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Abstract 

This study introduces an innovative seabed substrate detection model that harnesses the complementary strengths of 

Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs) to analyze sonar data with a focus on energy 

efficiency. The model addresses the challenges of underwater sensing and imaging, including variable lighting conditions, 

backscattering effects, and acoustic sensor limitations, while minimizing energy consumption. By leveraging advanced machine 

learning techniques, the proposed model aims to enhance seabed classification accuracy, a crucial aspect for marine operations, 

ecological studies, and energy-intensive underwater applications.The introduced ShuffleNet-DSE architecture demonstrates 

significant improvements in both accuracy and stability for seabed sediment image classification, while maintaining energy-

efficient performance. This robust tool offers a valuable asset for underwater exploration, research, and monitoring efforts, 

especially in environments where energy resources are limited. 
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1. Introduction 

The study of seabed is essential for a viable model as seas, 

deep oceans are the largest part of the earth ecosystem yet 

least explored. The depth of a deep ocean starts at 

approximately 200 metres and ends at around 11,000 metres. 

Subsequently the oceans have diversified ecosystems of 

plants and animals thus it is important to study and 

comprehend the geological as well as ecological attributes  of 

the sea bed for the sake of numerous applications. However 

mostly conventional methods are utilised for the study of sea 

bed such as sea floor photography and towed and bottom 

samplers [1],  but these methods have poor economic 

efficiency, rely on heavy machinery and high-intensity labor, 

and are time-consuming and labor-intensive. Therefore, in 

order to overcome the above limitations, it is urgent to 

propose new intelligent technologies. In view of this, research 

is being conducted to improve the accuracy and energy 

efficiency of seabed classification through modern 

underwater sensing technology and machine learning 

algorithms. The innovative model introduced in the study 

combines CNN and SVM, utilizing the ShuffleNet DSE 

architecture to improve the accuracy and stability of seabed 

sediment image classification, while also considering energy 

performance. 

 

But with the advancement in technology such methods can 

now be mitigated by techniques like underwater sensing 

technology, various machine learning algorithms 

 like convolution neural networks and support vector 

machines. Underwater sensing technology basically is the 

acquisition of the data from the deep water environments 

comprising of various sensors like single beam echosound, 

multi beam echosounders, side scan sound navigation and 

ranging where each sensors are designed for specific task and 

application such as navigation, object inspection, sea floor 

mapping etc. however for optical sensors. These sensors 

include underwater cameras, 3D underwater structured light 

sensors, and hyperspectral sensors. To explore large and deep 

areas of the sea, autonomous underwater vehicles (AUVs) 

and remotely operated vehicles (ROVs) are essential [2]. 

These mobile robots carry sensors, enabling real-time data 
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collection and processing at depths beyond human reach. 

Recent research has focused on the deep sea due to valuable 

mineral resources, such as polymetallic nodules containing 

critical metals like nickel, copper, cobalt, manganese, and 

rare earth elements. These nodules hold potential as raw 

materials for various industries [3].  

Another crucial application that can benefit from improved 

seabed classification is deep coral reef monitoring. Coral 

reefs play a vital role in ocean health, hosting a rich diversity 

of species . Unfortunately, due to human activities and 

climate change, coral species are facing endangerment . 

Recent studies highlight the rapid decline of certain coral 

species, with factors like bleaching and reef structure 

degradation contributing to their vulnerability [4]. 

Monitoring these species and conducting regular assessments 

of their status are essential steps toward achieving sustainable 

development and preserving these fragile ecosystems. And to 

classify a seabed following sensing technology are utlized as 

shown in the figure such as classification, detection and 

segmentation that also helps in collecting data for further 

research analysis. 

 

 

Figure 1. Seabed characterization 

Beside the sensing techniques we have new advanced 

techniques like deep learning and machine learning that 

mostly use computational power to analyse the prior data to 

extract results such as from sonar data, commonly used 

techniques are support vector machine and convolution 

neural network. Support vector machines (SVM) are elegant 

and effective methods for classification. That is  to classify 

objects into two or more categories, each object is represented 

as a point in an n-dimensional space, with its coordinates 

serving as features. SVMs perform classification by drawing 

a hyperplane (a line in 2D or a plane in 3D) such that all points 

of one category lie on one side of the hyperplane, and all 

points of the other category lie on the opposite side. As shown 

in the figure 2  

 

 

Figure 2. SVM hyper plane 

The goal is to maximize the margin—the distance to the 

nearest points—between the two categories. The points 

falling exactly on the margin are called supporting vectors. 

To find this optimal hyperplane, SVMs require a labeled 

training set. In contrast SVM solve a convex optimization 

problem that maximizes the margin while ensuring that points 

from each category fall on the correct side of the hyperplane. 

As shown by the following equation 

wTz + b  1 x  C1 

wTz + b  -1 x  C2 

In practice, using SVMs is straightforward: load a Python 

library, prepare your training data, feed it to the fit function, 

and call predict to assign categories to new objects. The 

simplicity of SVMs makes them easy to understand and 

implement. However, in cases where points cannot be 

separated by a hyperplane, techniques like kernel tricks can 

be utilised that allow efficient handling of non-linear data.  

Convolution Neural Network  

Convolutional Neural Networks (CNNs) are a specialised 

type of neural network designed primarily for image 

processing tasks, though they can also be applied to natural 

language processing. Unlike regular neural networks that 

have fully connected layers, CNNs treat data as spatial, 

maintaining the spatial hierarchy of the input data. This is 

achieved through a unique architecture that includes 

convolutional layers, pooling layers, ReLU layers, and fully 

connected layers. The convolutional layer applies filters to 

the input image to create feature maps, simplifying the image 

for better processing. The pooling layer further reduces the 

data size, speeding up computation. ReLU layers introduce 

non-linearity, preserving the complexity of the data. Finally, 

the fully connected layer performs classification. Training 

CNNs can be done using unsupervised methods like 

autoencoders and GANs.  
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Figure 3. Schematic diagram of convolution neural network 

source [5] 

In relation to Object detection architectures, it can be 

categorized into two main types: one-stage and two-stage 

approaches. One-stage approaches, exemplified by SSD 

(Single-Shot Multi-Box Detector) and YOLO (You Only 

Look Once), utilize a single pass of a Convolutional Neural 

Network (CNN) to predict bounding boxes and associated 

probabilities for object classes. SSD combines a backbone 

model (often a pre-trained image classification network) with 

an SSD head that interprets outputs as bounding boxes and 

classes. YOLO, on the other hand, generates multiple 

bounding boxes per object and suppresses redundant ones. In 

contrast, two-stage detectors, including Fast R-CNN, Faster 

R-CNN, and Mask R-CNN, involve a proposal stage to 

identify regions of interest (ROIs) containing potential 

objects, followed by a second stage for object classification. 

These architectures play a crucial role in tasks like object 

localization and recognition, finding applications in computer 

vision and robotics[6]. 

Characterization of Seafloor 

 

Seafloor can be categorized based on the topographical, 

geological, biological and physical attributes of the seabed. 

And to discern among the properties various sensors can be 

utilized to inspect and collect data for processing, further 

knowledge about seabed is crucial for application like marine 

operation, underwater inspection, geological surveys object 

detecction etc. however in the time of inspection of the seabed 

various underwater challenges could encounter such as high 

pressure of the water on the machinery, execessive power 

draw, transmitting of data from the sensor in general a typical 

underwater computer vision system encoutner some of the 

followign challenges. 

Lighting Conditions in Water 

Water absorbs light across various wavelengths, with blue 

and green wavelengths attenuated less. Color changes due to 

light attenuation depend on factors like wavelength, dissolved 

organic compounds, salinity, and phytoplankton 

concentration. Image-enhancement algorithms fall into three 

categories: statistical, physical, and learning-based [7]. 

Challenges in Underwater Imaging 

Challenges like backscattering, texture, vignetting effect and 

lac of ambient light creates problem for underwater sensing 

backscattering happens when reflection of light diffuse which 

cause blurring and noise similarly suspended particles scatter 

the light coming towards the camera, subsequently hence 

textures are indiscernible underwsater so identifgying various 

features of the environement are quiet challenging similarly 

vignetting effect reduces the brightness towards the image 

periphery compared to the center and since scarcity of 

ambient light tends to to use artificial lightning but since 

uneven distrubtion of light and close light sources pose 

difficulites. 

Issues with Acoustic Sensors: 

Underwater environments are noisy, affecting accurate signal 

transmission and reception thus leads to noisy signal also 

signal are atteneauted because of absorption and also 

spreading loss impact acoustic energy. Subsequently due to 

refraction in the water for single signal multiples path are 

available for transmission which mostly leads to false 

positive signal because the same signal can be received at 

different instances such phenomena is also called multiple 

path propagation [8].  

 

a. Effect of artificial light b. Turbidity of the 

water 

Figure 4. Example of limitation of underwater environment 

Hydroacoustic sensing 

Typical sensors that are used for sea mapping and geological 

surveys are based on data coming from SONAR which helps 

in to generate maps for seafloor, whereas some of teh 

common one are  single beam and multi beam echo sounder. 

Single beam echosounder generally use piezo electric crystal 

like quartz for the transmission and receiving of the acoustic 

signals. It working mechanism is that it calculate the time 

taken by the signal in transmission and reception as shown by 

the fig. 5. Since speed of light denoted by c is constant the 

traveled distance is calculated as d = c x t/2. 

The pros of this sensor is that it is fairly simple in operation 

and is low cost but con is that it cover a small portion of the 

seabed to be specific that is around 2 to 12 degrees. 

 
Figure 5. Single Beam Echo Sounder (SBES) source  [9]). 
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Multi beam echosounder are advanced underwater mapping 

systems used to explore and understand the seafloor. As the 

name suggests, MBES operates by emitting multiple acoustic 

beams (sound waves)  as shown by fig. 6 simultaneously. 

These systems consist of an array of transducers that send out 

sound waves into the water. When these waves encounter the 

seabed or other underwater features, they bounce back as 

echoes. MBES captures these echoes and processes them to 

create detailed bathymetric maps. Bathymetry refers to 

measuring water depth and understanding the underwater 

topography. MBES sensors can be categorized as narrow or 

wide systems. In narrow systems, high spatial resolution is 

achievable, but the coverage area per transmission is limited. 

By surveying the seafloor in swaths, MBES provides 

essential data for creating terrain models and studying 

underwater landscapes. Overall, MBES plays a crucial role in 

marine research, navigation, and environmental monitoring 

[9]. 

 
Figure 6.  Multi Sound Echo Sounder (MBES) source [9] 

Backscattering refers to the strength of the echo that bounces 

back from the seafloor or other underwater surfaces. When 

sound waves (acoustic signals) are emitted, they hit the 

seabed and reflect back. Different types of sediments and 

seabed structures cause varying intensities of backscattering. 

It is a useful tool for understanding what’s beneath the water. 

By analyzing the intensity of echoes, scientists can classify 

the seafloor based on its composition. To generate acoustic 

images, the backscatter intensity is converted into grayscale 

pixel values. This creates a visual representation called the 

backscatter mosaic. The strength of backscattering depends 

on several factors, including the angle at which sound waves 

hit the seafloor, the roughness of the detected object or 

material, and the properties of the water (such as salinity and 

temperature). While side-scan sonar provides high-resolution 

images of the seafloor, backscattering gives valuable 

information about what makes up the seabed based on echo 

intensity.  

Follwing table 1. Represents data obtained from 

backcattering and bathymetry data. Bathymetry data which 

involves measuring water depth and underwater topography 

plays a critical role in understanding marine ecosystems. We 

have two specifive bathymetric derivates which are 

Bathymetric Position Index (BPI) and rugosity. BPI provides 

insights into benthic ecosystem processes, such as shelter 

availability and species abundance. Essentially, it helps us 

understand the vertical position of seafloor features. 

Rugosity, on the other hand, describes the roughness or 

irregularity of the seafloor. Areas with high rugosity may 

offer more habitats for marine organisms. Additionally, 

backscatter statistics are used to classify seabed sediments 

based on their textural properties. By analyzing the intensity 

of echoes (backscatter), researchers gain valuable 

information about the composition of the seabed. 

Table 1. Statistics data of backscatter and bathymetrics derivate source [10] 

 Statistics data of Backscatter 

mode Most frequently occurring 

value within a spatial 

neighborhood of 

cells 

Median  Median backscatter value 

within a spatial neighborhood 

of cells 

 

Mean  Average backscatter value 

within a spatial neighborhood 

of cells 

Standard deviation Dispersion from the mean 

backscatter value of the spatial 

neighborhood 

 Bathymetric derivates 

Rugosity A measure of the irregularity 

of a surface 

BPI The relative topographic 

position of a central grid cell 

to a spatial 

neighborhood defined by a 

rectangular or circular annulus 

with an 

inner and outer radius 

Profile curvature Curvature parallel to the 

direction of maximum slope 

slope  A measure of the rate of 

bathymetry change along a 

path 

 

Planar curvature  Curvature perpendicular to 

the direction of maximum 

slope 

Standard deviation Dispersion from the mean 

depth of the spatial 

neighborhood 
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Literature Review a related work 

 

With regard to deep leanrning and machine learning various 

novels are publishied by the authors which were deeply 

investigated in the perspective of convolution neural network 

Luo et al appraoches the convolution neural network for the 

classificatifcation of the sediment having the data collected 

from the small side sonar implemented in pearl river estuary 

in china.using the deep learning technique for the underwater 

sediment they employed two specific convolutional neural 

networks (CNNs that is  a modified shallow CNN pre-trained 

on LeNet-5 and a deep CNN based on modifications to 

AlexNet. The dataset consisted of three sediment classes: 

reefs, sand waves, and mud. To facilitate classification, the 

acoustic images were divided into smaller-scale images. 

Specifically, there were 234 reef images, 217 mud images, 

and 228 sand wave images. For testing purposes, 20% of each 

sediment type’s images were randomly selected as test 

samples (46 reef images, 43 mud images, and 45 sand wave 

images). The results indicated that the shallow CNN 

outperformed the deep CNN, achieving accuracy rates of 

87.54%, 90.56%, and 93.43% for reefs, mud, and sand waves, 

respectively, on the testing dataset [11]. 

Subsequently, another study by Qin et al. [12] focused on 

classifying seabed sediments using common CNN 

architectures such as AlexNet-BN, LeNet-BN, and VGG16. 

The model was initially pre-trained on the grayscale CIFAR-

10 dataset, which contained 10 classes of images unrelated to 

sonar data. To address the challenge of small datasets, the 

authors applied data enhancement techniques based on 

Generative Adversarial Networks (GANs). This approach 

expanded the dataset effectively. Additionally, they 

incorporated conditional batch normalization and modified 

the loss function to enhance GAN stability. Comparing their 

proposal with the SVM classifier, the results demonstrated 

that data optimization techniques could mitigate the 

limitations of small datasets in sediment classification. 

However, it’s worth noting that using GANs can be 

computationally expensive. Thus it is viable to fine tune 

CNNs whilst working with limited data. 

Whereas Aleem et al [13] worked on the Faster R-CNN to 

classify object underwater based on acoustic data Their work 

involved a forward-looking sonar dataset captured in a lab 

water tank. To enhance model performance, they introduced 

noise removal techniques such as the median filter and 

histogram equalization. Additionally, they combined Faster 

R-CNN with ResNet 50 for feature extraction. Another 

approach involved the use of YOLOv5s, a one-stage model, 

for real-time object detection in side-scan sonar images. The 

authors down-sampled image echoes while maintaining 

aspect ratios to improve recognition accuracy and reduce 

computational costs. Transfer learning played a crucial role 

by pre-training the model on the COCO dataset. Similarly, 

Zhang et al. proposed YOLOv5s pre-trained on the COCO 

dataset for target detection in a forward-looking sonar dataset. 

They fine-tuned the network using the k-means clustering 

algorithm. These studies highlight the importance of deep 

learning techniques in underwater object classification, 

emphasizing the need for careful preprocessing and model 

optimization.  In the context of R-CNN Fulton et al. come up 

with the Trash-ICRA19, a dataset from marine litter to detect 

objects in the sea of japan, around 5700 images were 

collected for the process of detection and model training by 

dividing dataset into three categories that is rov (representing 

man made object), bio (including fish, plants etc) and plastc ( 

such as marine debris), to evaluate such data Fulton used 

YOLOv2, tiny YOLOv2, SSSD and Faster R-CNN 

algorithms. These models were executed on an NVIDIA 

Jetson TX2 platform. The results suggest that these 

architectures have the potential to detect marine litter on the 

seafloor in real time. The evaluation metrics used were Mean 

Average Precision (mAP) and Intersection Over Union (IoU). 

Specifically, for litter detection whereas as YOLOv2  

Achieved an mAP of 47.9% and an IoU of 54.7%, Tiny 

YOLOv2 achieved an mAP of 31.6% and an IoU of 49.8%, 

SSD Achieved an mAP of 67.4% and an IoU of 60.6% and 

Faster R-CNN achieved an mAP of 81.0% and an IoU of 

53%. Additionally, a newer version of the dataset called 

TrashCan was introduced by Hong et al. This updated dataset 

is more diverse, containing additional images and classes. For 

baseline comparison, the Mask R-CNN and Faster R-CNN 

models were utilized. 

Subsequently Tim et al. [14] approach to seabed sediment 

classification using side-scan sonar data through the 

application of Convolutional Neural Networks (CNNs). 

Recognizing the critical role of spatially high-resolution 

seabed information for oceanic and coastal engineering, 

habitat mapping, and other marine applications, the study 

addresses the need for efficient and accurate sediment 

analysis. Traditional methods, reliant on grain-size 

distribution from collected sediment samples, are enhanced 

by the CNN model, which automates the classification 

process. This model represents a significant leap from 

manual, labor-intensive methods, offering an end-to-end 

training capability that autonomously derives features during 

the training phase for subsequent classification. Their 

research evaluates the model’s performance on real-world 

data, that were labeled into four distinct classes such as fine, 

sand, coarse, and mixed sediment as shown by the Fig. 7. The 

model then employs a patch-wise classification strategy 

coupled with ensemble voting to refine its accuracy.  
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Figure 7. Classification of sediment source [14] 

Notably, while the model achieves around 83 percent 

accuracy in sand sediment prediction, it encounters 

challenges with fine sediment, where accuracy drops to 11 

percent. Their research work  also delves into the 

complexities of label consistency and the factors influencing 

backscatter intensities, which are crucial for the sonar data 

interpretation. Where the author suggested  future research 

directions, such as exploring varying levels of discretization 

and training data strategies to enhance the model’s accuracy. 

It concludes by affirming the transformative potential of 

CNNs in seabed sediment classification, while also 

acknowledging the necessity for ongoing research to 

surmount the existing limitations. 

Methodology 

Numerous research work and technique were thoroughly 

studied in the literature review to carry out the analysis 

process every method have their pros and cons the manual 

methods were work heavy and uneconomical to run for the 

long run contrary to that the traditional approach to 

establishing a relationship model between sonar images and 

substrate types involves two key stages: sonar image feature 

extraction and classifier training. In the initial phase, due to 

limited sonar data availability, unsupervised learning 

methods are often used for data classification. Clustering 

algorithms, such as k-means, have been applied to submarine 

geological classification. However, the sensitivity of 

clustering methods to initial values can impact classification 

accuracy. Researchers have also explored Self-Organizing 

Maps (SOM) for sparse data classification. To achieve clear 

substrate types, supervised learning methods were utilized. 

Support Vector Machines (SVMs) and neural networks (such 

as Backpropagation networks) have been used to improve 

classification accuracy. Despite ongoing optimization efforts, 

challenges remain due to computational complexity and low-

resolution, noisy sonar images. 

But with the rise in deep learning models such as 

convolutional neural networks and taking ideas from the 

traditional machine learning model a modified version of 

convolution neural network will be used in this proposed 

method for the accurate design of seabed substrate detection 

and classification. The modified CNN model which is used 

here is called ShuffleNet-DSE which is an extremely efficient 

convolutional neural network (CNN) architecture designed 

specifically for mobile devices with very limited computing 

power. The goal of ShuffleNet-DSE is to achieve high 

accuracy while operating within tight computation budgets 

(e.g., 10-150 MFLOPs) commonly found in mobile platforms 

such as drones, robots, and smartphones [15]. The 

architecture of ShuffleNet-DSE utilizes two key techniques 

that is Pointwise Group Convolution To reduce computation 

complexity and Channel Shuffle Operation: To address the 

side effects introduced by group convolutions, ShuffleNet-

DSE introduces a novel operation called channel shuffle. This 

operation allows information to flow across feature channels 

effectively,  thus enhancing the overall performance.  

In the proposed method ShuffleNet-DSE is categorized into 

two stages that is Feature pre-extraction and channel 

information enhancement, the prior is going to improve the 

poor classification process whereas the later will enhance 

feature interaction, promote better representation learning 

which will contribute to the overall efficiency of the network 

as shown by the fig. 8 below. 

 

 

Figure 8. ShuffleNet-DSE network architecture 

Extracting Features 

Sonar data often contains noise, and its image resolution is 

poor, leading to challenges in feature extraction. 

Additionally, the simple data structure of sonar images isn’t 

well-suited for complex network architectures. To address 

this, maximizing information extraction from each layer 

while maintaining depth becomes crucial. Dense connections 

and Swish activation functions can help mitigate these issues 

(as explained below), enhancing the effectiveness of sonar 

image analysis. 

Wi = Hi([x0, x1, . . . , xi-1]) 

In a dense connection, the output of each layer (denoted as 

Wi as shown by the formula below) depends on the output of 

all previous layers. Specifically, Wi is formed by 

superimposing the feature maps from all preceding layers. By 

doing so, the model can fully utilize information from all 

feature maps during learning without significantly increasing 
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the network depth. This method enhances the model’s 

learning capacity. 

In scenarios with uneven quality of sonar images, traditional 

connections may blur feature information in certain layers, 

leading to obscured data for subsequent computations. 

However, dense connections address this issue. They stack 

the output feature matrices of each layer with those of all 

previous layers, ensuring that each layer considers the results 

from its predecessors. As a result, the risk of losing critical 

feature information due to specific layers is reduced. Dense 

connections improve model stability and, importantly, 

mitigate the vanishing gradient problem during 

backpropagation. Additionally, the Swish activation function 

replaces ReLU, providing a smoother transition between 

linearity and non-linearity. Swish is particularly well-suited 

for sonar image classification, overcoming ReLU’s 

limitations while maintaining model stability [16].  

Structure of the network 

The pre-extraction part of the network structure as illustrated 

in fig. 9 involves several steps. First, we control the number 

of channels using a 1x1 convolution. After calculations, the 

output feature matrix has twice the initial number of channels 

(e.g., if k = 32, we get 64 channels). Next, we apply a 3x3 

convolution kernel for feature computation, ensuring 

effective information extraction. Superimposing the output 

feature matrix with the input feature matrix refines the image 

features. Subsequently the process is repeated to further 

enhance the data. Moreover after two superimpositions, we 

normalize the feature matrix. To handle large data dimensions 

resulting from overlapping feature matrices, we use a 1x1 

convolution layer for dimensionality reduction. Finally, a 2x2 

max-pooling layer compresses the data, retaining texture 

information while minimizing parameter errors from 

previous layers 

 

Figure 9.  pre-extraction network framework 

Next is to enhance the channel information which initiates 

from the calculation of the data coming from the sonar 

images, three techniques are utilized, that is DWConv, SE 

module to process the data and channel shuffle. These 

techniques greatly improve the accuracy as well as the 

stability of the model. 

 

Network Framework 

The channel information enhancement part in the context of 

ShuffleNet-V2. This technique builds upon improvements 

from its predecessor. The network structure is divided into 

two parts that is  A and B as illustrated in Fig 10. the core 

process is the channel splitting process. Meaning channels are 

divided into two equal groups. Unlike ResNet’s addition 

operation, ShuffleNet-V2 uses concatenation (Concat). By 

splicing the left and right channel parts together, we ensure 

that the number of input channels matches the output 

channels. But the main work happens through the Channel 

Shuffle operation. This operation allows information 

exchange between the two channel groups. By shuffling 

channels, we enhance feature representation and improve 

overall performance. In essence, ShuffleNet-V2 leverages 

channel splitting, concatenation, and channel shuffling to 

enrich feature information and optimize channel 

communication. 

 

Figure 10. Channel information enhancement framework 

Whereas the network level configuration is shown by the 

following table 2. 

Table 2. ShuffleNet-DSE network design parameters 

Module Layer K-Size Output 

input   1 

 Conv1 3x3 32 

 BN + Swish   

 Conv2 1x1 64 

 BN+Swish   

 Conv3 3x3 32 

 BN+Swish   

 Conv4 1x1 64 

 BN+Swish   

 Conv5 1x1 64 

 BN+Swish   

Dense Connection Conv6 3x3 32 

 BN+Swish   

 Conv7 1x1 48 

 MaxPool 2x2 48 
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 A block 

B block 

  

48 

 A block 

B block 

  

96 

ShuffleNet-SE A block 

B block 

  

192 

 

 

Summarize 

Conv5 

Global Pool 

FC 

1x1 

7x7 

1024 

 

 

 

Datasets for the model 

 

The dataset utilised for the model training and analysis was 

comprised of the data coming from public sonar image 

dataset (US geological survey) and the Welhai real sonar 

dataset (WHDS). The public data was divided into six 

categories, having images of  equal number of pixels( 

200x200), and to compensate for image scarcity, data 

augmentation techniques were used for dataset expansion. 

After random mixing, cropping and expanding a total of 2160 

images were obtained. The dataset images are clear, and the 

features relevant for image classification are evident, making 

classification easier. 

 

Contrary to that the WHDS dataset consists of real Weihai 

data. Compared to the SAS dataset, WHDS images exhibit 

fuzzier features, but they are more aligned to represent 

practical application scenarios. WHDS poses greater 

classification difficulty, making it the primary focus of the 

experiment. The images were cropped to a size of 200x200 

pixels, resulting in a total of 516 pictures. The pictures were 

labelled and organised into three categories following 3096 

images for random mixing, cropping and expanding. Further 

explanations of the data are shown by table 3 and real pic 

illustration. At the time of testing the data the accuracy 

slightly differed for each training recognition to rectify this 

issue the process was repeated numerously after that average 

was taken to evaluate data.  

 

Table 3. Dataset information 

Dataset Category Quantity Enhancement 

 Ripple Vertical 60 360 

 Ripple 45o 60 360 

SAS Sand 60 360 

 Rock 60 360 

 Posidonia 60 360 

 Silt 60 360 

 1 203 1218 

WHDS 2 153 918 

 3 160 960 

      

   Posidonia  Ripple 45o Rock          Sand             Silt            Ripple Vertical 

   SAS(a) 

 

  1     2         3 

   WHDS(b) 

 Figure 11.  Illustration detail SAS a. WHDS b. 

Performance metrics 

The evaluation metrics for a classification model using a 

confusion matrix In the context of assessing model 

performance, we rely on several key metrics derived from the 

confusion matrix. These metrics help us understand how well 

our model is doing such as Accuracy  provides an overall 

measure of correctness that is it calculates the ratio of 

correctly predicted instances (True Positives and True 

Negatives) to the total number of instances by the formula  

Accuracy = (TP + TN) / m, where TP represents True 

Positives, TN represents True Negatives, and m is the total 

number of instances. Next we have is Precision, it focuses on 

positive predictions. Where It quantifies the proportion of 

true positive predictions among all positive predictions made 

by the model via the formula  Precision = TP / (TP + FP), 

where FP represents False Positives. After the precision we 

have recall, F1 Score and inference time (T) in which recall 

assess how well the model identifies actual positive instances. 

It calculates the ratio of True Positives to the sum of True 

Positives and False Negatives by the formula  Recall = TP / 

(TP + FN), where FN represents False Negatives, and The F1 

score balances precision and recall. It combines both metrics 

into a single value, especially useful for imbalanced datasets 

as shown by the equation  F1 = 2 * (Precision * Recall) / 

(Precision + Recall) lastly Inference Time (T) measures 

how long the model takes to make predictions. It serves as an 

indicator of model complexity and efficiency. That is, lower 

inference time is desirable for real-time applications. In 

essence, these evaluation metrics help us gauge classification 
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model performance, considering both accuracy and 

computational efficiency. 

Result 

The performance data of various models were evaluated 

using the SAS dataset, as depicted in Table 4. The dataset, 

which is a professional image with distinct texture attributes 

, allowed all models to maintain an accuracy of approximately 

95%. However, the F1 score revealed that the comprehensive 

model and the deep learning model had better stability. From 

deep learning perspective, it was observed that the ResNet 

and DenseNet series, which have deep structures, struggled 

to deliver excellent performance. As the complexity of these 

models increased, their classification accuracy gradually 

declined. This was attributed to noticeable overfitting during 

the training process. Despite achieving 100% accuracy on the 

training set, their performance on the test set was 

unsatisfactory. Although the differences between various 

models on this dataset were minimal, the accuracy and other 

indicators showed that the deep learning network with lower 

complexity performed better. Among the models compared, 

ShuffleNet-DSE stood out with an accuracy of 98.81% and a 

precision of 98.33%. Its accuracy was 0.65% higher than that 

of ShuffleNet-V2, and its precision was significantly higher 

than other deep learning models. Moreover, ShuffleNet-DSE 

had the highest F1 score of 0.98 among the compared models. 

After considering all factors, ShuffleNet-DSE emerged as the 

model with the best performance. However, the uniqueness 

of the SAS data does not fully represent the superiority of the 

classification model's performance, indicating the need for 

further experimentation using the WHDS dataset. 

Table 4. Comparision model from SAS dataset. 

 

WHDS data, a type of conventional sonar image data, is 

influenced by noise and has somewhat unclear texture 

features. After being manually labeled, it's divided into three 

categories. This data provides a real-world test of a model's 

performance. There's a significant difference in performance 

between various models on the WHDS dataset. The 

performance of each model is detailed in Table 5. Traditional 

machine learning struggles to adapt to sonar image data, with 

the accuracy of two models struggling to reach 80% and 

averaging around 72%, which is considered poor compared 

to all comparison models. In most public datasets, the ResNet 

and DenseNet series outperform the MobileNet and 

ShuffleNet series of lightweight networks. However, this 

trend is reversed with sonar imagery. Unlike other image 

types, the classification accuracy of deep learning networks 

decreases as the network's depth increases. For example, the 

accuracy of ResNet drops from 73.77% to 69.74% when the 

depth is increased from 50 to 152. Similarly, DenseNet's 

accuracy reduces from 74.06% to 72.87% when the depth is 

changed from 121 to 161. The deep network structures of the 

ResNet and DenseNet series tend to overfit when using sonar 

images as datasets, leading to a mismatch between the overall 

model performance and the model complexity. 

Ignoring the model's inference time, the performance of the 

comprehensive model is superior and can match most 

lightweight deep learning models, with an accuracy of over 

80%. However, the computational complexity of the 

synthetic model is much higher than that of the lightweight 

deep learning model. Lightweight deep learning models are 

suitable for processing sonar image data. When ResNet uses 

18 as the depth configuration, the accuracy improves from 

73.77% to 80.49%. Among the lightweight deep learning 

models, the ShuffleNet-DSE and the ShuffleNet-V2 have the 

highest accuracy, 94.19% and 92.1% respectively. Both these 

models use the techniques of DWConv and Channel-Shuffle, 

demonstrating the effectiveness of these techniques in 

processing sonar image data. The MobileNet-V3, which has 

SE modules in its network structure, has excellent precision, 

which is 3.24% higher than that of ShuffleNet-V2. The 

ShuffleNet-DSE model, which also has the SE module, 

successfully compensates for the poor precision of 

ShuffleNet-V2, improving the precision from 84.71% to 

86.17%. The SE module can enhance the precision of the 

model. 

The ShuffleNet-DSE model shows improvements in terms of 

accuracy and precision. Compared to the original model, the 

accuracy of ShuffleNet-DSE improves from 92.10% of 

ShuffleNet-V2 to 94.19%. Compared to the comprehensive 

learning model Weyl + ANN and GLCM + CNN, the 

accuracy improves by 11.28% and 10.83%, respectively. 

Considering the experimental results from two different 

datasets, the ShuffleNet-DSE demonstrates good accuracy 

and stability in processing sonar image data. Despite some 

sacrifices in model lightweighting, the ShuffleNet-DSE is 

still able to complete inference within 4.12 ms. The model 

complexity of ShuffleNet-DSE remains relatively low. The 

ShuffleNet-DSE has excellent classification accuracy while 

ensuring low model complexity. 

Table 5. Performance of the model based WHDS data  
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Parameters for model training 

The primary training parameters of the main models being 

compared are outlined here where the Momentum-Optimizer, 

with a momentum of 0.9, is predominantly used. The regular 

term primarily employs L2 with a coefficient of 0.00001. The 

learning rate for ResNet18 and AlexNet is adjusted using 

Piecewise Decay, and the learning rate changes at training 

rounds 30, 60, and 90. 

For the ResNet18 model, the optimizer used is Momentum, 

and the learning rate is adjusted using Piecewise Decay. The 

learning rate values change at epochs 30, 60, and 90, with 

values of 0.1, 0.01, 0.001, and 0.0001 respectively. The 

regularizer used is L2. Subsequently the MobileNet-V3 

model uses the Momentum optimizer with a learning rate of 

1.3 and the L2 regularizer. Following by the AlexNet model 

uses the Momentum optimizer and the learning rate is 

adjusted using Piecewise Decay. The learning rate values 

change at epochs 30, 60, and 90, with values of 0.01, 0.001, 

0.0001, and 0.00001 respectively. The regularizer used is L2. 

Moreover the GoogLeNet model uses the Momentum 

optimizer with a learning rate of 0.001 and the L2 regularizer. 

Both the ShuffleNet-V2 and ShuffleNet-DSE models use the 

Momentum optimizer with a learning rate of 0.0125 and the 

L2 regularizer. 

Parameters for model training 

This research work presents a solution to the challenge of 

accurately classifying seabed sediment in sonar images by 

designing a deep learning-based model specifically for this 

task. The model, known as ShuffleNet-DSE, is an 

enhancement of the ShuffleNet-V2 structure, incorporating 

the SE module, Swish activation function, and dense 

connection module. Despite a slight compromise on model 

efficiency, the ShuffleNet-DSE significantly boosts the 

accuracy and stability of seabed sediment image 

classification. 

The model's effectiveness was demonstrated through 

experiments on the public SAS dataset and the Weihai dataset 

collected at sea, where it showed promising performance. 

However, the limited quantity of sample image data does 

impact the experimental results. Even though the dataset was 

expanded through data augmentation, the actual number of 

seabed sediment images remained the same, limiting the 

broad applicability of the experimental conclusions. 

Looking ahead, the plan is to use a larger amount of real 

seabed sediment image data in future experiments to further 

refine the model structure. This will help to enhance the 

model's performance and applicability, making it a more 

robust tool for seabed sediment classification in sonar images. 

Which has the potential to greatly assist in underwater 

exploration, research and detection. 
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