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Abstract 

INTRODUCTION: As the penetration rate of renewable energy increases and patterns of energy demand evolve, fluctuations 
on both the supply and demand sides of electricity are becoming more pronounced. Consequently, accurate forecasting of 
community residential electrical loads has become crucial. 
OBJECTIVES: Although the widespread adoption of smart meters among residents provides abundant data for model 
training, strict challenges arise during the training process due to the need for privacy protection and data security. 
METHODS: This paper proposes a privacy-preserving community residential short-term electric load forecasting method 
based on federated learning. Initially, the method applies shared random masking encryption to the sensitive data of 
community residents, ensuring data privacy while maintaining consistency with the original data after preprocessing. 
Subsequently, a private data aggregation scheme is established to perform dynamic clustering of the community’s electrical 
load. 
RESULTS: The clustered model then serves as the basis for establishing individual load forecasting models for each category 
of community residents to predict short-term electrical loads. Finally, an empirical analysis is performed using the electrical 
load data from 120 households across 6 communities in a city in Southern China. 
CONCLUSION: The analysis demonstrates that the proposed method can achieve the prediction of community residential 
electrical loads without sharing residents’ data, thus verifying the effectiveness of this approach. 
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1. Introduction
With the increasing scale of installations and total generation 
capacity of intermittent renewable energy sources such as 
wind and photovoltaics [1-3], short-term residential electricity 
load forecasting is becoming increasingly important for the 
reliability of modern power systems to address power 
security and system safety [4-6]. Short-term residential load 
forecasting covers periods from a few minutes to a week, and 
plays a significant role in many operational processes of the 
power system, such as the operation and dispatching of light 
storage charging and discharging equipment in residential 
areas [7]. 

Short-term residential electricity load forecasting relies on 
load data and configuration parameters [8,9]. Traditional 
residential load forecasts are mostly based on various 
regression analysis methods, including linear regression [10], 
autoregression [11], exponential smoothing [12], and time series 
[13] models. Data-driven forecasting methods rely heavily on
the quantity and quality of available data [14]. With the
widespread application of smart meters and the rapid
development of machine learning methods, there has been a
significant improvement in the quantity and quality of
residential electricity load data. However, uploading large
amounts of data to central servers not only increases the
expenditure on communication resources but also poses risks
such as the leakage of user privacy [15]. Short-term load
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forecasting methods can use “centralized” or “decentralized” 
approaches for residential electric load prediction. The 
centralized approach involves transmitting smart meter data 
to a central server for concentrated training and forecasting. 
Its predictions are more accurate compared to the 
“decentralized” method, but it poses greater challenges 
regarding data privacy issues than the “decentralized” 
forecasting approach. 

The “decentralized” approach refers to the use of 
distributed smart meter clients, each of which pre-trains and 
predicts based on their own historical data [16]. A widely 
applied method within this framework is based on federated 
learning. Federated learning enables decentralized clients to 
collaborate and update their own models without exchanging 
detailed data among themselves, thereby predicting their own 
futures [17]. In a typical federated learning framework, all 
clients cooperate in training under the coordination of a 
central server using their local data, to approximate a globally 
optimal model [18]. Since in federated learning the original 
data and computations are conducted on the local clients and 
the training process does not involve exchanging raw data 
between clients, it avoids the leakage of users’ private data. 
Furthermore, federated learning can combine multi-party 
computation and personalization techniques to further 
enhance privacy protection while also addressing 
performance degradation due to heterogeneous data across 
different users [19]. 

Machine learning models such as Extreme Gradient 
Boosting and Random Forests [20] are now widely applied in 
the field of time series prediction. At the same time, deep 
learning has been extensively utilized in the domain of 
electricity load forecasting due to the versatility of its models 
[21]. Deep learning methods have been employed to forecast 
electricity load intervals for regions, providing guidance for 
power dispatching [22]. Long Short-Term Memory (LSTM) 
networks have also been used for load time series prediction 
[23]. Based on LSTM, incorporating attention mechanisms can 
enhance the model’s memory capability and improve its 
interpretability [24]. These models have been comprehensively 
and extensively researched and experimented by scholars at 
home and abroad, and the results have verified the efficacy of 
machine learning methods in uncovering the complex non-
linear relationships among factors influencing residential 
electricity load forecasting. 

Load forecasting based on federated learning employs a 
variety of different neural network architectures. With the 
evolution of technology, the architectures of neural networks 
have become increasingly deep [25]. Deep neural networks 
include layers such as Fully Connected Layers (FCL) and 
Convolutional Neural Networks (CNN) [26]. LSTM has 
feedback connections that can understand the dependencies 
between sequence elements, making them suitable for time 
pattern recognition. The function of CNN layers is akin to the 
human retina, able to capture the spatial distribution of 
graphical patterns. In models that combine LSTM with CNN, 
within encoder-decoder or autoencoder architectures, the 
neural network takes a sequence vector as input and maps it 
to another sequence to minimize the impact of outliers and 
effectively avoid overfitting during training, with prediction 

performance indicators exceeding those of other machine 
learning models [27]. 

The standard federated learning approach establishes a 
single model for all clients. However, due to the inherent data 
heterogeneity of the decentralized clients, its performance is 
not as good as personalized federated learning. Personalized 
federated learning can learn from non-independent and 
identically distributed data, constructing customized models 
for each client. It employs data augmentation methods such 
as generative autoencoders to generate samples, reinforcing 
the statistical homogeneity from the local dataset’s 
perspective. 

Despite significant progress in the industrial [28] and 
commercial sectors [29], the application of federated learning 
for residential electricity load forecasting has been scarce. 
Therefore, this paper explores the use of federated learning 
combined with cryptographic techniques and deep learning 
methods for residential electricity load forecasting. 
Specifically, to ensure the confidentiality of data in the 
proposed framework, a private data aggregation scheme was 
established. In addition, a dynamic clustering federated 
learning algorithm was proposed for different residential 
electricity load data, which iteratively groups users without 
leaking their privacy and shares inter-cluster information 
during the clustering process to achieve personalized 
forecasting for different types of residential electricity loads. 

Addressing the issues mentioned above, this paper 
explores the potential application of federated learning in the 
field of power load forecasting and proposes a short-term 
electric load forecasting method based on federated learning 
with a focus on privacy protection. This method breaks away 
from the traditional system-level aggregate load forecasting 
approach, improving the performance of short-term 
residential electric load forecasting. Additionally, this study 
has developed an information-sharing framework based on 
federated learning to address issues of missing data and 
anomalies in residential electricity load data. Moreover, a 
privacy protection scheme for sensitive data aggregation has 
been established. Tailored to the heterogeneity of training 
data, a dynamic clustered federated learning prediction 
method has been implemented. Finally, using residential 
electricity load data from several communities in a city in 
Southern China as an example, the case study analysis shows 
that this method achieves electrical load prediction for 
residents while protecting data privacy. 

2. Literature review

2.1. Characteristics of Federated 
Learning 
Federated learning, as a distributed machine learning 
paradigm, is widely welcomed for its privacy-preserving 
characteristics [30]. A typical federated learning framework 
consists of a central server and multiple local clients [31]. In 
every communication round of federated learning, selected 
clients train the model with their local data independently, 
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and then broadcast their model updates to the central server. 
The central server then combines the updates from all clients 
to improve the global model on the central server. The 
training goal of federated learning is to provide local data 
with an approximation of a globally optimal model without 
disclosing user privacy. The main idea of federated learning 
is that multiple independent clients collaborate to train 
machine learning models without the need to exchange their 
detailed training data. 

2.2. Forecasting Framework Construction 

This research initially establishes a privacy-protected 
information sharing framework for electric load forecasting 
based on federated learning, the overall structure of which is 
depicted in Fig 1. Urban electric grid providers can fulfill the 
role of a central server, with urban residents participating in 
the information sharing framework, collaboratively 
enhancing forecasting performance without exchanging raw 
data. As illustrated in Fig 1, a private data aggregation 
scheme is first proposed to compute the statistical 
characteristics of the distributed data held by different 
residents while ensuring privacy during the model 
aggregation process; subsequently, based on the residential 
electric power load forecasting model, a dynamic clustering 
federated learning algorithm is proposed. This algorithm 
iteratively updates the clustering of participating resident 
users, enabling the sharing of classification information both 

within and among clusters. Meanwhile, to mitigate the impact 
of data heterogeneity, personalized forecasting models are 
developed for each category of residents. 

The central server and all participating residents must 
adhere to the communication protocol established within the 
framework. During the client communication process, 
individual clients may attempt to analyze the exchanged data 
to obtain private information of other users [32]. Therefore, 
ensuring the privacy of users during the federated learning 
prediction process, and safeguarding that private data is not 
disclosed, becomes particularly crucial. 

The input variables of the prediction model are as 
presented in Tab 1, which primarily include weather 
conditions, calendar time, residential housing features, and 
historical electric load characteristics. For numerical 
variables, the mean and standard deviation of the federated 
dataset are obtained using the proposed private data 
aggregation scheme, after which the data are normalized. 
Regarding categorical variables, those with periodic 
characteristics, such as the calendar, are encoded using sine 
and cosine functions to retain their cyclical nature. For other 
categorical features, such as the primary usage type of 
residences and time segments of the day, one-hot encoding is 
applied. To reduce the dimensionality of the one-hot encoded 
features, the time of day is divided into three main categories 
based on the characteristics of residential electricity use: “1” 
represents the time slot [9PM, 7AM), “2” represents [7AM, 
5PM), and “3” signifies [5PM, 9PM). 

Figure 1 Federated-learning-based energy prediction architecture 

Table 1 Input variables of the residential power prediction model. 

Attribute Variable Type Unit/Range 

Environmental parameters 

Temperature Numerical ℃ 
Humidity Numerical % 
Rainfall Numerical mm 
Atmospheric pressure Numerical hpa 
Wind speed Numerical m/s 



B. Peng et al.

4 

Wind direction Numerical Rad 

Time attribute 

Hour of the day Categorical 0-23
Day of the week Categorical 1-7
Weekend or Holiday Boolean True/False
Day of the month Categorical 1-31

Resident characteristics Living area Numerical ㎡ 
type of Living Categorical 1-4

Electric power demand Power Numerical kW

Based on the features, the residential electricity load for 
the next hour is forecasted and the predicted results are then 
transformed using a specific function to reduce the variance 
of the forecasted outcomes. In terms of model input, given 
the clear periodic pattern observed in residential electricity 
load curves, the forecasting window is set to 24 hours to 
predict the next hour’s electricity load using data from within 
this 24-hour window. 

3. Federated Learning-based
Residential Load Forecasting
Due to reasons such as data volume, traditional residential 
electricity load forecasting methods improve the performance 
of target residential load forecasts by utilizing models 
extracted from other resident categories. However, 
significant variations exist in load characteristics across 
different periods and residential areas. Moreover, machine 
learning models struggle to independently process and 
analyze data from different segments, leading to data 
heterogeneity issues. This heterogeneity severely hinders the 
construction of accurate residential load forecasting models. 
To address these challenges in a distributed framework, this 
paper proposes a dynamic clustering federated learning 
algorithm to cluster residents with similar load profiles. 

3.1. Residential Load Forecasting Model 
Architecture 

The LSTM network, as a type of recurrent neural network 
architecture, is a variant of the classic recurrent neural 
network and features the capability for long-term memory. 
The recurrent structure of the LSTM and its powerful 
memory cells excel in processing long-sequence time-series 
data [33]. Therefore, the LSTM is selected as the first 
component of the residential power load forecasting model to 
extract temporal features from input data. The internal 
structure of a cell is depicted in Fig 2, where σ1 represents the 
forget gate; σ2 and the hyperbolic tanh function form an input 
gate; σ3 is the output gate; ht-1 denotes the output of the LSTM 
at the previous moment; xt denotes the current input; ht 
represents the current cell’s output; and ct and ct-1 respectively 
represent the current and previous moment’s cell state. 

Figure 2 The Internal structure of LSTM 

The sigmoid function and the hyperbolic tanh function are 
chosen as the gating units and hidden activation functions for 
the LSTM, respectively. To avoid overfitting, Dropout is 
employed as a regularization technique for each LSTM layer, 
omitting randomly selected LSTM units. The second block of 
the prediction model is a Multi-Layer Perceptron (MLP), 
which uses the output from the last time step of the LSTM as 
the input for the next module, establishing a mapping 
relationship between temporal features and residential 
electric load. Finally, the mean squared error loss function is 
used to measure forecasting errors and optimize network 
parameters. An L2 regularization term is added to the loss 
function to constrain the parameters to prevent overfitting. At 
time t, the LSTM cell processes are calculated as follows: 

𝑓𝑓𝑡𝑡 = 𝜎𝜎1(𝑊𝑊𝑓𝑓 • [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓)       (1) 
𝑖𝑖𝑡𝑡 = 𝜎𝜎2(𝑊𝑊𝑖𝑖 • [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖)      (2) 
�̑�𝑐𝑡𝑡 = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑊𝑊𝑐𝑐 • [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑐𝑐)      (3) 
𝑜𝑜𝑡𝑡 = 𝜎𝜎3(𝑊𝑊𝑜𝑜 • [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑜𝑜)      (4) 
𝑐𝑐𝑡𝑡 = 𝑓𝑓𝑡𝑡𝑐𝑐𝑡𝑡−1 + 𝑖𝑖𝑡𝑡�̑�𝑐𝑡𝑡      (5) 
ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡ℎ( 𝑐𝑐𝑡𝑡)      (6) 

In the aforementioned equations, Wf、Wi、Wc and Wo 
represent the matrix weights for the forget gate, input gate, 
candidate value vector, and output gate, respectively. 
Similarly, bf、bi、bc and bo denote the corresponding biases 
for each of these gates. 

3.2. Dynamic Clustering FedL Algorithm 

In a typical federated learning framework, the central server 
initially broadcasts the global prediction model parameters to 
all participating resident categories in each communication 
round. Subsequently, the resident clients use their local data 
to iterate and update their own model parameters. Finally, the 
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server aggregates all client models, iteratively updating to 
create the global prediction model. 

Typical federated learning employs encrypted information 
sharing among resident categories, which ensures user 
privacy during the distributed training process and achieves 
the sharing of clustered information. However, this global 
aggregation method establishes a single model for all 
residents without considering the heterogeneity in residential 
loads. Hence, we propose the dynamic clustering federated 
learning algorithm, as shown in Fig 3. The process for intra-
cluster information sharing among users and cluster 
optimization is as follows. 

In the clustering process of residential electric load, 
traditional centralized clustering methods require the 
uploading of all residential load data to a central server, 
which poses a high risk of user privacy breaches and is 
unsuitable for scenarios requiring privacy protection. 
However, federated learning requires only the uploading of 
model parameters and encrypted data during the training 
phase, thereby enabling the clustering of residential electric 
loads without compromising user privacy. To group users 
with similar electric load characteristics into the same cluster, 
we use validation loss as the criterion for assessing the 
effectiveness of the clustering. 

Figure 3 Federated learning Dynamical clustering algorithm. 

3.2.1 Dynamic clustering method 

The central server first generates initial model parameters θk
0 

for K clusters, where k=1,2…,K. Then, under privacy 
constraints, clustering identification and cluster model 
optimization are performed for each global communication 
round. Each residential client can receive and updating the 
model k owned by the K clusters, and the residential clients 
only need to upload locally encrypted and trained data 
information. 

During the global communication round in time t, the 
server initially assigns K model parameters to each 
participating resident. Subsequently, the i cluster residents 
perform local updates on the K cluster models θi,k

t they 
receive. That is, within the current period t, the local data set 
Di is first divided into batches of size B. Then, the model 
parameters θi,k

t are updated utilizing the mean squared error 
loss function F and the Adam algorithm. The parameter 
update process for θi,k

t,q within the q period is expressed as 
follow: 

𝑚𝑚𝑞𝑞 = �𝛽𝛽1𝑚𝑚𝑞𝑞 + (1 − 𝛽𝛽1)𝛻𝛻𝜃𝜃𝑖𝑖,𝐾𝐾
𝑡𝑡,𝑞𝑞𝐹𝐹𝑞𝑞�/(1 − 𝛽𝛽1)   (7) 

𝑣𝑣𝑞𝑞 = �𝛽𝛽2𝑣𝑣𝑞𝑞 + (1 − 𝛽𝛽2)�𝛻𝛻𝜃𝜃𝑖𝑖,𝐾𝐾
𝑡𝑡,𝑞𝑞𝐹𝐹𝑞𝑞�

2
� /(1 − 𝛽𝛽2)  (8)

𝜃𝜃𝑖𝑖,𝐾𝐾
𝑡𝑡,𝑞𝑞+1 = 𝜃𝜃𝑖𝑖,𝐾𝐾

𝑡𝑡,𝑞𝑞 − 𝑡𝑡𝑚𝑚𝑞𝑞/��𝑣𝑣𝑞𝑞 + 𝜀𝜀�    (9) 

In the formula, Fq represents the loss value updated for 
period q, and ▽θt,q

i,k is the gradient of the loss function with 
respect to the model parameters θi,k

t,q. mq and vq are the bias-
corrected estimates of the first-order moment and the second-
order moment, respectively. a 、 β1, and β2 are the 
hyperparameters of the Adam optimization algorithm. 

After E epochs of iterations, i cluster residents calculates 
the loss values for their cluster models. It is assumed that the 
list of loss values for i cluster residents during the global 
communication round at time t is denoted as Li

t. i . The cluster 
residents is assigned to the cluster with the smallest validation 
loss from Li

t which is the cluster of participants that share 
information within the cluster community, denoted as cluster 
k, represented as Sk. 

In addition to intra-cluster information sharing, we also 
select some residents belonging to other clusters to optimize 
the predictive model of cluster k, thus implementing inter-
cluster information sharing. The process of inter-cluster 
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information sharing can utilize more local data to participate 
in the optimization process of the cluster model. Suppose i 
cluster residents obtains the minimum loss for a cluster model 
in period k’, and the loss value of i cluster residents in period 
k’s cluster is less than the product of the minimum loss value 
and the inter-cluster threshold γ, (γ≥1). Then resident i is 
added to the cluster of cluster k, namely the clustering Sk’. At 
the same time, the ratio of the minimum loss of the k-period 
cluster to the loss value is calculated as the decay factor 
𝜂𝜂𝑖𝑖,𝑘𝑘𝑡𝑡 �1

𝛾𝛾
≤ 𝜂𝜂𝑖𝑖,𝑘𝑘𝑡𝑡 ≤ 1�. In the subsequent clustering optimization 

process, the decay factor is used as the weight coefficient for 
information sharing between different clusters. 

3.2.2 Cluster model optimization 

After clustering residents through the above process, we next 
utilize a federated learning algorithm to optimize each cluster 
model. Initially, the training model and encrypted data from i 
cluster residents are uploaded to the central server. Then, 
upon receiving information from the resident clients, the 
central server calculates the total number of samples for each 
cluster, that is ∑ �𝐷𝐷𝑗𝑗�𝑗𝑗∈𝑆𝑆𝑘𝑘∪𝑆𝑆𝑘𝑘

′  for cluster k, where k=1,2,…K. 
After receiving the broadcasted cluster sample sizes, the 
server adjusts the original model parameters θt

i,k to θt
i,k,intra’ 

for the participation within cluster k, and adjusts the original 
model parameters θt

i,k to θt
i,k’,intra’ for the inter-cluster 

participation, with the modified expression as follows: 

𝜃𝜃𝑖𝑖,𝑘𝑘,𝑖𝑖𝑖𝑖𝑡𝑡 𝑟𝑟𝑎𝑎
𝑡𝑡 = |𝐷𝐷𝑖𝑖|

∑ �𝐷𝐷𝑗𝑗�𝑗𝑗∈𝑆𝑆𝑘𝑘∪𝑆𝑆𝑘𝑘
′

𝜃𝜃𝑖𝑖,𝑘𝑘𝑡𝑡     (10) 

𝜃𝜃𝑖𝑖,𝑘𝑘′,𝑖𝑖𝑖𝑖𝑡𝑡 𝑟𝑟𝑎𝑎𝑡𝑡 = |𝐷𝐷𝑖𝑖|
∑ �𝐷𝐷𝑗𝑗�𝑗𝑗∈𝑆𝑆𝑘𝑘′∪𝑆𝑆𝑘𝑘′

′
𝜂𝜂𝑖𝑖,𝑘𝑘′𝑡𝑡 𝜃𝜃𝑖𝑖,𝑘𝑘′𝑡𝑡     (11) 

The weights for the resident class i are given respectively 
by the proportion of the sample volume |Di| over the total 
number of samples participating in clusters k and k’. 
Concurrently, the decay factor ηt,

i,k’ of the i cluster residents 
is incorporated into equation (11) to regulate the information 
sharing between clusters. 

To prevent potential privacy breaches from the direct 
upload of model parameters, all residents engage in a random 
vector protocol to obtain the model parameters agreed upon 
for participation in clustering. After all users have uploaded 
their encrypted model parameters, the central server will 
perform model aggregation to optimize the federated cluster 
model. Specifically, within the global communication round 
of period t, the optimized model for cluster k is: 

𝜃𝜃𝑘𝑘𝑡𝑡+1 = ∑ �𝜃𝜃𝑖𝑖,𝑘𝑘,𝑖𝑖𝑖𝑖𝑡𝑡 𝑟𝑟𝑎𝑎
𝑡𝑡 + 𝜔𝜔𝑖𝑖,𝑘𝑘

𝑡𝑡 �𝑖𝑖∈𝑆𝑆𝑘𝑘∪𝑆𝑆𝑘𝑘;     (12) 

Wherein, ωt,
i,k’ represents the shared model parameters for 

the i cluster residents, participating in the information-sharing 
model for cluster k in encrypted form. Expression (12) 
ensures that the output is consistent with the results of direct 
aggregation models while also mitigating the potential risk of 
privacy leakage associated with the original models. 

3.3 Experiment setup 

Firstly, the model proposed in this study is used to predict 
residential electricity load, while the Adam algorithm is 
employed to optimize the model parameters during training. 
Additionally, grid search is utilized to adjust the 
hyperparameters of the optimized model, thereby enhancing 
its predictive performance. The detailed grid search range 
settings are presented in Tab 2. 

Table 2 Search ranges of hyperparameters for Power prediction approach 

Aspects Property Values 

Model architecture 

LSTM layers 2,3 
LSTM units in each layer 32,64,128,256 
MLP layers 2,3 
MLP units in each layer 32,64,128,256 

Optimizer and regularization 
Learning rate 0.001,0.001, 0.1 
Dropout probability 0.5,0.6 
L2 regularization 0.0001,0.0005 

Dynamical clustering federated learning 

Local epochs 5,6,7,10,15 
Local batch 32,64 
Cluster number 3,4,5 
Inter-cluster threshold 1.0,1.1,1.2 

3.4 Data preprocessing 

To enhance the usable quality of the dataset, it is imperative 
to preprocess the raw data. The main aspects of data 
preprocessing comprise data cleaning, data transformation, 
and data standardization [34]. This preprocessing was 
conducted in three principal stages. Initially, we reduced the 

frequency of time-series data to alleviate the computational 
demand of the simulation. Secondly, outliers and missing 
values were removed from the dataset. Finally, min-max 
scaling was used to normalize all variables, ensuring the 
operability of residential electric load forecasting models. 

Direct usage of statistical characteristics of resident users 
would undoubtedly lead to privacy breaches. However, 
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within federated learning, the models and methods for 
aggregation or gradient aggregation could, by reconstructing 
the training models or data uploaded by users, restore original 
user information, thereby also leading to privacy breaches. 
Consequently, there is a need for a method that can normalize 
the model parameters and training results uploaded by clients 
without compromising privacy while preserving the integrity 
of the original information. 

Suppose there are N households of residents, and their 
local training datasets are D1, D2, …DN. Z-score 
normalization is employed to process numerical variables and 
to calculate the mean μ = [μ1, μ2, . . . , μc]T  and standard 
deviation 𝜎𝜎 = [𝜎𝜎1,𝜎𝜎2, . . . ,𝜎𝜎𝑐𝑐]𝑇𝑇 with respect to the numerical 
features on the entire training dataset C where D=D1∪D1∪
…∪DN,. Subsequently, the calculated mean and standard 
deviation are used to normalize the test set, to avoid potential 
future information leakage. The normalization method for 
variable xi is demonstrated as follows: 

�̑�𝑥𝑖𝑖 = 𝑥𝑥𝑖𝑖−𝜇𝜇𝑖𝑖
𝜎𝜎𝑖𝑖

     (13) 

𝜇𝜇𝑖𝑖 = 1
𝑀𝑀
∑ ∑ 𝑥𝑥𝑖𝑖𝑥𝑥𝑖𝑖∈𝐷𝐷𝑗𝑗
𝑁𝑁
𝑗𝑗=1     (14) 

𝜎𝜎𝑖𝑖 = � 1
𝑀𝑀−1

�∑ ∑ (𝑥𝑥𝑖𝑖)2 − 𝑀𝑀𝜇𝜇𝑖𝑖2𝑥𝑥𝑖𝑖∈𝐷𝐷𝑗𝑗
𝑁𝑁
𝑗𝑗=1 �    (15) 

Where �̑�𝑥𝑖𝑖 is the normalized value, M = ∑ �Dj�N
j=1  is the 

sum of all samples in the local training datasets, and |Dj| is the 
size of the samples in the local training dataset Dj The sample 
size for each residential class is not sensitive information, 
hence the central server is able to obtain M by directly 
aggregating the sizes of the local training dataset samples. 

𝑋𝑋𝑖𝑖 =

�∑ 𝑥𝑥1𝑥𝑥1∈𝐷𝐷1 , . . . ,∑ 𝑥𝑥𝑐𝑐𝑥𝑥𝑐𝑐∈𝐷𝐷1 ,∑ (𝑥𝑥1)2𝑥𝑥1∈𝐷𝐷1 , . . . ,∑ (𝑥𝑥𝑐𝑐)2𝑥𝑥𝑐𝑐∈𝐷𝐷1 � 

(16) 

However, the uploaded vector Xi can reflect the load 
pattern of the i cluster residents, but this may also lead to the 
leakage of user privacy. Therefore, this study establishes a 
private data aggregation scheme based on pairwise masking 
and the Elliptic Curve Diffie–Hellman (ECDH) protocol. 
This scheme can protect user privacy while ensuring that the 
mean and standard deviation of the encrypted dataset are 
consistent with those of the original data. The overall 
architecture is illustrated in Fig 4. 

Figure 4 Private data aggregation algorithm. 

3.4.1 ECDH Key Agreement Protocol 

The ECDH key agreement protocol allows classes of 
residents to generate a shared key over an unsecured 
communication channel. As depicted in Fig 4, the main 
parameters of ECDH include the elliptic curve, base point G, 
prime p, order n, and cofactor h of the subgroup, all of which 
are initially broadcasted to all classes of residents by the 
server. Based on the same domain parameters, each class of 
resident i selects an integer ki(ki∈[2,n-1]) as the private key 
for computation, and then uploads the public key kiG to the 

central server. The central server, acting as an intermediary 
communication node, collects all public keys and distributes 
them to all residents. Each resident class i computes N-1 
shared keys (j∈N, j≠i|kikjG), thereby reaching a consensus 
on pairwise random vectors. The security of the ECDH key 
agreement protocol is ensured by the elliptic curve discrete 
logarithm problem. Although the central server possesses the 
base point G and the public keys kiG, it cannot solve for the 
private keys ki, thus avoiding the leakage of user privacy. 
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3.4.2 Random vectors agreement 

Each class of residents i selects two dimensional random 
vectors denoted as Ri,j(j∈N, j＞i), which are encrypted into 
[Ri,j] based on the shared key kikjG(j∈N, j＞i). Once the 
server receives all pairs of encrypted random vectors, resident 
users of class i will decrypt the corresponding encrypted 
random vectors to obtain Ri,j(j∈N), effectively substituting 
the privacy-sensitive original data Xi. 

3.4.3 Pair-wise masking 

The method of pairwise masking involves hiding the actual 
values of the original data Xi by adding random vectors, 
thereby ensuring the accuracy of the calculations for the mean 
and the standard deviation of the entire dataset. Based on the 
shared random vectors Ri,j(j∈N), Xi can be transformed into 
a masked form Yi, and the transformation model is shown as 
Equation (17): 

𝑌𝑌𝑖𝑖 = 𝑋𝑋𝑖𝑖 + ∑ 𝑅𝑅𝑖𝑖,𝑗𝑗𝑗𝑗∈𝑁𝑁,𝑗𝑗>𝑖𝑖 − ∑ 𝑅𝑅𝑖𝑖,𝑗𝑗𝑗𝑗∈𝑁𝑁,𝑗𝑗<𝑖𝑖        (17) 

Subsequently, the i cluster residents upload the masked 
vector Yi to the server. The server aggregates the complete set 
Yi(i∈N) for the entire dataset D and can obtain the mean μ of 
the entire dataset using Equation (14) and the standard 
deviation σ using Equation (15). The server then broadcasts 
μ and σ to all resident classes for the normalization of user 
data. The central server validates the correctness of Xi 
through aggregation operations, and the verification equation 
is as follows: 

𝑋𝑋 = ∑ 𝑌𝑌𝑖𝑖𝑁𝑁
𝑖𝑖=1 = ∑ 𝑋𝑋𝑖𝑖𝑁𝑁

𝑖𝑖=1 + ∑ �∑ 𝑌𝑌𝑖𝑖𝑗𝑗∈𝑁𝑁,𝑗𝑗>𝑖𝑖 −𝑁𝑁
𝑖𝑖=1

∑ 𝑅𝑅𝑖𝑖,𝑗𝑗𝑗𝑗∈𝑁𝑁,𝑗𝑗<𝑖𝑖 � = ∑ 𝑋𝑋𝑖𝑖𝑁𝑁
𝑖𝑖=1    (18) 

As demonstrated above, the private data aggregation 
scheme does not require communication between clients or 
an additional trusted third party, thereby avoiding potential 
risks of privacy leakage. 

4. Case Studies

4.1. Experiment and dataset description 

This chapter validates the effectiveness of the proposed 
scheme through numerical examples. The experimental 
environment is described as follows: the CPU is an AMD 
EPYC 9554 64-Core Processor with a frequency of 3.10 
GHz, the GPU is an NVIDIA RTX 4090 with 24GB of video 
memory, the system RAM is 64GB, the operating system 
used is Windows 10. The Pytorch version implemented is 

2.1.2, CUDA version is 12.1, and Python is at version 3.8.18. 
Federated learning is executed based on the FedML library. 
The hyperparameters for the load forecasting model are as 
indicated in Table 2. The simulation dataset comprises data 
from 120 households within six communities in a southern 
city of China, with the data precision being one data point 
every half hour. The dataset also includes local weather 
conditions for the residents of these communities. The data is 
split according to an 80:20 ratio to create training and 
validation sets, respectively. 

4.2. Evaluation metrics 

To assess the forecasting performance of the model, it is 
necessary to employ relevant evaluation metrics to compare 
the performance of the proposed model. Common metrics 
include the Coefficient of Variation (CV), Mean Absolute 
Error (MAE), Mean Absolute Percentage Error (MAPE), and 
Root Mean Square Error (RMSE) to evaluate the 
performance of the residential electrical load forecasting 
model. The expressions for these four metrics are as follows: 

𝐶𝐶𝐶𝐶 = �1
𝑖𝑖
∑ (�̑�𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖)𝑖𝑖
𝑖𝑖=1 / ∑ 𝑦𝑦𝑖𝑖

𝑛𝑛
𝑖𝑖=1
𝑖𝑖

  (19) 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑖𝑖
∑ |�̑�𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖|𝑖𝑖
𝑖𝑖=1 (20) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑖𝑖
∑ ��̑�𝑦𝑖𝑖−𝑦𝑦𝑖𝑖

𝑖𝑖
�𝑖𝑖

𝑖𝑖=1 (21) 

𝑅𝑅𝑀𝑀𝑅𝑅𝑀𝑀 = �1
𝑖𝑖
∑ (�̑�𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖)𝑖𝑖
𝑖𝑖=1

2 (22) 

In the formulas, n represents the number of samples in the 
test dataset, which is also the number of participating users. 
�̑�𝑦𝑖𝑖 and 𝑦𝑦𝑖𝑖  are the predicted and actual residential electrical 
loads, respectively. For MAE, MAPE, and RMSE, the 
smaller the results, the better the forecasting performance. 

4.3. Experiment Results and Analysis 

In this numerical example, clustering is first performed based 
on the electrical load characteristics of 120 households across 
six communities. According to the characteristics of the 
resident’s load, they can be divided into four types, as 
illustrated in Fig5. The parameters of the forecasting model 
for each type of user are optimized according to Tab 2. 
Throughout the entire simulation process, there are a total of 
ten interaction rounds between the central server of the urban 
electric grid and the community resident users. Here, an 
interaction round refers to the number of times the central 
server of the urban electric grid updates the global weight 
parameters with the participating residents. 
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(a) Cluster 1 Typical Daily Load Profiles (b) Cluster 2 Typical Daily Load Profiles

(c) Cluster 3 Typical Daily Load Profiles (d) Cluster 4 Typical Daily Load Profiles

Figure 5 Cluster typical load profiles of users. 

4.3.1 Convergence Process 

This study initially employs a dynamic clustering federated 
learning algorithm, performing iterative clustering based on 
residents’ characteristics and engaging in intra-cluster and 
inter-cluster anonymous information sharing and interactive 
training. Fig 6 vividly illustrates the convergence process 
across various clusters. In the Fig6, each point represents the 
training loss value of users in each communication round, 
while the curve denotes the average training loss of all 

residents belonging to that cluster category. The histogram 
delineates the change in the number of resident users within 
the corresponding resident class during the dynamic grouping 
process. As depicted in Fig 6, the average training loss for 
each cluster shows a generally monotonous decreasing trend 
and drops rapidly in the initial periods, indicating the 
proposed dynamic clustering federated learning algorithm 
converges swiftly. Furthermore, as the iterative clustering 
process progresses in Fig 6, the number of constructed 
clusters stabilizes gradually. 

(a) Residential cluster 1 (b) Residential cluster 2

A Short term Electricity Load Forecasting for Community Residents Based on Federated Learning and Considering Privacy 
Protection 
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(c) Residential cluster 3 (d) Residential cluster 4

Figure 6 The convergence of the dynamic clustering federated learning algorithm. 

4.3.2 Performance Comparison 

To verify the effectiveness of the proposed forecasting 
approach, this paper has conducted a comprehensive 
comparison of the method with traditional local forecasting 
and centralized forecasting approaches. Local forecasting 
refers to the scenario where residents’ local clients train 
models and make predictions based on their own data without 
the need to communicate with a central server. The local 
forecasting approach employs a two-layer LSTM, each with 
32 neurons, to serve as the prediction model to avoid the 
phenomenon of overfitting. Conversely, centralized 
forecasting involves aggregating all residential electricity 
load data to establish a single prediction model for all 

residents. The method proposed in this paper is based on 
federated learning and takes privacy protection into account 
for electricity load forecasting. Table 3 presents the 
validation results and average values of all evaluation metrics 
(CV/MAE/MAPE/RMSE) for the proposed method 
compared to the other two methods when predicting 
electricity load for all residents. The local prediction method 
provides good protection of residents' privacy but has 
relatively high error metrics. Although the central prediction 
method has certain performance advantages over the local 
prediction method, it leads to user privacy leakage. The 
federated learning method proposed in this study not only 
significantly outperforms the traditional local prediction 
method in terms of prediction performance but also 
effectively protects user privacy. 

Table 3 Performance metrics of three different approaches for Residents power prediction. 

Method CV MAE MAPE RMSE Privacy guarantee 
Proposed method 0.0661 7.3164 0.0513 9.1313 True 
Local prediction 0.1314 13.2181 0.0923 16.1932 True 
Centralized prediction 0.0978 12.1123 0.0821 14.8918 False 

5. Conclusions
To enhance the performance of residential electric load 
forecasting while ensuring user data privacy, this paper 
proposes a community residential short-term electric load 
forecasting method based on federated learning with 
consideration for privacy protection. First, perform dynamic 
clustering analysis of community residential load 
characteristics, then for each category of users, select 
weather, time, and resident characteristic factors based on the 
LSTM model to establish a load forecasting model. Finally, 
use distributed local prediction algorithms, central prediction 
algorithms, and this method to forecast and comparatively 

analyze the community residential electric load. The results 
of the numerical example demonstrate that federated learning 
can be combined with privacy protection technologies to 
forecast the short-term electric load of community residents. 

Certainly, this research has certain limitations. In the 
process of clustering analysis, it only classified users into four 
categories based on their load characteristics. Future research 
can perform clustering analysis by combining more 
characteristics, which would allow the forecasting model to 
learn more user features, thereby improving the accuracy of 
predictions. 
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