated in an 
interview say that these blackouts have devastating effect 
whenever it rains, during holidays and weekends. 
Consequently, these blackouts impose substantial damage 
on production plants, service centres, and home 
appliances [1].  

According to [1] the Ethiopian power system from 2013 
to 2016 reported 15 major blackouts. Production plants 
and service centres were down for an average of four 
months a year. Natural incidents, equipment failure, and 
power mismatch, collectively known as contingencies, 
caused these sudden interruptions and blackouts. A 
contingency is an event that removes one or more 
generators or transmission lines from the power system, 
increasing the stress on the remaining network [2] [3].  
One of the main challenging aspects of power system 
operation is that electrical energy is difficult to store in 
significant amounts. This aspect requires a continuous 
balance between generation and demand that considers 
security constraints and contingencies.  
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The other challenge is related to the integration of 
intermittent renewable energy sources [4] [5]. One of the 
daily power operation tasks that can coin these challenges 
is OGD [3] [6]. OGD is a process of allocating generation 
levels to generating units to economically supply the load 
while satisfying security constraints [7] [8]. Simply put, 
OGD means to economically order a generating unit to 
generate more or less power subject to operational 
constraints. The main objective of OGD is to minimize 
the power operation cost, while continuously respecting 
the operational constraints of the power system as 
illustrated in Figure 1. 

With increasing emphasis on utilizing more renewables, 
the power industry confronts many new challenges. For 
example, in the Ethiopian power grid, day-to-day 
operation decision is done manually without the 
employment of economic dispatch [9]. Some methods 
have been used to solve this problem since its 
introduction, such as the iterative method, gradient-based 
techniques, interior point method, linear programming, 
and dynamic programming [10] [11].  

Figure 1. Optimal generation dispatch illustrative example
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 A bibliographic review reveals that OGD is an 
optimization problem that addresses over three conflicting 
objectives, which makes it a challenging computational 
problem [12]. Some methods have been used to solve this 
problem since its introduction, such as the iterative 
method, gradient-based techniques, interior point method, 
linear programming, and dynamic programming [13] [14]. 
A substantial number of articles reported OGD in the 
perspective of artificial intelligence [15] [16], renewable 
energy generation [17], and post-disturbance corrective 
actions [18] [19].  

 In this paper, it is put the choice firmly on: 
 Formulating the OGD problem of the Ethiopian

power system as separate objective functions.
 Predictive control of intermittent renewable

generation and demand profiles using neural
networks.

 Solving OGD of Ethiopian power system using a
hybrid Genetic Algorithm-Hopfield Neural
Network (GA-HNN) approach

Articulation of the challenging aspects of generation 
dispatch and intermittency of renewables is also the 
novelty of this study. 

Figure 2. Schematic diagram of the proposed power system 

2. Ethiopian Power System

Integrating renewables without considering their economic 
and technical challenges lead to recursive blackouts that 
subsequently affect the economic growth of the country [4]. 
Ethiopia is endowed with various renewable energy 
resources. The estimated potential for hydropower is 45 
GW, geothermal is 5 GW, and solar irradiation ranges from 
4.5 kWh/m2/day to 7.5 kWh/m2/day [11] [12].  

As of hydropower generation, large and small hydro 
potential estimates to 45 GW, of which 5% is only 
exploited. Wind potential is estimated to be 1,350 GW but 
less than 1% is exploited [11]. The entire generation plan of 
the Ethiopian power system is depicted in Figure 3. 
In a comprehensive construct, several papers presented 
renewable energy resource potential assessments and 
prospects of integrating renewable generation [8]. Hossain 
Mondal et al. [3] clearly articulated the prospects of 
improving energy efficiencies and mitigating greenhouse 
gasses emission from Ethiopian energy generation. 
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Figure 3. Location of existing and planned renewable generation stations

2.1. Generation capacity 
The electricity grid in Ethiopia is now entirely prime-
moved by renewables, and the priority projects imply that 
this trend will continue. Geographic access to electricity is 
56% with household connectivity of 25% and per capita 
electricity consumption of 100kwh/day [1] [12]. 
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Figure 4.  Annual forecasted generation capacity 

From a comprehensive understanding of the Ethiopian 
power grid, 99 power plants as renewable energy systems 
are identified. These include 48 operational power, 16 
plants under construction, and 35 planned. Technology-
wise, the planned power grid constitutes 35 hydropower 
plants, 18 geothermal power plants, 11 wind power plants, 
9 solar power plants, and 21 renewable thermal power 
plants. 

In this study, the operational plants and plants that are 
under construction were used. Hence, the considered power 
system constitutes 85 generating units and is dispatched for 
the projected year of 2025 according to the forecasted 
generation presented in Figure 4. 

 2.2. Demand forecast 
The average annual growth in electricity demand from 
2012 to 2013 was approximately 14% while electricity 
consumption per capita 60 kW in the year 2012. According 
to [12], an estimated 23% population had access to 
electricity in 2012. Ethiopia faces a significant challenge 
while working to achieve sustainable development. 
Economic growth, population growth and industrialization 
greatly increase electricity demand [2]. 
In response to these challenges, Ethiopian Electric power 
(EEP) is executing many projects in consideration of the 
demand for electricity to enhance its capacity in line with 
the growth of the country. The electricity demand has 
doubled for the past 10 years and is expected to increase by 
28% -32% per year in the next five years. The existing plan 
is to reach the capacity of power generation 17.3 GW and 
21,728 km of transmission lines by 2020 [3] [13]. These 
figures do not signify the effect of variable demand, 
recursive blackouts and intermittent generation. 
Both intermittent renewable generation and variable 
demand depend on weather and the type of customers. 
Most electric grids and utilities serve different customers in 
different sectors, such as residential, commercial, and 
industrial, as shown in Figure 5.  
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The electric usage is not the same for customers that belong 
to different sectors, but somewhat similar for customers 
within the same sector [13]. 
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Figure 5. Sector-wise demand forecast 

To cope up with the growing demand’s pace, intensive 
study on the demand profiles, accurate short-term planning, 
load forecast, and demand-supply balance should be 
provided. 

2.3. Power Mismatch 

To dispatch a power system, it is imperative to study 
supply and demand profiles. Supply refers to the existing 
generation capacity of the power system, while demand 
refers to the load of the grid. Ethiopia has a final energy 
consumption of around 40,000 GWh, whereof domestic 
appliances, 4% by the transport sector and 3% by the 
industry consume 92% [15]. In light of this, matching the 
diverse characteristics of renewables to the widely varying 
rural needs is facilitated by employing integrated renewable 
generation.  
Ethiopia’s current grid is inadequately maintained, and grid 
quality and stability are already matters of concern, making 
the integration of renewables a heightened challenge. 
Employing computationally efficient OGD can overcome 
these challenges. For example, with large reservoirs, 
hydropower can store energy over weeks, months, seasons 
or even years.  
Hydropower can therefore provide a full range of spinning 
reserves, non-spinning reserves, operating reserves, 
responsive reserves, regulation up, and regulation down 
required for high penetration of wind and solar [14]. To do 
this, optimal dispatch and reserve allocation are needed. 
The operator needs to know when to dispatch the hydro 
unit instead of solar or wind. This way, the so-called ‘duck 
curve’ challenge of solar PV generation can be solved. 

3. Mathematical Framework

3.1. Problem formulation

 Relations between the power generation cost and the 
operating cost rely on power flow output and forecasted 
values [9] [14] [15]. Problem formulation thus starts from 
the optimization perspective of the OGD mathematical 
model. The general optimization problem form for OGD is: 

( ),
n

optimizef x x R∈  (1) 
Subject to   

( ) 0 1, 2...kh x m= ∀          (2) 

( ) 0 1, 2...lg x L≤ ∀            (3) 

  Where ( )kh x  represents a set of equality constraints ( )
l

g x , 
represents a set of inequality constraints, and ( )f x  is the 
objective function that optimizes x. In a practical power 
system, the OGD problem is non-linear and multi-objective 
due to operational constraints [20] [19]. Objective function 
should minimize the non-detailed formulation of the OGD 
problem due to unnecessary assumptions that can lead to a 
limitation in the modelling of large-scale power systems 
[21]. In this regard, multi-objective optimization is 
favoured. The general form of multi-objective optimization 
is then: 

( ) ( )1 2( ) ,  ,( ( ) NobjOptimizef x f x f x f x=  (4) 
Subject to 

 ( ) 0 1, 2...lg x i m= ∀ =

( ) 0 1, 2, ...kh x k K≤ ∀ =

( ) ( )1 0i i ix x x≤ ≤       (5) 

Where ( ) ( )
1 2

),  , (
Nobj

f x f x f x are different objective functions 

denoting the involved renewables and 
i

x  denotes the 
security level constraints of the power system. 

OGD for Hydro: To formulate an economic dispatch 
problem, the first objective function f1(x) in equation (4) 
represents the objective function of hydropower generation 
plants [14] [22]. 

1
1

min ( ) ( )
hgN

h hgj
i

f x C P t
=

= ∑             (6) 

Where hC denotes hydropower generation cost, Phgj

represents hydropower output at the ith unit, and hgN is the 
number of committed hydropower plants. 
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OGD for Wind: The behaviour of wind speed at a given 
area or location can be quantified as a probability 
distribution function [23] [24]. Dispatch wise, its 
corresponding objective function is f2(x).  

24

2

1 1 1

( ) ( )
WG WG

N N

w wgj

i t i

R Pf x C P t C C
= = =

= + +∑ ∑∑     (7) 

Where
w

C ,
wgj

P  and WGN represent wind power generation 
cost, wind power output at the ith unit, and the number of 
committed wind generating units. CR and CP represent the 
reserve cost and penalty cost coefficients of wind power 
generation, respectively.  

OGD for Solar PV: the solar power output depends on the 
solar irradiance of a particular site [25] and its objective 
function considered as the third objective function of (4) is 
represented by f3(x): 

24

3
1 1 1

( ) ( )
sg sgN N

s sg R P
i t i

f x C P j t C C
= = =

= + +∑ ∑∑     (8) 

Where for 0 <G< R ca: 
24

1 1

( ) ( )
sgN

sg R P
t i

P j t C C
= =

= +∑∑                (9) 

 CR and CP represent the reserve cost function and penalty 
cost function of solar PV generation, respectively. The 
reserve cost function determines the debit produced from 
variable solar radiation [23].  
OGD for Renewable Thermal: Renewable thermal plants in 
this context refer to plants that are prime moved by 
renewable sources. Despite the difference in their 
constraints, renewable thermal plants have similar objective 
functions [11] [26]. The economic dispatch objective 
function of thermal power generation cost ( Fth ) is a 
quadratic function of a coefficient measure of losses ( ia ), 

coefficient representing fuel cost (
i

b ), and coefficient 
representing operating and maintenance costs that include 
salary and wages ( ic ). Denoting solar thermal power 
generation cost, geothermal generation cost, and biomass 
generation cost by SthF , GthF and BthF  respectively; the total 
objective function for renewable thermal power generators 
with their corresponding power outputs, SthP , GthP , and BthP is 
given by: 

4 1 2 3

1 1 1 1

( ) ( )
th Gth Sth Bth

N N N N

th th Gth Gth Sth Sth Bth Bth

i i i i

f x C P j t F P F P F Pα α α
= = = =

= + + 
  ∑ ∑ ∑ ∑     (10)                                                   

  Where  
2

th i th i th iF a P b P c= + +   (11) 

2
Gth i Gth i Gth iF a P b P c= + +     (12)    

2
Sth i Sth i Sth iF a P b P c= + +     (13)

2
Bth i Bth i Bth iF a P b P c= + +    (14) 

Where thP , GthP , SthP  & SthP denote thermal power output, 
geothermal power output, solar power output, and biomass 
power output. Weight factors of unit costs between 0 & 1 
are represented byα . 
Security index; Security index as an objective function that 
shows the severity of contingency during outages is 
considered. The security index is introduced as an 
extension and improvement of OGD problem formulation 
in [27]. 

5

2

max
1

( )

m
NL

Gactive
SL

i Gactive

x
P

f f
P=

= =
 
 
 

∑   (15) 

Where NL denotes the total number of transmission lines 

Gactive
P & max

GactiveP represent active power flow and maximum 
active power flow at the kth line, respectively.   

3.2. Constraint formulation 
 In power systems, continuously respected operation 
constraints and limits ensure the reliable and secure 
operation of the system. 

1. Demand and generation balance

1 1 1 1

hgg wg sg thN N N N

D L hg wg sg th
i i i i

P P P P P P
= = = =

+ = + + +∑ ∑ ∑ ∑ (16) 

Demand and generation balance clarifies that the total 
generation of hydro generating units (Phg), wind generating 
units(Pwg), solar units(Psg), and thermal units(Pth) should 
be equal to the sum of total demand(PD)and power loss(PL). 

2. Generation limits
min max

i i iP P P≤ ≤    (17)

min max0.00981 i ij ijP H Q Pη≤ ≤    (18) 

0 ( )w wrP j t P≤ ≤  (19) 

  0 ( )s srP j t P≤ ≤  (20) 

0 ( )h hrP j t P≤ ≤  (21) 

Pwr, Psr, Phr, and Pi denote the rated wind power output, 
rated solar power output, rated hydropower output, and 
power output of the ith generating unit, respectively. 
3. Prohibited operating Zones

min 1, 2...Lj

i i i PozP P P j N≤ ≤ ∀ =   (22)    
1jV lj

i i iP P P− ≤ ≤   (23)  
1 maxJV

i i iP P P− ≤ ≤  (24) 
Modern generators have prohibited operating zones (Npoz) 
for determining feasible operating zones.  
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4. Transmission constraints:

1 1 1 1 1

n m n n m

L gi ij gj oo io gi gi ij gj

i j i i j

P P B P B B P P B P
= = = = =

= = + +∑∑ ∑ ∑∑  (25)                             

Where 
cos( )

cos cos
i j ij

ij

i j i J

R
B

VV

θ θ

φ φ

−
=   (26) 

1 1

n m

oo Di ij Dj
i j

B P B P
= =

= ∑∑    (27) 

( )
1

m

ij ij ji
j

B B B
=

= − +∑    (28) 

The power transmission losses depend on the flows in the 
branches and thus on the net injections and Kron’s loss 
equation better describes power injection parameters. 

5. Security limits
Security limits refer to the fact that apparent power flow
through the transmission line ( ls ) must be restricted by its 

upper limit ( max
ls ) for all security levels ( LN ). The security 

level thus depends on the credibility of contingencies 
( ( )l P tφ ). 

max

1 1 1, 2... LS S l N≤ ∀ =    (29) 

( ) 1, 2...j CP t o j Nφ > ∀ =
 (30) 

6. Generator ramp rate limits

min 1 max 1

max( , ) ( ) min( , )
t t

i i i i i i i
P P DR P t P P DR

− −

− ≤ ≤ + (31)                                                           

 Increasing and decreasing the output of renewable 
generation is limited to the amount of dependable power 
due to the physical and mechanical restrictions of each 
generating unit.  
7. Spinning reserve limits
To have a primary frequency response to variable demand,

a minimum spinning reserve value must be set aside.

1

GN

Ri Sr
i

S S
=

≥∑  (32) 

Where RiS  is the fraction of the total spinning reserve of the 

power system ( SrS ) allocated to the generating unit i. 
8. Water discharge and reservoir limits:
For hydrothermal generating units, bounds by the

restrictions of their storage reservoirs must be considered.

min max

i i i
X X X≤ ≤   (33) 

min max

i i i
V V V≤ ≤  (34) 

min max

i ij j
Q Q Q≤ ≤   (35) 

min max

i ij j
V V V≤ ≤   (36) 

( )
, 1

( )
i j ij ij i ij ij kij j

K K
j

V V Q q S t Q S I t
+

∈

= − − + ∆ + + + ∆∑    (37)  

9. Penetration rate constraints
( ) ( ) ( ) ( )w s h th DP j t P j t P j t P j t P+ + + ≤ Ψ  (38) 

In this study, a penetration rate of 98% for the Ethiopian 
power system is considered.  

4. Hybrid Genetic Algorithm-Hopfield
Neural Network solution method

4.1. Genetic Algorithms 

Genetic algorithm (GA) is a global search technique based 
on the mechanics of natural selection that searches from 
population to population with features of strong 
adaptability and implicit parallelism [37] [38]. First, 
initialize the number of generating units N and population 
size, NP and specify credible contingencies and. Population 
size and dimension randomly generate an initial vector Ptij. 
Ptij is the real power value of jth unit of the ith population 
randomly generated within the operating limits using [39]. 

min max min(0,1)( )t

ij i i i
P P rand P P= + −   (39) 
 Evaluate the fitness value of each vector Pt

ij according to 
the fitness function given below 

1 2 3 4 Re
( ( ) ( ) ( ) ( ) )

A Penality serve loss
F f x f x f x f x f f f= − + + + + + +

       (40) 
Perform mutation operation on the target vectors to obtain 
new parameter vectors called mutant vectors using 

( )t t t

ij ij Rij RjiZ P F P P= + −   (41) 
Perform crossover operation to create trial vectors from 
mutant and target vectors. If the generated random number 
value is less than or equal to the assumed value of the 
crossover constant, then the mutant vector is chosen, else 
the parent vector is chosen as given below. The assumed 
crossover constant (CR) should be within the range of (0,1) 
[28]. 

1
, ( )

, ( )
ij ij Rt

ij

ij ij R

Z if R C
U

P if R C
+

≤
=

≥

 
 
 

      (42) 

Decide members to constitute the population of the next 
generation (t +1).  The new vector Uij

(t+1) is selected based 
on the comparison of fitness of both target vector, Pi and 
trial vector, Ui. Compute generation after generation to 
meet the stopping criteria tmax [29]. 

4.2. Hopfield neural network Approach 

The Hopfield Neural Network (HNN) is a recurrent 
artificial neural network popularized by John Hopfield in 
1982, in which networks serve as associative memory 
systems with binary threshold nodes. The output of each 
neuron is then supplied to all other neurons.  
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The process continues until a stable state that represents the 
network output is reached. HNN is a widely used model for 
solving combinatorial optimization problems [19]. In 
Hopfield Networks, an attractor pattern is a final stable 
state, a pattern that cannot change any value within it under 
updating [30]. 

0 min max min( )i Gi Gi GiV P rand P P= + −  (43) 

The initial values of inputs for these neurons are calculated 
by the inverse sigmoid functions based on the initial 
outputs of the continuous neurons representing power 
outputs of generating units [31]. 

0 min
0

max 0

1
ln

2
i Gi

i

Gi i

V P
u

P Vσ

−
=

−

 
 
 

  (44) 

The inputs to the neuron come from two sources, one from 
the external inputs Ii and the other from the other neurons 
Vj. Where: U i is the total input to neuron i, Tij is the 
interconnection conductance from the output of neuron j to 
the input of neuron i, Ii denotes external input to neuron i, 
and Vj stands for the output of neuron j. The continuous 
model of the HNN is based on continuous variables [32]. 
The most important point in solving any optimization 
problem using HNN is the mapping of the problem 
objectives and constraints on the energy function of the 
network [30]. The objective function for the generation 
dispatch problem has two parts: i) the operation and 
generation cost minimization part ii) the generation and 
computation error minimization part. To solve the 
generation dispatch problem the energy function is defined 
by combining the objective function with constraints as 
[32] [16]:

( )2 2 2

1 1

( ) ( )
2

NN

D L G i i Gthi i Gthi L

i i

G C
E A P P P B a b P c P P

= =

= + − + + + +∑ ∑ (45)

The synaptic strength and external input are obtained by 
mapping the energy function. By changing the output of 
unit i from PGio to PGi, and the transmission loss change 
from P Lo to PL the loss can be represented by[31]: 

1

( )
N

L Lo L Lo Lio Gi Gio
i

P P dP P I P P
=

= + ≅ + −∑   (46) 

The energy function of HNN is defined by combining the 
objective function and the corresponding constraint 
function, employing weight coefficients, which determine 
the weightage of each factor. This starts with the energy 
function of HNN given by: 

1 1 1

1

2

N N N

Ij i j i i

i j i

E T VV I V
= = =

= − −∑∑ ∑   (47) 

The time derivative of this energy function should be 
negative, so the network always moves in such a direction 
that the function converges to a minimum. To solve OGD 
using HNN, the penalty function method is used. 

( ) ( )2

2

1 1

( )
2 2

N N

i Gthi i Gthi L D Gthi

i i

A B
E a P b P c P P P

= =

= + + + + −∑ ∑ (48)                                                                             

This energy function consists of objective function also 
known as cost functions and design constraints function. 

1

( )
N

L Lo L Lo Lio Gi Gio

i

P P dP P I P P
=

= + ≅ + −∑  (49) 

1

2 ( )
Gio

N
L

ij Gjo Gi Gio

iGi

P
B P P P

P P =

∂
= −

∂
∑             (50) 

1 1 1 1

2 ( )
N N N N

L Gio ij Gjo ij Gjo Gi Gio

i j i j

P P B P B P P P
= = = =

= + −∑∑ ∑∑ (51)

 To map this equation into HNN, the computation should 
start with equating (57) and (58), so that the following set 
of equations is obtained. 

,
ii i ij

T Aa B T B= − − = −     (52) 

( )
2

i D L i
I B P P b

λ
= − −               (53) 

( )
2

i

i D L

Bb
I A P P= + −     (54) 

 A and B being weighting factors, A varies from 0.1 to 3, B 
is set to 1, and is set to 0.000055. A &B should be greater 
than or equal to zero. The relation that updates these values 
is called an adaptive calculation of weighting factors. 

0.5
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=    (55) 
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M ED
i

G

I I
N

=
 ∑ 
 

,
1

im

G

b b
N

=
 ∑ 
 

&
G Gi

P P= ∑  NG is the

number of committed generating units. In the selection 
procedure of weighting factors, A is associated with power 
mismatch (Pm), as it is assigned the highest priority over the 
other terms [22]. 

2( ) ( )
m T

A P B f≥ ∆     (67) 
2( ) / ( )

T m
A B f P≥ ∆  (68) 

This means A is determined from any value of B. To 
determine the value of weighting factor C.  

2
m

C AP=    (69 

4.3. Hybrid genetic algorithm-Hopfield neural 
network Approach  

Hybrid methods are a merger of two or more optimization 
algorithms to improve the overall performance of a single 
or multi-objective optimization problem. The main goal of 
developing hybrid methods is to achieve an improvement in 
terms of complexity and computational effort reduction on 
one hand and increasing the accuracy and robustness of the 
solution on the other hand.  
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With the increasing interest in hybrid optimization 
methods, substantial articles have been published. Hybrid 
methods including bacterial foraging optimization that is 
Nelder-Mead hybrid algorithm [33], improved harmonic 
search, and hybrid ACO-ABC HS algorithm [34] have 
introduced an efficient and effective optimal solution to the 
SCED problem [16]. Stephen Frank et al. [35] have 
chronicled a bibliographic survey of papers with a 
perspective on non-deterministic hybrid methods for 
solving optimal power flow problems.  
This paper proposes OGD of Ethiopian power system using 
a robust and computationally intelligent GA-HNN 
approach adopted from [16] and [32], hybridization of 
Hopfield neural network, and improved genetic algorithms, 
which takes into account the intermittency of renewables 
and handles probable contingencies. 
The general working algorithm for GA-HNN is:  

1. Write separate objective functions and constraint
functions.

2. Enter system data and analyse inputs  using
Weibull PDF equations and HNN predictive
control.

3. Select A, B, λ and calculate values in equations (
58-65) 

4. Determine the attractor pattern of the final state as
in equations (49 and 50)

5. Map the OGD objective functions to the HNN
using penalty function weights as mathematically
represented in equation (54)

6. Run adaptive calculations of weighting factors
(equations 61-65)

7. Initiate genetic algorithms by selecting parameters
such as population size and number of generations

8. Compute parallel and consecutive genetic
algorithms & check if the global best solution
satisfies constraints and contingencies.

9. Display final and best solution

Start

Initialize  population and generating units 

Global best population

K=K+1Parallel GA

Evaluate all input conditions 

Final and best solution 

GA3 operators GA 2 operators GA 1 operators

Evaluate solution to contingencies &constraints 

Stop

K=Km1 K=Km3K=Km3

Write separate objective functions(equations  7,18,20,25) and 
constraint functions (equations 26-40)

Analyze input data using Weibull PDF and HNN predictive control 

Determine the attractor pattern of the final state 

Map OGD on to HNN ‘s energy function using penalty function weights  

Run adaptive calculations of weighting factors and  use the HNN 
energy function as  GA fitness function 

Figure 6. GA-HNN flow chart 

5. Results and discussions
The results of optimal generation dispatch of the 
Ethiopian power system using GA-HNN obtained from 
MATLAB are presented below.  Predictive control 
enables the Hopfield net to lower the energy state that the 

net should remember. This way the net can recover from a 
distorted input to a trained state that can withstand 
contingencies as shown in Figure 2. Based on the errors 
shown in Figure 7, credible contingencies with higher 
error values are selected as credible contingencies for 
training.   
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Figure 7. Predictive control of variable resources using neural networks in compliance with Weibull PDF 

Figure 8. Data training evaluation and validation using HNN 

Figures 8 and 9 present the data training evaluation and 
validation, the time-series response of training the create 
network with renewable penetration effects to the 

Ethiopian power system. It can be seen that the demand 
and supply are affected by the intermittency and 
variability of renewables. 
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Figure 9. Time series response of training the created HNN 

To practically interpret the results, unit commitment 
input, forecasted data evaluated by predictive control of 
HNN, the number of recursive blackouts, and demand 
profile are integrated within the proposed OGD solution. 
There is an important difference in load between 
weekdays and weekends. Furthermore, Mondays and 

Fridays being adjacent to weekends can have structurally 
different loads than Tuesday through Thursday. Day and 
night also have a different share of load and generation 
effects. Figure 9 thus helps to grasp the effect of weekend 
demand profiles on the OGD of the power grid.  

Figure 10. Generation dispatch share of Ethiopian power stations 
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Figure 11. Ethiopian Renewable Energy Systems dispatch 

OGD is important for scheduling when/which generator to 
dispatch, determining how much reserve is needed for 
spinning, standby, ramping, and contingency. Figure 10 
presents dispatch contributions from Ethiopian existing 
power plants that participated in alleviating the recursive 
blackouts. In Ethiopia, the weather does not significantly 

vary throughout the year. Apart from solar PV generation, 
therefore, demand seasonality on the grid is minimal. 
Here, the residential demand is characterized by lighting, 
cooking, and heating, and since the peak is in the evening, 
their contribution to the system peak is significant. 

Figure 12. Results showing HNN enhanced GA features and properties. 
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Figure 13. Weekly dispatch Ethiopian Renewable Energy System

The composition of the load is a bit different from the 
state cities’ commercial and public services as large 
infrastructure, industries, schools, and hospitals operate 
mainly between 8:00 Am and 6:00 Pm. Additionally, the 
country’s suburbs can largely consist of small shops, 
hotels, bars, cafes, and restaurants that stay open 
throughout the evening. Available data is used to 
understand OGD and the dispatch contribution of each 
generating unit.  

Figures 11, 12 and 13 depict the energy share and 
dispatch of each Ethiopian generating unit committed so 
far to supply 10.023GW of power. A comparison between 
different solution methods of economic dispatch for a 3 
unit renewable generation is presented in Table 1. The 
execution time and production cost of the system solved 
using GA-HNN is less than that of conventional methods. 
This comparison was done to indicate the robustness of 
GA-HNN. 
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Table 1. Multi-variable multi-objective simulation 
comparisons of HNN, EPGA, and GA-HNN 

Time HNN Solution EPGA Solution GA-HNN Solution
1 11847.04 11847.04155 11850.04155
2 11547.13 11547.12606 11550.12606
3 23394.17 23394.16761 23395.16761
4 11662.13 11662.1314 11665.1314
5 11768.15 11768.15114 11770.15114
8 11866.71 11866.71086 11865.71086
7 12034.89 12034.88594 12035.88594
8 12219.79 12219.79114 12220.79114
9 12543.93 12543.93396 12545.93396
10 13130.48 13130.47914 13130.47914
11 13397.93 13397.92534 13400.92534
12 13540.31 13540.30971 13540.30971
13 13260.92 13260.92285 13260.92285
14 12859.55 12859.55294 12860.55294
15 12431.65 12431.65383 12435.65383
16 12312.82 12312.81593 12315.81593
17 12017.45 12017.45115 12017.45115
18 12041.08 12041.07891 12045.07891
19 11757.06 11757.05716 11760.05716
20 11453.42 11453.41733 11455.41733
21 11424.6 11424.6024 11425.6024
22 11654.52 11654.52416 11655.52416
23 12368.03 12368.02728 12370.02728
24 12642.14 12642.14203 12645.14203

Pm(MW) 3.22315E-05 3.16214E-05 2.85323E-06
P loss (MW) 36.78 36.23 35.23
Cost($/MW) 520,614.85 520,001.24 519,971.00
Run time (sec) 0.6875 0.2692 0.12812

6. Conclusions

This paper presents an optimal generation dispatch of 
Ethiopian power systems using the hybrid Genetic 
Algorithm-Hopfield neural network (GA-HNN) approach. 
Reformulation of generation dispatch for Ethiopian power 
system comprising biomass, large and micro-hydro plants, 
solar PV, solar thermal, waste to energy plant, wind farm, 
and geothermal is presented. Each of these sources 
requires problem formulation and constraint handling 
mechanisms considering security limits and credible 
contingencies. This enables renewable energy fuelled 
power systems to provide secure and reliable service. The 
Ethiopian power system was used as case study. 
Modelling and simulation were conducted on MATLAB 
simulation platform.  
According to the simulation results obtained, it can be 
deduced that GA-HNN based optimal dispatch of 
Ethiopian power system is a promising step in connection 
to developments needed in the adoption and realization of 
smarter grids as it is an excellent solution method of 
anticipating intermittent fluctuating and predictive 
control.  

Employing optimal generation dispatch using a hybrid 
Hopfield neural network-genetic algorithm approach for 
intermittent renewables concurrently increases their 
security level and decreases total generation cost. It is also 
worth noticing solving OGD using GA-HN provides 
optimal allocation of generation level, contingency 
reserve and penalty reserves that help power system 
operation regain normal operation after blackout occur. 
Generally, limiting the number of recursive blackouts, 
reducing generation cost, allocating optimal generation 
level and reducing computation time are prospects of GA-
HNN based OGD. 
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