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Abstract 

A Solar Photovoltaic (PV) System is an energy conversion system that uses the photovoltaic effect to convert sunlight into 
electricity. A fault in a Solar Photovoltaic (PV) system refers to any abnormal condition or defect that disrupts the normal 
operation and performance of the solar system. These faults can arise from a variety of factors, including environmental 
conditions, manufacturing defects, installation errors, and wear and tear of the components. Fault diagnosis in solar PV 
systems involves the detection, identification, and rectification of faults or abnormalities that can occur due to various 
reasons. By detecting and addressing faults early, systems can maintain optimal performance levels. Machine Learning (ML) 
in Solar Photovoltaic (PV) systems refers to the application of algorithms and statistical models that enable computers to 
perform specific tasks without using explicit instructions, relying instead on patterns and inference. In the context of solar 
PV systems, ML is used to analyse and interpret vast amounts of data generated by these systems to enhance their efficiency, 
predict energy production, detect and diagnose faults, and optimize maintenance and operation. By analysing data from 
sensors and system logs, ML algorithms can identify patterns indicative of faults or inefficiencies, such as shading, soiling, 
or equipment malfunctions, often before they become serious issues. Convolutional Neural Networks (CNNs) are a class of 
deep learning algorithms most commonly applied. They are particularly powerful for tasks involving data recognition, 
classification, and analysis due to their ability to automatically and adaptively learn spatial hierarchies of features. This 
research presents a unique machine learning model based fault diagnosis and detection method for a 33 KW solar PV system 
at P.S.R. Engineering College, Sivakasi. The real-time data from the PV system for five years, covering 23,000 instances of 
eight types of faults such as Cell Cracks or Hot Spots, Partial Shading, sensor fault, Module failure, Ground Faults, 
Communication Errors, Environmental Factors, Grid Connectivity Issues are collected. CNN is applied to the data and 
analysed their performance in terms of accuracy, precision, and standard deviation (SD)-score. It is found that CNN achieved 
the best results, with an accuracy of 98.7% a precision of 95%, a recall of 98%, and an F1 score of 96.5%. Therefore, CNN 
is used as the fault prediction also. The model is implemented using Python programming language and demonstrated its 
effectiveness on test cases. The smart data gathering system was achieved utilizing an ESP32 node with several sensors. The 
obtained data was stored in an authorized Google Sheet and compared to predetermined threshold ranges. When any 
parameter deviates from its threshold value, the ESP32 node starts a cooling and dust cleaning procedure with a water pump 
and drip pipe configuration. If the divergence persists, the ESP32 node activates a camera to capture an image of the panel 
and sends it to the Google Sheet via a connection for further analysis and fault correction. 
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1. Introduction

The integration of solar photovoltaic (PV) systems into the 
energy grid has seen substantial growth due to its renewable 
and sustainable nature. However, like any complex system, 
solar PV arrays are susceptible to faults and performance 
degradation over time. Timely detection and accurate 
diagnosis of these faults are critical for ensuring the reliability 
and efficiency of solar power generation [1]. Traditional 
methods of fault detection and classification in PV systems 
often rely on manual inspection or rule-based algorithms, 
which may lack the ability to handle the complexity and 
variability of real-world scenarios. In recent years, machine 
learning techniques, particularly convolutional neural 
networks (CNNs), have shown promise in automating the 
fault detection and classification process by leveraging the 
power of data-driven approaches. The paper [2] presents an 
approach to detect, classify, and locate string-to-string (SS), 
string-to-ground (SG), and open-circuit faults (OC) faults 
using multi-output deep learning (DL) algorithms: 
convolutional neural networks (CNN), long short-term 
memory (LSTM), and bi-directional long short-term memory 
(Bi-LSTM) networks. A conventional bibliographic survey 
would have been utilized in this work [3] to diagnose solar 
PV fault. A novel fault detection algorithm based on machine 
learning is introduced in this paper [4], that is applied to the 
detection of faults in heater, ventilation and air conditioning 
(HVAC) systems. The study [5] explores the sensitive 
parameters for the seven typical faults in chillers by 
performing global sensitivity analysis (GSA) based on a 
Random Forest (RF) meta-model. Fault detection and 
diagnosis based on C4.5 decision tree algorithm for grid 
connected PV system is presented in [6]. To enhance the 
robustness of the solar system, the paper [7] and [8] propose 
a trained convolutional neural network (CNN) based fault 
detection scheme using images of photovoltaic modules. 
Fault detection scheme for a large-scale photovoltaic 
installation based on frequency response analysis is addressed 
in [9]. A cascade neural network methodology for fault 
detection and diagnosis in solar thermal plants is given in 
[10]. Fault Diagnosis in Microgrids with Integration of Solar 
Photovoltaic Systems is reviewed in [11] and [12]. Fault 
detection and diagnosis for large solar thermal systems is 
reviewed in [13]. Improved Real Coded Genetic Algorithm, 
a mathematical optimizer, is employed here [14] to predict 
the probable fault pattern. Fault diagnosis for a solar assisted 
heat pump (SAHP) system in the presence of incomplete data 
and expert knowledge is discussed in this article [15]. The 
research [16] and [17] propose an intelligent method for fault 
detection and classification (FDC) in solar based systems. 
Most of the above literature not implemented data collection 
hardware setup. A low-cost IoT system for real-time fault 
diagnosis of photovoltaic (PV) modules are proposed in [18-
20]. But rectification or solving or improving efficiency is 
missing all papers. 
In this study, we propose a CNN-based approach for fault 
classification and prediction in a 33kW solar PV system. Our 

methodology encompasses the development of a smart data 
collection setup, the training of a CNN model using collected 
data, and the implementation of a predictive maintenance 
framework for proactive fault management. 
The structure of this journal paper is meticulously organized 
into five main sections. The first section provides a 
comprehensive description of the system, detailing its design 
and functionality. The second section delves into the 
classification of faults in the solar PV system, providing a 
thorough analysis of various fault types and their 
characteristics. The third section introduces the proposed 
Convolutional Neural Network (CNN) algorithm for 
classification, explaining its design, implementation, and 
benefits. The fourth section presents the results and 
discussion of the CNN algorithm and prototype results, 
offering a comparative analysis and interpretation of the 
findings. The final section draws the conclusion and outlines 
future extensions, summarizing the key findings of the study 
and suggesting potential areas for future research and 
development. This organization ensures a logical flow of 
information, facilitating a clear understanding of the research 
conducted.  

2. System Description

Figure 1. Block Diagram representation 

The block diagram representation of this work is shown in 
Fig. 1, which comprises of the following components 
described in detail.   

Solar PV Array: The core of the system is the 33kW solar 
PV array responsible for converting sunlight into electrical 
energy. The array consists of multiple solar panels arranged 
in a configuration optimized for maximum energy harvest. 
Smart Data Collection Setup: This component includes a 
network of sensors and IoT devices strategically placed 
throughout the solar PV system. These sensors continuously 
monitor various parameters such as voltage, current, 
temperature, irradiance, and environmental conditions. Data 
collected from these sensors serve as inputs for fault detection 
and prediction algorithms. 
Data Acquisition System: The data acquisition system is 
responsible for gathering, processing, and transmitting sensor 
data to the central processing unit. It ensures real-time 
monitoring and high-fidelity data collection from the solar 
PV system. 

EAI Endorsed Transactions 
on Energy Web | 

| Volume 12 | 2025 |



CNN Based Fault Classification and Predition of 33kw Solar PV System with IoT Based Smart Data Collection Setup 

3 

Central Processing Unit (CPU): The CPU serves as the 
brain of the system, where all data processing and analysis 
take place. It hosts the CNN-based fault classification and 
prediction model, which is trained to recognize patterns and 
anomalies in the sensor data. 
Convolutional Neural Network (CNN) Model: The CNN 
model is the heart of the fault classification and prediction 
system. It is trained on historical data to accurately classify 
different types of faults and predict their occurrence based on 
incoming sensor readings. The CNN architecture is optimized 
for feature extraction and pattern recognition in time-series 
data. 
Fault Detection and Prediction Algorithm: This algorithm, 
implemented within the CNN model, continuously analyses 
the streaming sensor data to detect deviations from normal 
operating conditions. It identifies potential faults and predicts 
their likelihood of occurrence, allowing for proactive 
maintenance interventions. 
User Interface: The user interface provides a graphical 
representation of the system's operational status, including 
real-time data visualization, fault alerts, and maintenance 
recommendations. It enables system operators to monitor the 
performance of the solar PV system and take appropriate 
actions in response to detected faults. 
Proactive Maintenance Strategies: Based on the fault 
predictions generated by the system, proactive maintenance 
strategies are devised and executed to address identified 
issues before they escalate. These strategies may include 
cleaning solar panels, repairing faulty components, or 
optimizing system parameters for improved performance. 
Cloud Integration: The system can be integrated with cloud-
based platforms for authenticated remote monitoring, data 
storage, and analytics. Cloud integration enables scalability, 
data redundancy, and access to advanced machine learning 
algorithms for enhanced fault detection and prediction 
capabilities.  

3. Fault Classification

Solar Photovoltaic (PV) systems have become a significant 
source of power generation. However, these systems can 
suffer from substantial power loss due to various faults that 
occur both internally and externally. Faults in PV systems can 
be caused by a variety of factors and need to be identified and 
eliminated as soon as possible to prevent them from spreading 
throughout the system. The classification and detection of 
faults in Solar PV systems are essential for maximizing their 
efficiency and ensuring their safe operation. It’s a complex 
task that requires continuous monitoring and sophisticated 
techniques. By comparing the measured V-I characteristics 
with actual characteristics, power loss can be calculated. A 
change in output voltage helps to estimate the number of 
faulty cells in the PV system. Various configuration methods 
are used to detect faults in the solar photovoltaic system and 
identify the location of faults. The various types of faults 
considered in this work are listed below and is denoted by 
F(0-7) (L/M) where L-low power and M-represent maximum 
power. 

0) Cell Cracks or Hot Spots (F0L/F0M): Physical damage
to solar cells, such as cracks or hot spots, can result from
manufacturing defects, mechanical stress, or shading. These
issues can cause localized overheating, reduced cell
efficiency, and potential safety hazards.
1) Partial Shading (F1L/F1M): Partial shading of solar
panels, caused by nearby objects (e.g., trees, clouds,
buildings) or soiling, can lead to mismatches in current
generation among interconnected panels. This phenomenon,
known as the "partial shading effect," can result in reduced
overall system performance and increased susceptibility to
faults.
2) Module Failure (F2L/F2M): Failures in individual solar
modules can occur due to manufacturing defects, material
degradation, or electrical faults. Module failures can lead to
decreased power output, voltage fluctuations, and potential
safety hazards.
3) Inverter Faults (F3L/F3M): Inverters are critical
components in solar PV systems responsible for converting
DC power generated by solar panels into AC power for grid
integration. Inverter faults, such as over voltage, under
voltage, or short circuits, can disrupt power generation and
affect system stability.
4) Ground Faults (F4L/F4M): Ground faults occur when an
unintended connection is made between the electrical
conductors of the solar PV system and the ground. Ground
faults can result in electrical shorts, fire hazards, and damage
to system components.
5) Communication Errors (F5L/F5M): Communication
errors between sensors, data acquisition systems, and
monitoring devices can lead to data loss, inaccurate
measurements, and impaired system performance. Reliable
communication is crucial for effective fault detection and
monitoring.
6) Environmental Factors (F6L/F6M): Environmental
factors such as temperature variations, humidity, dust, UV
radiation, and debris accumulation can impact the
performance and reliability of solar PV systems. Monitoring
and mitigating the effects of these factors are essential for
maintaining optimal system operation.
7) Grid Connectivity Issues (F7L/F7M): Issues related to
grid connectivity, such as voltage fluctuations, frequency
deviations, or grid outages, can affect the stability and
operation of grid-tied solar PV systems.

4. Proposed Algorithm

Convolutional Neural Networks (CNNs) is proposed in
this work for solar PV fault detection and classification. It is 
also known as ConvNets, are a specialized type of deep 
learning algorithm mainly designed for tasks that necessitate 
object recognition, including data classification, detection, 
and segmentation shown in Fig. 2. They are widely used in 
areas such as classification, detection, recognition, and 
analysis. CNN can be used for fault detection and 
classification in solar photovoltaic (PV) systems using IoT 
based sensor’s data such as current, voltage, temperature, and 
light intensity. The various steps involved in this method are, 
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Data Collection: The first step involves collecting data 
from the solar PV system. This could be in the form of sensor 
data such as current, voltage, temperature, and light intensity. 
In this work 20,000 data were collected in two main division 
of maximum power (peak generation hour data) and limited 
power (non-peak generation hour data). 

Preprocessing: The collected data is then preprocessed. 
This could involve cleaning the data, normalizing it, handling 
missing values, and labelling etc. 

Model Training: A CNN model is trained on this 
preprocessed data. Eighty percentage of the data is split and 
is used for training. The model learns to identify different 
types of faults by recognizing patterns in the input data. 

Fault Classification: Once the model is trained, it can be 
used to classify new data. The model processes the input data 
and outputs a classification result, indicating the type of fault 
(if any) present. 

Evaluation: The performance of the model is evaluated 
using various metrics such as accuracy, precision, recall, and 
F1 score using confusion matrix. 

Figure 2. Solar PV fault detection and 
classification Flowchart 

5. Results And Discussion

5.1. Python Result 

The image in Fig. 3 represents a heat map related to Solar 
PV modules. Heat maps use colour intensity to visualize data 
across a grid. Each cell in the grid contains numerical data, 
and the colour indicates the value of a specific parameter. 
Dark purple represents negative values, while bright red 
represents positive values. A colour scale on the right side of 
the image shows the range from -1.00 (dark purple) to 1.00 
(bright red). Heat maps can reveal anomalies or faults within 
the PV system. Sudden changes in colour intensity (e.g., from 
red to purple) may indicate module malfunctions, shading, or 
wiring issues. Maintenance teams can use heat maps to 
pinpoint problematic modules for inspection and repair. 
Placing modules in areas with consistent bright red colour 
(high performance) ensures better overall system efficiency. 
By analysing heat maps over time, we can assess the energy 
yield of the entire PV system. Tracking changes in colour 
distribution helps evaluate seasonal variations and long-term 
performance. 

Figure 3. Correlation Heat Map of Solar PV panel data 
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Figure 4. Fault count of different faults of Solar PV 
system 

The image in Fig. 4 displays the distribution of different fault 
labels in the solar PV system datasets. Each fault label 
corresponds to a specific type of issue or anomaly observed 
in the system. Here are the fault labels along with their 
respective counts: F7L: 1441 occurrences, F4L: 1440 
occurrences, F6L: 1440 occurrences, F0L: 1438 occurrences, 
F5L: 1430 occurrences, F2L: 1421 occurrences, F1L: 1290 
occurrences, and F3L: 1035 occurrences. These fault counts 
provide insights into the health and reliability of the solar PV 
system. Some observations: F7L appears to be the most 
frequent fault, occurring 1441 times. F3L has the lowest 
occurrence (1035 times). F4L, F6L, and F0L are also 
common faults. Investigating the causes behind these faults is 
crucial for system maintenance and performance 
optimization. Regular monitoring and analysis of fault data 
can help identify trends and patterns. Addressing specific 
fault types can improve overall system efficiency. 

Figure 5. Pie Chart for different types of solar PV 
system fault class 

The pie chart in Fig. 5 represents the distribution of fault 
classes observed in 33 kW solar PV systems. Each segment 
of the pie chart corresponds to a specific fault class, and the 
colours differentiate them. The chart provides insights into 
the prevalence of different faults within the system. These 
fault classes represent various issues or anomalies that may 

occur in solar PV systems. For instance, F0L to F3L are more 
prevalent, while F6L and F7L occur less frequently. 
Understanding these fault patterns helps optimize system 
performance and maintenance strategies. 

Figure 6. Confusion Matrix for Solar PV system Fault 
model 

A confusion matrix in Fig. 6 is a table used to evaluate the 
performance of a classification model. It provides a summary 
of the model’s predictions compared to the actual ground 
truth. The matrix is typically used for binary classification 
problems but can be extended to multi class scenarios as well. 
The Components of the Confusion Matrix are, True Positives 
(TP): Instances correctly predicted as positive (faults in our 
case). True Negatives (TN): Instances correctly predicted as 
negative (non-faults). False Positives (FP): Instances 
incorrectly predicted as positive (false alarms). False 
Negatives (FN): Instances incorrectly predicted as negative 
(missed faults). In the context of solar PV systems, we can 
use the confusion matrix to assess the accuracy of fault 
classification models. The confusion matrix helps us 
understand how well our model performs in identifying the 
various faults. High values of TP and TN indicate accurate 
predictions. High FP values may lead to unnecessary 
maintenance or false alarms. High FN values mean missed 
faults, which can impact system reliability.  

Table 1. Confusion Matrix for Solar PV fault Model 
Value 

Predicted Non-
Fault  

 Predicted Fault 

Actual Non-
Fault 

TN=950 FP=50 

Actual Fault FN=20 TP=980 

The performance can be evaluated from the following key 
metrics derived from the confusion matrix whose formula are 
given below. 
Accuracy: (TP + TN) / (TP + TN + FP + FN) 

 Accuracy=
980 + 950

980 + 950 + 50 + 20
= 0.965 ≈ 96.5% 

Precision: TP / (TP + FP) 
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Precision=
980

980 + 50
= 0.951 ≈ 95.1% 

Recall (Sensitivity): TP / (TP + FN) 

Recall=
980

980 + 20
= 0.98 = 98% 

F1 Score: 2 * (Precision * Recall) / (Precision + Recall) 

𝐹𝐹1 =
2 ⋅ 0.951 ⋅ 0.98
0.951 + 0.98

≈ 0.965 ≈ 96.5% 
Accuracy measures the overall correctness of a classification 
model. It is the ratio of correctly predicted instances (both 
true positives and true negatives) to the total number of 
instances. An accuracy of approximately 96.5% indicates that 
the model correctly predicts fault/non-fault labels for about 
96.5% of instances. 
Precision (also known as positive predictive value) focuses 
on the proportion of true positive predictions among all 
positive predictions made by the model. It helps assess the 
model’s ability to avoid false positives (instances incorrectly 
predicted as positive). A precision of approximately 95.1% 
means that when the model predicts a fault, it is correct about 
95.1% of the time. 
Recall (also known as sensitivity or true positive rate) 
measures the proportion of actual positive instances that the 
model correctly predicts. It helps assess the model’s ability to 
avoid false negatives (instances incorrectly predicted as 
negative). A recall of 98% indicates that the model captures 
98% of the actual faults. 
The F1 score combines precision and recall into a single 
metric. It balances the trade-off between precision and recall. 
F1 score of approximately 96.5% balances the trade-off 
between precision and recall. The model performs well in 
terms of accuracy, precision, recall, and F1 score. 

5.2. Hardware Prototype Realization 

Figure 7. 33 kW solar PV system used for data 
collection 

Figure 8. Proto type setup for smart solar 
PV system 

Fig. 7 depicts 33kW solar PV system used to collect five 
years’ data. Fig. 8 shows the components and connections of 
hardware setup. The two solar panels of 20W that converts 
sunlight into DC electricity. A DC-DC converter that boosts 
the voltage of the solar panel to a suitable level for charging 
a battery or feeding an inverter. A dc-ac inverter that converts 
the DC electricity from the solar panel or the battery into AC 
electricity for powering a load or feeding the grid. An ESP32 
controller that monitors the current, voltage, and temperature 
of the solar panel, and the load using sensors, and displays the 
data on a cloud service using Wi-Fi. It also controls the water 
pump and the camera using digital output pins. A current 
sensor that measures the current flowing through the solar 
panel, or the load. A voltage sensor that measures the voltage 
across the solar panel, or the load. A temperature sensor that 
measures the temperature of the solar panel, or the load. An 
LDR (light dependent resistor) that measures the intensity of 
the sunlight on the solar panel. A camera that captures images 
of the solar panel when the monitored parameters are 
abnormal, and sends them to the cloud service via Wi-Fi. A 
cloud service that stores and displays the data and images 
from the ESP32 controller on a web page or a mobile app 
shown in Fig. 9. A water pump that sprays water on the solar 
panel in the predetermined time period or when the 
temperature is high, to clean and improve the efficiency of 
the system.  
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Figure 9. Output data collection time, panel, voltage, 
current and temperature as well as capture image in 

cloud server 

6. Conclusion
In conclusion, the implementation of a Convolution Neural 
Network (CNN) based fault classification and prediction 
system for a 33KW Solar PV System at PSR Engineering 
College, Sivakasi, has demonstrated promising results. The 
system achieved an accuracy of 96.5%, a precision of 95%, 
a recall of 98%, and an F1 score of 96.5%. These results were 
obtained using a confusion matrix developed in Python. The 
smart data collection setup was also realized using an ESP32 
node equipped with current, voltage, temperature, and LDR 
sensors. The collected data was stored in an authenticated 
Google Sheet and analysed against predefined threshold 
ranges. In the event of any parameter deviating from its 
threshold value, the ESP32 node initiates a cooling and dust 
cleaning process using a water pump and drip pipe setup. If 
the deviation persists, the ESP32 node activates a camera to 
capture an image of the panel and sends it as a link to the 
Google Sheet for further analysis and fault rectification. 
Looking ahead, the system’s capabilities can be further 
enhanced by integrating more advanced machine learning 
algorithms and expanding the range of sensors. This would 
allow for more accurate fault detection and prediction, 
ultimately leading to improved efficiency and longevity of 
solar PV systems." 
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