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Abstract 

INTRODUCTION: The power Internet of Things is an important strategic support for the State Grid Corporation of China 
to build an international leading energy internet enterprise. However, the operating environment of the power Internet of 
Things is complex and varied, which has serious implications for the safe operation of the power Internet of Things. 
OBJECTIVES: To timely predict the various risk. 
METHODS: A data set is fused based on time series. The training set is over-sampled using an adaptive synthetic 
oversampling method. Then, by jointly considering the contribution of features to classification and the correlation between 
features, a risk prediction method ground on ensemble learning is established. 
RESULTS: From the results, the accuracy of predicting 5 risk categories increased by 7.00%, 1.10%, 2.20%, 2.30%, and 
0.60%, respectively, reducing the features from the original 118 columns to 60 columns and reducing the data dimension by 
49.00%. Compared with traditional models, the accuracy was 98.61%, and the overall accuracy was improved by 0.60%. 
CONCLUSION: This risk prediction scheme can quickly and accurately predict the risk categories that affect its operation. 
It has high prediction accuracy and fast speed than other algorithms. This research can provide strong assistance for security 
decision-making in the power Internet of Things. 
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1. Introduction

As an important strategic support for State Grid Corporation 
of China, the Internet of Things (IoT) in electricity essentially 
combines some socially relevant elements (such as non-
electric objects, human activities, natural environment, 
government policies, etc.) on the basis of information 
physical integration in the power system, forming a power 
information and physical social integration system [1-3]. The 
integration of information, physics, and society has led to a 
complex and diverse operating environment for the power IoT, 
with a surge in the types and quantities of terminal devices 
connected, making them susceptible to external risk 
interference at all stages [4]. In addition, the coupling 
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characteristics of energy flow, data flow, and business flow in 
the power IoT are gradually strengthening, which also makes 
the interaction coupling characteristics of information, 
physics, and society increasingly complex, thereby affecting 
the overall safe and reliable operation of the power IoT [5]. In 
addition, the risks faced by the power IoT are characterized 
by diversification and expansion of scope. Equipment failures, 
malicious attacks, human errors, and other risks can affect the 
stable operation of the power IoT, resulting in a series of cross 
space chain failures. In severe cases, it can even lead to 
catastrophic power outages. In current research methods, risk 
prediction methods based on probability distribution are too 
complex. The accuracy and efficiency of risk prediction based 
on machine learning methods for mining data still need to be 
improved. Therefore, based on the random matrix theory, 
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power data is fused. The minority class samples in the 
training set are over-sampled using the Adaptive Synthetic 
Oversampling (ADASYN) method to achieve balanced data 
processing. After that, the redundant features are dropped by 
jointly considering the contribution value of features to 
classification and the correlation between features. The 
ReliefF-S algorithm is applied to select the optimal features 
for the processed power IoT risk balance sample set. Finally, 
a risk prediction model for the power IoT operation based on 
BO-CatBoost is established. 

If a risk occurs in a certain part of the power grid and is not 
detected and cut off timely, the entire power grid may be 
affected and suffer losses. Therefore, conducting risk 
prediction is crucial for maintaining the safety of the power 
grid. Ajayi et al. developed a deep learning model for power 
infrastructure risk management by using text mining methods 
to retrieve meaningful terms from accident data to reduce 
power infrastructure accidents. The overall accuracy was 0.93, 
with an average absolute error between 0.91 and 0.94, which 
could minimize project costs and provide effective strategies 
to reduce risks [6]. He et al. developed a risk warning system 
for the distribution network operation ground on the IoT. 
Firstly, the weight of risk indexes was analyzed to determine 
the detection indicators. Then, a risk warning evaluation 
model was established to determine the detection 
requirements in the distribution network. Tests showed that 
the real-time detection error was below 5% [7]. Qu et al. built 
a novel method for predicting power risk areas based on 
correlated Markov chains. By characterizing the load and 
constraints of non-uniform power coupled networks, a power 
risk area prediction method ground on correlated Markov 
chains was proposed. Finally, the adaptive position 
adjustment strategy and cross optimal solution strategy were 
used to improve the cross adaptive Grey Wolf optimization 
algorithm. Simulation results verified its effectiveness and 
superiority [8]. Li et al. introduced a distributed flow 
processing mechanism to address the issue that traditional 
security risk monitoring techniques were not suitable for 
network physical power systems. A log analysis architecture 
for power log anomaly detection was proposed. An integrated 
prediction method ground on time series and asymmetric 
error cost evaluation criteria were used to predict abnormal 
features. This method could effectively detect abnormal data 
[9]. To improve the reliability and continuity of the distribution 
system, Kong et al. constructed a power IoT analysis and 
monitoring system for data collection and fault analysis. 
Based on the measurement information demonstrated by the 
distributed phasor measurement unit, the phase difference 
between the positive and negative sequence currents 
determines the fault section and fault type. Ground on the 
load symmetry of the distribution network, the fault section 
was determined. The results showed that this method could 
achieve high-precision fault localization [10]. 

The operational status of the power IoT is constantly 
changing in real-time. Equipment failures, human errors, 
extreme weather, and network attacks can all be triggers for 
system risks. The existing methods for predicting time series 
data in the power IoT are unable to handle inter sequence 
related information. Therefore, Li et al. proposed a decision 

fusion architecture. The ensemble learning method was used 
to make judgments on distributed time series data, and 
integrated multiple sources of data for real-time prediction. It 
provided better accuracy while reducing communication 
burden [11]. Piotrowski et al. proposed an integrated integrator 
artificial neural network based on hybrid methods to optimize 
the electricity and promote energy storage. A variety of 
machine learning solutions were mixed for prediction. 
Research showed that the proposed integrated method 
generated the smallest error, which was also suitable for 
short-term electricity production prediction of other 
renewable energy sources [12]. Kim proposed an integrated 
model for optimizing energy management in smart homes 
ground on ensemble learning and Particle Swarm 
Optimization (PSO). Five different baseline models were 
combined to establish a hybrid ensemble model. The PSO 
was used to optimize the hyper-parameters of each 
combination mode. Different random samples were trained. 
The optimized ensemble learning model improved the 
prediction accuracy by 95.6% [13]. Wang et al. proposed an 
integrated deep learning framework to classify automatically 
for power quality interference. The signal was classified 
using a long short-term memory network. The training results 
of multiple long short-term memory networks were integrated 
using Bagging theory to improve the generalization ability. It 
had better classification performance and computational 
speed [14]. To improve the performance of modeling and 
classification problems, Larrea et al. integrated extreme 
learning machines into time series modeling problems to 
improve modeling and classification performance. The 
optimal topology results for each time series problem were 
statistically analyzed. The PSO was applied to adjust the 
parameter weights. This strategy had more accurately results 
[15]. 

In summary, the risk prediction method based on 
probability distribution is too complicated and cannot meet 
the requirement of real-time prediction. Although the use of 
machine learning to mine data for risk prediction is the 
mainstream method at present, the accuracy and efficiency of 
prediction need to be improved. In addition, most current 
studies focus on the information side and the physical side for 
analysis, and it is easy to ignore the impact of social risks on 
the operation of power iot, resulting in incomplete risk 
investigation. And the risk is easy to spread and spread, easy 
to cause an impact that cannot be ignored. Therefore, the 
study develops a risk prediction method for the operation of 
the power IoT based on ensemble learning, aiming to quickly 
and accurately classify the operational risks of the power IoT 
by mining data information. 

The article is divided into four parts. The first section 
reviews the research status of operational risk prediction 
methods for power iot. In the second section, the risk 
prediction model of power iot operation based on ensemble 
learning is constructed. In the third section, the performance 
of the designed method is verified. The fourth section is 
discussion. The fifth section is the conclusion. 
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2. Construction of risk prediction model
for power IoT operation based on
ensemble learning

A risk prediction method for the operation of the power IoT 
is designed based on ensemble learning algorithms, taking 
into account factors related to power information, physics, 
and society. This method includes: risk data fusion and 
balancing, risk prediction optimal feature subset selection, 
and research on risk prediction methods based on ensemble 
learning. 

2.1. Data fusion and balancing processing 
based on ADASYN algorithm 

The amount of data generated during the operation of the 
power IoT is very large, with rich attributes, which may have 
many redundant, irrelevant, and even interfere with the risk 
prediction of the power IoT operation. This leads to the 
inability to predict risks well using the original dataset 
directly, reducing the accuracy of risk prediction models [16]. 
By combining multiple basic learners together, ensemble 
learning can reduce the overfitting problem of a single learner, 
thereby improving the stability and accuracy of the overall 
prediction. This approach performs well on traditional 
machine learning tasks such as classification, regression, and 
clustering [17]. The basic idea is to obtain multiple different 
weak learners through training data, and then use a certain 
combination strategy to ultimately form a strong learner.  

Data set

Data subset

Strong learner

:eak learner

Data subset Data subset Data subset

Strong learner Strong learner Strong learner

Train

Train

Train

Train

…

…

Combination strategy

Figure 1. Ensemble learning algorithm framework 

Figure 1 displays the framework. Compared with the 
single model, the ensemble learning algorithm mining data 
information is more sufficient, and the prediction results are 
more accurate and reliable. 

The study uses random matrix theory to comprehensively 

analyze the operational risks of the power IoT from three 
perspectives: power information eD  , physical pD  , and 
social sD . The measurement data collected from any feature 
in the power information, physical, and social aspects during 
any period of time can form a column vector. The collected 
data is represented as { }1 2, , , na a a  , { }1 2, , , nb b b  , and 

{ }1 2, , , nc c c  . Among them, a  , b   and c   represent data
information in power information, physical, and social 
aspects. The measurement data from the information, 
physical, and social sides are extracted to form the original 
data set Dataset , as shown in formula (1). 

{ }
{ }
{ }

1 2

1 2

1 2

, , ,

, , ,

, , ,

e n

p n

s n

D a a a

Dataset D b b b

D c c c
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

=







(1) 

After constructing a complete data set of electricity 
information, physical and social aspects, data from the same 
time but different spaces are fused based on time series. :hen 
data fusion occurs, the time series in one of the data files is 
used as the benchmark, which is called the benchmark file. 
The parameters of other data stream files must be unified to 
this time benchmark. According to the time series, the 
constructed datasets of information, physics, and society are 
integrated together to construct a high-dimensional random 
matrix D , as shown in formula (2). 
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(2) 

After completing the data fusion, the ADASYN method 
was used to handle the data imbalance in the training set, 
sampling to generate a specified number of risk class pseudo 
samples, achieving data balance processing, and overcoming 
the low training accuracy and unstable performance due to the 
small samples in certain categories. ADASYN
s main idea is 
to oversample different categories of samples to different 
degrees according to the distribution density of different 
samples. The lower the density of the categories, the more 
composite samples are generated, which balances the number 
of samples between the different categories while 
maintaining the diversity of the data [18]. The raw data 
concludes training and testing sets. The imbalance degree in 
the training set is calculated. The minority class sample is 
signified as sq , and the majority class is signified as lq . The 
imbalance degree d  is shown in formula (3). 

( ), 0,1s

l

q
d d

q
= ∈                (3)

Next, the number of synthesized samples G  is shown in 
formula (4). 

( ) [ ]* , 0,1l sG q q e e= − ∈ (4) 
In formula (4), when 1e = , G  is the difference between 

the minority class and the majority class. The majority class 
sample and the minority class sample after synthesizing the 
data exactly reach equilibrium. For each minority class 
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sample ix  , its K   nearest neighbors are determined. The 
distribution of the majority class samples around each 
minority class sample is represented as ir  , as shown in 
formula (5). 

/
i

i Kr
Z

∆
= (5) 

In formula (5), i∆   signifies the majority class sample 
number among K   nearest neighbor sample points. Z   is 
the normative factor. ir   forms a distribution. If there are 
more majority class samples around minority class sample 

ix , the generated distribution ir  will have a higher value. 
The sample size ig   that need to be assembled for each 
minority class sample is shown in formula (6). 

i ig r G= ×                   (6) 
The synthesized sample is  is shown in formula (7). 

( ) [ ], 0,1i i zi is x x x σ σ= + − ∈ (7) 

In formula (7), ( )zi ix x−   represents the difference 
vectors of different dimensional spaces. σ   represents a 
random number. The above steps are repeated to synthesize 
minority class samples until the required samples to be 
synthesized according to formula (6) is met. The ADASYN 
algorithm uses the density distribution of minority class 
samples to automatically determine the sample size to be 
assembled for each minority class sample, which can 
effectively obtain sufficient pseudo data highly similar to the 
original data. At the data end, it can effectively solve the data 
imbalance in the training accuracy of machine learning 
algorithms. The overall process of integrating and balancing 
risk data is shown in Figure 2. 

The study quantitatively analyzes the imbalance in the 
training set using the ADASYN method. If the data is 
imbalanced, oversampling is performed on the minority class 
samples in the data to increase their quantity and ultimately 
obtain a balanced training set. A balanced training sample set 
used for subsequent ensemble learning algorithm training can 
overcome the low training accuracy and unstable 
performance caused by a low minority class sample. Finally, 
the testing set verifies the performance of subsequent 
ensemble learning algorithms. 

Physical side risk data

Information side risk data

Social risk data

Physical side risk 
characteristics

Information side 
risk characteristics

Social side risk 
characteristics

Oversampling

Balanced sample set
Integrated learning 
algorithm model

Data fusion

Calculate whether the 
data is unbalanced

Training set Test set

Y
N

Train

V
erify

Figure 2. Fusion and balanced processing flow of risk 
data 

2.2. Construction of risk prediction model for 
power IoT operation based on BO-CatBoost 

It is crucial to enhance the timeliness and accuracy when 
studying the operational risks of the power IoT. Otherwise, it 
will affect the efficiency of investigation and even further 
spread the risk. However, there are also many redundant and 
irrelevant features in the operational data. For example, there 
may be some correlation between the electrical physical 
quantities on the physical side that can be derived from each 
other. There may be some meteorological features on the 
social side that are unrelated to the operation of the power IoT 
[19]. Excessive redundancy can have a certain impact on data 
mining, and even increase the training cost and model 
complexity of machine learning algorithms. 

ReliefF algorithm is an effective method for feature 
selection. Relieff considers the differences between similar 
and heterogeneous training samples and assigns a score to 
each feature to reflect the contribution degree of the feature 
to the classification [20]. ReliefF algorithm is suitable for 
dealing with multi-class problems, but it only evaluates the 
contribution value of each feature to the classification, as long 
as the features that play a positive role in the classification are 
likely to be retained, while ignoring the correlation between 
each pair of features, which may cause mutual redundancy 
among features. Therefore, based on ReliefF algorithm, 
Spearman correlation coefficient is introduced to analyze the 
correlation between features to solve this problem. Relief-s 
algorithm jointly considers the correlation between features 
and categories and the correlation between features to achieve 
the de-redundancy operation of risk features, so as to 
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minimize redundancy and finally get the optimal set of risk 
features. The flow of Relief-S algorithm is shown in Figure 3. 

Initiate

Balanced sample set Sample S is randomly 
selected

Calculate and update the 
weights for each feature

Spearman correlation 
coefficients were calculated 

for each feature

Delete features 
with low weight

Optimal feature subset

Finish

:hether the weight is 
lower than the threshold

Y

N

:hether there is a strong 
correlation between features

Optimal feature subset

Y

N

Figure 3. Flowchart of ReliefF-S algorithm 

A sample X   is randomly selected in the sample set. 
Firstly, k   nearest neighbor samples ( )1,2, ,jL j k= = 

of the same category as X  are searched, and the distance 
( )X Y  between the samples iX  and jL  under the feature

Y  is calculated, as presented in formula (8). 

( ) ( )
1

, ,
k

i j
j

X Y diff Y X L
=

= ∑ (8) 

Then, k  nearest neighbor samples ( )1,2, ,jM j k= =   
of different categories from X  are searched. The distance 
( )D Y   between samples iX   and jM   under the feature

Y  is calculated, as shown in formula (9). 

( ) ( )
1

, ,
k

i j
j

D Y diff Y X M
=

= ∑ (9) 

Given the feature Y , the distance between two samples 
1X  and 2X  is shown in formula (10). 

( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

1 2

1 2 1 2

1 2

, Feature Y is continuous
max min

, , 0, Feature Y is discrete and 

1, Feature Y is discrete and 

X Y X Y
Y Y

diff Y X X X Y X Y

X Y X Y

 −


−


= =
 ≠



(10) 

The weight of feature Y  is constantly updated. Under the 
feature Y , if the distance between sample X  and samples 
of the same category is less than the distance between the 
sample and samples of different categories, it indicates that 

the feature has strong classification ability. It should be given 
a larger weight. According to this idea, the weights are 
updated by iterating n  times. The average weight of each 
feature is used as the final weight. The calculation for 
updating the weight ( )W Y  is shown in formula (11). 

( ) ( ) ( )
( )

( )( ) ( )
( ) 1it class X i

P t
D Y

P class XX Y
W Y W Y

nk nk
∈

 
 
−  = − +

∑  (11) 

In formula (11), ( )iclass X   represents the category of 

sample iX  . ( )P t   signifies the ratio of this category. 

( )( )iP class X  is the ratio of randomly selected sample iX
category. After normalization, the range for each feature 
weight is [0,1]. The correlation coefficient ,i jY Yλ   between 
any two features is calculated to determine the correlation 
between features, as shown in formula (12). 

( )( )

( ) ( )
1

,
2 2

1

i j

k

if i jf j
f

Y Y k

if i jf j
f

Y Y Y Y

Y Y Y Y
λ =

=

− −
=

− −

∑

∑
(12) 

In formula (12), iY   and jY   represent any feature. ifY

and jfY  are the observed values of these two features. iY

and jY   represent the average of k   observations. 
According to the set weight threshold, features with low 
weights are deleted. Then, among the retained features, the 
features with low contribution to classification in the strongly 
correlated features are removed [21]. The Categorical Boosting 
(CatBoost) can improve classification performance by 
merging multiple learners. However, the performance will be 
affected by key parameters. Manual parameter tuning 
requires a certain amount of work and is blind, which can 
easily lead to the loss of optimal parameter solutions and 
affect the accuracy of risk prediction models. The Bayesian 
Optimization (BO) algorithm requires less initial sample 
points and has high optimization efficiency when searching 
for the optimal parameters. Compared with grid search, 
random search, genetic algorithm and other parameter finding 
methods, it more suitable for model parameter optimization. 
CatBoost is used as the base classifier to construct a risk 
prediction model for the operation of the power IoT. The BO 
is introduced to optimize the parameters of the CatBoost, to 
obtain the optimal parameter combination of the model and 
achieve high-precision prediction of operational risks in the 
power IoT. Assuming that the i-th dimensional feature of the 
k-th sample is a discrete feature, the numerical feature i

kx  is
shown in formula (13).

{ }
{ }

j k

j k

i i
k j jx Di

k i i
k jx D

x x y a p
x

x x a
∈

∈

= × + ×
=

= +

∑
∑

(13) 

In formula (13), kD  represents the portion of the sample 

set before the k -th sample in the sorting. { } 1i i
k jx x= = . If 

samples kx  and jx  belong to different categories in the i

-th dimensional feature, then { } 0i i
k jx x= = . p  is the added 
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prior value. a  is its weight coefficient. They can reduce the 
noise problem of low-frequency categories. 

On the basis of data imbalance processing and feature 
selection, a risk prediction model is constructed. The BO-
CatBoost model is used as the final risk prediction model for 
the operation of the power IoT. This model is a multi-
classification model. The final output represents a type of risk 
event or non-risk event. The specific process is displayed in 
Figure 4. Ground on the random matrix theory, data from 
power information, physics, and society are fused. The 

ADASYN is applied to over-sample minority class samples 
to solve the impact of data imbalance on algorithm accuracy. 
Then, the ReliefF-S algorithm is used to jointly consider the 
correlation between features and categories, as well as the 
correlation between features, to achieve redundant operations 
on risk features, reduce data dimensions, and improve model 
training speed. Finally, a CatBoost ensemble learning model 
is constructed based on a symmetric tree classifier. Combined 
with the BO, the optimal parameters are searched to better 
improve its performance. 

The maximum number 
of iterations is reached

Initiate

Best risk solicitation

Divide the training set 
and test set

Set the target 
optimization function

Set the parameter 
optimization interval

Find the optimal 
parameter

CatBoost integrated 
classifier

Finish

N

Power iot operation risk 
prediction model

Y

…

…

Symmetric tree

Category 1

Symmetric tree

Category n

Optimal parameter 
combination

Figure 4. Power IoT operation risk prediction model based on BO-CatBoost

3. Simulation experiment and result
analysis of risk prediction for power IoT
operation

A topology model is constructed through simulation 
experiments and a partial data set is generated. The data 
generated by the operation of the power IoT in 8 different 
states is simulated and collected. Performance indicators such 
as Accuracy, Precision, Recall, and F1-Score are applied to 
analyze the performance of the proposed risk prediction 
model. 

3.1. Data balance analysis 

The fused training set is over-sampled and entered in the 
CatBoost for learning. The model is validated using the 
testing set. Power information, physical and social risk data 
are obtained through joint simulation using RT-LAB and 

OPNET. The compilation tool Python 3.7 platform is used for 
implementation. The study collects over 20000 pieces of data 
within 210s at intervals of 0.01s. Different nodes are selected 
for simulation. The single-phase short circuit risk is set to 
15.0-16.5s. Within 45.0s to 45.5s, a two-stage short-circuit 
hazard is set. Within 75.0s to 76.5s, there is a danger of two-
phase short circuit. The danger time for three-phase short 
circuit is 120-120s. The risk of incorrect instruction injection 
is between 150s and 15s. 195.0-195.5s, the risk of human 
error is simulated by manually pulling the gate in violation of 
regulations. Within 200.0-200.5s, by adjusting the line 
parameters under specific weather conditions, weather risks 
in the social aspect are simulated. A complete data set of 
operational risks in the power IoT is obtained, as shown in 
Table 1. This data set contains a total of 118 features, 
including physical parameters such as three-phase current and 
three-phase voltage of 16 physical nodes, as well as attack 
instructions, switching states, weather, and other factors. 

To analyze the improvement effect of oversampling on risk 
prediction models, the CatBoost is used to train the datasets 
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before and after data balancing. The risk prediction 
performance is verified using a testing set. The confusion 
matrix of the risk prediction results before and after data 
balancing processing is shown in Figure 5. In the figure, the 
accuracy of most categories that were balanced was improved. 
In Figure 5 (a), the prediction accuracy trained on raw data 
for categories 2, 4, and 7 was 86.00%, 87.00%, and 95.80%, 
respectively. From Figure 5 (b), the prediction accuracy of 

risk categories 2, 4, and 7 after balanced processing was 
increased to 93.40%, 89.70%, and 96.70%, respectively. The 
misjudgment rate was significantly decreased. The above 
results indicate that data imbalance processing exerts a crucial 
role in improving the prediction accuracy of small category 
samples and reducing the false alarm rate of risk prediction. 

Table 1. Complete data set of operational risks of power IoT 

Time 
(s) 

Physical side Information side Social side 
Node1-V1 
(V) ... Node14-V2

(V) ... Attack
signal On-off state Air pressure (hPa) Ice thickness 

(mm) ...

0 -1.06 ... 0.01 ... 0.00 0.00 976.20 0.00 ... 
0.01 -0.30 ... -1965.32 ... 0.00 0.00 976.00 0.00 ... 
... ... ... ... ... ... ... ... ... ... 
150.31 -5039.08 ... -0.19 ... 1.00 0.00 970.50 0.00 ... 
150.32 8154.50 ... -0.19 ... 1.00 0.00 970.40 0.00 ... 
... ... ... ... ... ... ... ... ... ... 
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Figure 5. Confusion matrix of risk prediction before and after data balancing treatment 
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Figure 6. Comparison of oversampling algorithms 

Common oversampling methods include SMOTE, 
ADASYN, and Random Over Sampler algorithm. The 
CatBoost is used as a standard, dividing the training and 
testing sets in a 7:3 ratio. The data in the training set is over-
sampled. Four oversampling algorithms, including raw 
data+CatBoost, SMOTE+CatBoost, Random Over 
Sampler+CatBoost, and ADASYN+CatBoost are analyzed 
and compared. The data processed by different oversampling 
algorithms are input into the CatBoost for training. The 
accuracy comparison curves for different risk classifications 
are obtained, as shown in Figure 6. From the graph, compared 
with the original data+CatBoost, the accuracy of the other 
two oversampling methods +CatBoost method was improved 
by about 1.50% in most categories. The ADASYN was 
improved by about 2%, which was more superior. This means 
that the data must be over-sampled before establishing risk 
forecasts. 

The variation of prediction accuracy of various methods 
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with test cases under different oversampling algorithms is 
shown in Table 2. From the table, compared with the other 
two methods, the random sampling method had the worst 
performance, while the performance of SMOTE and 
ADASYN was roughly equivalent. The accuracy of most 
classifications was improved. The ADASYN performed 
slightly better, with accuracy improvements of 2.3% for Class 
2 (bipolar short circuit) and Class 5 (pseudo instruction 
attack), respectively. However, the prediction accuracy of 
Class 0 (normal operating data) was slightly decreased. This 
means that oversampling algorithms are more sensitive to 
improving the accuracy of small class samples, and the 
prediction accuracy may slightly decrease for most class 
samples. Overall, this is significant for improving the model 
stability. 

The balanced data may also contain some redundant and 

irrelevant features. Therefore, to improve the prediction 
accuracy, feature selection is performed on it. The study uses 
a balanced sample set to test the ReliefF and ReliefF-S, with 
F1-Score as the objective function. Based on the proportion 
of each feature in the sample, a contribution threshold is set, 
and each indicator is screened. CatBoost is used to evaluate 
each indicator. From Table 3, the performance comparison of 
ReliefF and ReliefF-S was different at various thresholds. 
When there are fewer features, although this method 
shortened learning time, the effect was not ideal. Compared 
with the ReliefF, the ReliefF-S was more suitable for 
processing high-dimensional data. Compared to ReliefF, the 
method takes an average of 211 seconds, respectively. From 
this point, the ReliefF-S is superior to the ReliefF, which can 
effectively reduce the data dimensionality. 

Table 2. Prediction accuracy of various categories under various oversampling algorithms 

Risk 
category 

Original data + 
CatBoost (%) 

Random Over Sampler 
+ CatBoost (%)

SMOTE + CatBoost 
(%) 

ADASYN + CatBoost 
(%) 

0 99.6 99.3 99.0 99.4 

1 96.6 99.0 96.6 96.6 

2 86.0 92.7 92.5 93.0 

3 97.1 97.1 98.2 98.2 

4 87.0 89.7 89.2 89.2 

5 96.1 97.7 98.3 98.4 

6 96.1 96.1 96.1 96.1 

7 95.9 94.7 96.4 96.5 

Table 3. Performance comparison of ReliefF and ReliefF-S under different contribution thresholds 

Contribution 
threshold 

ReliefF + CatBoost ReliefF-S + CatBoos 
Characteristic 
number 

F1-Score 
(%) 

Training 
time (s) 

Characteristic 
number 

F1-Score 
(%) 

Training 
time (s) 

1 21 88.64 103 14 87.63 81 
0.60 39 93.05 165 29 92.65 130 
0.55 41 94.68 184 37 94.63 156 
0.52 52 98.46 200 48 95.35 184 
0.50 67 95.45 266 60 95.67 219 
0.48 79 95.23 294 60 95.36 264 
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0.40 94 95.36 326 83 95.48 318 
0.10 107 94.86 357 96 95.01 337 

3.2. Evaluation of risk prediction methods 

To further prove the performance of the CatBoost, the BO is 
combined to find the optimal parameters. There is a 7:3 split 
between training and test sets. The former is applied to train 
the model, and the accuracy is used as the objective function. 

The maximum iterations are 30. Figure 7 displays the 
visualization effect of BO processing. From the graph, when 
the iteration reached the 7th time, the prediction accuracy was 
99.77%, the maximum number of trees was 815, the L2 
regularization coefficient was 1.3, and the learning rate was 
0.27. At this point, the parameter combination is the optimal 
parameter combination.
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Figure 7. Parameter finding process of Bayesian optimization algorithm

To further evaluate the effectiveness of the algorithm, a 
comparison is made between Multi-layer Perceptron (MLP), 
K-nearest Neighbor Classification (KNN), Gradient Boosting
Decision Tree (GBDT), and some mainstream ensemble
learning algorithms: XGBoost, LightBoost, CatBoost, and
BO-CatBoost. Figure 8 displays the results. From the graph,
the accuracy of the BO-CatBoost was 98.61%, the recall was
98.97%, and the F1-Score was 98.82%. MLP is the
weakest,which is not suitable for solving such prediction
problems. Compared with GBDT, the average F1-Score of
BO-CatBoost risk prediction was 15.12% higher. Compared
with KNN, which was 6.73% higher. Meanwhile, ensemble
learning methods such as XGBoost and LightBoost also
achieved good results. Compared with other machine
learning methods, the BO-CatBoost algorithm has higher

accuracy in risk prediction, which can more accurately 
predict various risks that may occur during the operation of 
the power IoT. 
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Figure 9 displays the time performance of various 
algorithms. Figure 9 (a) shows the training time, and Figure 
9 (b) displays a comparison of the predicted time. From the 
graph, the training time of KNN was 136s, which was the 
fastest among all models, but its prediction time (1.78s) was 
the largest. Although the LightBoost method had better 
training speed, compared with other ensemble learning 
methods, the prediction time reached 0.38s, which was 
relatively insufficient to predict danger in real-time. The MLP 
method had a faster prediction speed, but its performance was 
poor. The training and prediction time of the CatBoost was 
203s and 0.21s, respectively. The BO-CatBoost was 187s and 
0.18s, respectively, which had good prediction ability and 
real-time performance. 

In order to evaluate the effect of the risk prediction model 
in the actual system, the pilot application is carried out on the 
charging pile of the State Grid Corporation. Figure 10 (a) 
shows the pilot application on the charging pile in the actual 

scenario. In actual scenarios, the firmware of running devices 
cannot be changed. Therefore, malicious software 
configuration changes and hardware cable connections are 
used to simulate attacks. The risk prediction algorithm based 
on BO-CatBoost is run on the local embedded device or board 
computer, and the low-sample rate and low-power INA219 
current sampling module is used as the power acquisition 
device with the sampling frequency of 200/s. Figure 10 (b) 
and Figure 10 (c) show the prediction probability curves of 
normal samples and abnormal samples of charging pile 
terminal under the actual scenario. When the prediction 
probability is 0, it means normal samples; when the prediction 
probability is 1, it means abnormal samples. It can be seen 
that the prediction probability of 80% normal samples is less 
than 0.3, while that of 100% abnormal samples is greater than 
0.9. Therefore, relatively high accuracy can be achieved in 
practical applications. 
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Figure 10. Pilot application of the risk prediction algorithm based on BO-CatBoost in the field charging pile 

4. Discussion

The operating state of the power Internet of Things
changes in real time, and equipment failure, human error, 
extreme weather, and cyber attacks can all be incentives for 
system risks. Tommarello et al. designed regression 
algorithms and predicted risks by analyzing a large number 
of historical measurement data. Based on the consistency 
analysis results of the measurement data, they judged the 
deviation between the predicted value and the actual value. 
Although the accuracy rate of the model was significantly 
improved, the mathematical principle was complicated and 
the calculation time was long. It cannot meet the requirements 
of real-time prediction well [22]. From the perspective of data 
mining, this paper presents a set of operational risk prediction 
methods for power Internet of Things, uses Bayesian 
optimization algorithm to improve CatBoost algorithm, and 
builds an integrated operational risk prediction model for 
power Internet of Things. The experimental results show that 
the prediction accuracy of risk categories 2, 3, 4, 5 and 7 
increased by 7%, 1.1%, 2.2%, 2.3% and 0.6% respectively, 
and the false positive rate also decreased significantly, 
indicating that data balancing processing can effectively 
solve the problem of excessive false positive rate of risk 
prediction, and improve the stability of risk prediction model 
as a whole. 

Power iot systems need to be able to process large amounts 
of data in a short period of time to ensure timely detection and 
early warning of risks. Sharma et al. designed regression 
algorithm and predicted risk by analyzing a large number of 
historical measurement data, and judged the deviation 
between predicted value and actual value based on the 
consistency analysis results of the measurement data [23]. Guo 
et al. carried out correlation analysis and fault risk level 

prediction of distribution network data through improved 
machine learning algorithm, which played a certain role in 
reducing the probability of distribution network faults and 
risks [24]. The above two methods are analyzed from the 
information side, ignoring the impact of real-time risk 
prediction on the operation of power Internet of Things. The 
study uses CatBoost model training to learn the selected key 
features. The training time of BO-CatBoost model changes 
from 440s to 217s, and the prediction time changes from 
0.24s to 0.04s. Compared with the CatBoost model, the 
overall accuracy rate is increased by 0.6%. It shows that the 
proposed method can meet the requirement of speed 
performance of risk prediction. 

5. Conclusion

From the perspective of data mining, this paper presents a
set of operational risk prediction methods for power Internet 
of Things, including fusion and balance processing of risk 
data. Bayes optimization algorithm is used to improve 
CatBoost algorithm, and key parameters in CatBoost model 
are optimized to build an integrated operational risk 
prediction model for power Internet of Things. The results 
show that compared with ReliefF, the time required by 
ReliefF-S algorithm is 211 seconds, which is reduced by 25 
seconds, indicating that ReliefF-S algorithm is superior to 
ReliefF algorithm and can effectively reduce the data 
dimension. Compared with CatBoost model, the overall 
accuracy of BO-CatBoost model is increased by 0.6%, and 
the accuracy rate, recall rate and F1-Score are increased by 
5.18%, 0.72% and 3.09%, respectively, indicating that 
parameter optimization further improves the performance of 
the model. This study mainly forecasts the operational risks 
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of power iot from the perspective of data mining. In the future, 
the transmission path and scope of risks in the power Internet 
of things can be further considered, and the consistency check 
of business rules can be carried out on the abnormal data set 
to find business anomalies, so as to more comprehensively 
solve the security problems faced in the operation process of 
the power Internet of things. 
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