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Abstract 

This paper reviews the current state of research in data analytics and machine learning techniques, focusing on their applications 

in process industrial manufacturing, particularly in control and optimization. Key areas for future research include selection 

and transfer learning for process monitoring, addressing time-varying characteristics, and enhancing data-driven optimal 

control with domain-specific knowledge. Additionally, the paper explores reinforcement learning techniques and robust 

optimization, including distributional robust optimization, for high-level decision-making. Emphasizing the importance of 

historical knowledge of plants and processes, this paper aims to identify knowledge gaps and pave the way for future research 

in data-driven strategies for process industries, with a particular emphasis on energy efficiency and optimization. 
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Introduction 

As the backbone of the global economy, process industries 

provide indispensable raw materials and intermediate 

products for key areas such as electronics, aerospace, 

transportation and logistics, and healthcare. This industry not 

only has a profound impact on other manufacturing 

industries, but its role in promoting the entire economic 

activity cannot be ignored. However, with the deep 

integration of informatization and industrialization, the 

process industry is facing unprecedented challenges, 

especially in data-driven intelligent optimized 

manufacturing. 

In the context of increasing efficiency and optimizing 

energy, the process industry encounters a series of difficult 

problems. First, there is a huge gap between the massive 

accumulation of data and its effective utilization. Although 

modern sensors and information systems can generate large 

amounts of data, how to extract valuable information from 

these data to guide the optimization of the production process 

is still a technical problem. Secondly, existing data analysis 

technologies and algorithms are often difficult to adapt to the 

complexity and dynamics of the process industry, resulting in 

insufficient accuracy of prediction and decision support 

systems. In addition, cross-department and cross-enterprise 

data sharing and collaboration mechanisms are not yet 

complete, which limits the potential of big data in the entire 

industry chain. 

To play a critical role in the improvement of complex 

industrial procedures and product traits optimization 

approaches are considered. However, due to the 

nonappearance of suitable mathematical  

models that describe the link between the reliant and 

autonomous variables the employment is delayed frequently. 

Particularly in the situation of the highly multivariate and 

non-linear relationships, due to the various conventions that 

outcome in changeable forecasts that are not reliable for the 

industrial perspective, the conventional analytical models 

become short. For global economic growth and societal 

welfares, the process industries like those of Sinopec, Shell 

and ExxonMobile are critical. For secure and optimum 
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operations, the growing complexity and spatial scale of the 

productions process are the dares. The compact 

interconnections between the process and the plants at the low 

level control make multiscale coupling phenomena and multi-

loop which makes it hard to design the control strategies 

competently. Furthermore, enlarged disclosure to 

disturbances and fault sources obscures the design phase, 

which leads to enlarges possibilities of abnormal events (1).  

Figure 1: Facilitating the Industry 4.0 using technological advancements 

At advanced planning levels and preparing supple and 

real-time decision making is significant to lessen the 

operational cost and increase the economic revenues. In smart 

manufacturing to discourse the reliability, competence and 

safety needs in the modern process industries there is a critical 

need for state of the art inventions and technologies. It shows 

both the prospects and defies for industry 4.0, which shows a 

shift from liable on humans to machines commendably 

undertaking logical tasks and generating inventions 

separately. 

In process industries data analytics and machine learning 

have been transmuted by the big data age, moving from low 

level control loops to optimal control and high-level decision-

making. This book gives visions into future research, assesses 

latest advances, and highlights related literature. It confers 

how the interpretability of machine learning and data 

analytics models relays to process knowledge (2). It can be 

seen in Figure 1 that big data has significantly enlarged the 

use of data analytics and machine learning in the process 

industries, allowing both active applications for high-level 

decision-making and optimum control against several 

industry hierarchies and passive applications alike process 

monitoring and easy sensing.  

Employing developments in data mining and analytics, 

data-driven models have raised a feasible solution to this 

issue. These models are exceptional at treating complex, 

nonlinear multivariate systems because they use assortment 

of statistical approaches, comprising regression analysis, as 

well as many modern methods like machine learning, soft 

computing, and artificial intelligence (3). For example, case 

study on foretelling steels mechanical attributes for particular 

applications, industrial data is used to make models using 

artificial neural networks (ANNs) (4). 

These state-of-the-art approaches have improved 

capacities for handling complex, nonlinear multivariate 

systems. The artificial neural network (ANN) is one of the 

most well-known tools in this array, according to the 

industrial case study that is referenced in this chapter. ANN, 

which is well-known for its capacity to simulate the 

complicated workings of the human brain, is a flexible and 

powerful tool that can be used to handle large datasets and 

reveal complex patterns that may otherwise elude traditional 

analytical techniques. It is incredibly well suited for modeling 

and forecasting complex industrial processes, where 

interactions between inputs and outputs frequently display 

non-linear and linked properties, because of its adaptive 

nature and ability to learn from experience. The use of ANN 

in the context of the above case study makes it easier to 

generate accuracy (5-7).  
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Figure 2: Hierarchical applications of data analytics and machine learning in process. 

The data-driven model-based industrial process 

optimization for manufacturing tasks is visually presented in 

Figure 2. Rigid industrial requirements for material qualities 

are encountered in large part by combining design 

optimization techniques with data-driven modeling. 

strategies for optimization, such as genetic algorithms (GAs) 

(8, 9), But the special nature of this method makes it difficult 

to formulate the optimization issue. By using ANN models to 

associate steel qualities with input variables, the goal is to 

reach a certain performance level, as opposed to typical 

optimization procedures that aim to minimize or increase 

attributes. To address this, ANN outputs are transformed into 

a scale that runs from 0 to 1, representing how close they are 

to the intended values, using a desirability function. After 

that, GA is used to maximize the composite desirability, 

which represents the overall steel performance, taking into 

account the geometric mean of the separate desirability 

values. To put it simply, the combination of optimization 

techniques like GA with data-driven modeling—specifically, 

ANN—provides a powerful means of overcoming complex 

industrial obstacles and achieving the required characteristics 

of a product while adhering to stringent regulations. The 

industrial manufacturing process optimization process based 

on data-driven models is shown in Figure 3. 
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Figure 3: Manufacturing process optimization in industries based on the data-driven models (10) 

In Figure 3, a data-driven model is applied to optimize 

production efficiency and energy usage. As can be seen from 

the figure, the decision-making process is optimized based on 

data collection and through demand analysis, resource data 

model construction and knowledge management. Data is first 

collected from sensors and logs on the production line, and 

then prepared for model training through data preprocessing 

and feature engineering. Next, machine learning algorithms 

are used to build a data-driven model that can predict key 

parameters in the production process and provide 

optimization suggestions. Finally, according to the output of 

the model, the production parameters are adjusted to optimize 

the process. 

Multivariate Statistical Process Monitoring and 

Soft Sensing 

2.1 Multivariate Statistical Process Monitoring (MSPM) 

and soft sensing technology are key tools for 

achieving efficiency improvements and energy 

optimization in the process industry.  

MSPM keeps an eye out for irregularities, senses withdrawals 

from the norm, and breaks complications before they get out 

of hand, with the support of interrelated process variables. To 

recognize irregularities or irregular patterns that call for 

corrective action by examining multivariate data sets and 

building models of typical process behavior, it uses statistical 

methods. 

2.2 A Novel Approach to Data Analytics and Machine 

Learning 

It is often believed that there are two main types of 

modeling tasks: supervised learning and unsupervised 

learning. Making expressive models to define the basic 

structure of input data is known as unsupervised learning, and 

it is often applied in process data distribution monitoring. On 

the other hand, supervised learning, which contains both 

classification and regression, makes a functional mapping 
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from input to output and stresses on output prediction 

accuracy. This is specifically related to soft sensing, where 

fast-rate process variables are used to deduce significant 

quality characteristics in industrial processes. Lately, there 

has been an increasing focus on feature learning or 

representation learning, which highlights the usage of 

domain-specific information in the model generation process. 

This method significantly develops the interpretability of the 

model, which mends the model as a whole (11). 

The use of neural networks with piecewise linear units in 

computer vision is an example of representation learning. 

Refining model enactment may be attained by using 

piecewise linear units as domain-specific information. A 

unified viewpoint on supervised and unsupervised learning is 

provided by representation learning. To recognize 

interpretable core features from incoming data, unsupervised 

learning techniques work as "feature detectors". The 

enactment of supervised learning is then enhanced by using 

these features as inputs for classifiers or regressors. Deep 

learning algorithms are constructed on this notion. Basically, 

there is no clash between supervised and unsupervised 

learning; somewhat, the former significantly augments the 

latter (12). 

In summary, an ideal model, irrespective of its 

complication, should have clear physical clarifications. This 

raises the question: What previous knowledge supports well 

with the features of process data? Definitely, this is a 

collective yet hidden focus of many Multivariate Statistical 

Process Monitoring (MSPM) studies. To address this, we 

analyze new advancements in MSPM and discover soft 

sensing approaches. 

2.3 Feature Learning-based MSPM 

MSPM is a technique that identifies and predicts potential 

problems by analyzing multiple variables in the production 

process. The basic principles of MSPM include key 

technologies such as principal component analysis (PCA) and 

partial least squares regression (PLSR). New developments 

in MSPM in modern industrial applications, such as adaptive 

monitoring strategies and machine learning integration 

methods, can improve the accuracy and efficiency of process 

monitoring. 

The consequences of even minor faults can be expressively 

enlarged in modern process industries due to their large scale 

and strong combination. Therefore, uninterrupted monitoring 

of operational status and timely maintenance interferences are 

imperious to confirm manufacturing process safety, although 

at the cost of great manual work (13). Since the 1980s, 

Multivariate Statistical Process Monitoring (MSPM) has 

appeared as a solution to this challenge, using an extensive 

array of classic machine learning algorithms that suitably 

prove the intelligence useful in industrial manufacturing. 

Numerous analysis articles have delivered complete 

summaries of this field (13). 

Modern goings-on have wanted to attach tailored previous 

knowledge for continuous manufacturing processes to 

improve effective MSPM models. Assumed that 

manufacturing processes normally show long resolving 

times, the whole system under monitoring tends to display 

inertia characteristics. Slowness in processes is a key attribute 

for capturing process dynamics and enhancing descriptions. 

This has led to the adoption of slow feature analysis (SFA) 

for modeling process data and effective monitoring and 

diagnosis (14, 15). SFA offers distinct advantages over 

traditional MSPM methods, enabling distinct descriptions of 

steady states and temporal behaviors in industrial processes, 

unlike PCA, ICA, and CVA (16). By designing monitoring 

statistics tailored to process dynamics anomalies, SFA 

facilitates the distinction between nominal operating point 

switches and genuine faults that result in dynamic anomalies. 

The slowness principle has led to the development of various 

monitoring approaches, such as adaptive and probabilistic 

monitoring, which have been successfully applied in various 

processes (14). 

Machine learning models are often unimodal, but large-

scale industrial processes often have multiple operating 

conditions and frequent mode switches. Multi-modality 

should be considered when designing models for MSPM. The 

Gaussian mixture model (GMM) (17) is the simplest for 

multi-mode process monitoring, but lacks information on 

transition probabilities between different modes. The feature 

learning approach to process monitoring views conventional 

charts as low-level features, which are then inputted into a 

high-level model like PCA. This method effectively 

combines information from multiple models by accounting 

for different characteristics of process data using the Gaussian 

distribution of extracted features. This rationalizes the use of 

PCA as the high-level process monitoring model (18). 

2.4 Feature Learning-based Soft Sensing 

Soft sensing technology estimates process variables that 

are difficult to measure directly by establishing mathematical 

models. The basic composition of soft measurement is 

probably the combination of data-driven model and 

mechanism model. At present, soft measurement technology 

has been widely used in various fields, including the 

application of deep learning in soft measurement and how to 

improve the prediction ability of the model by fusing multiple 

data sources. 

Soft sensing, an intellectual sensing technology, originated 

from the 1978 (19) inferential control approach by Brosilow 

and Tong, enabling real-time estimation of challenging 

parameters like product quality and environmental indicators 

by influencing freely obtainable process variables. 

Particularly, the use of soft sensors is increasing to comprise 

Key Performance Indicator (KPI) forecasting, proposing real-

time estimates of important performance metrics to support 

operators in decision-making processes (20). Soft sensor 



Hui Liu, Guohao Zhang 

6 

progress primarily demands talking to a regression problem, 

leading to the application of many administered machine 

learning algorithms, comprehensively documented in the 

collected works (21). 

The prospective of retaining representation learning in soft 

sensor construction was firstly emphasized in a formative 

work (22), where Probabilistic Slow Feature Analysis 

(PSFA) was used to extract gradually changing features. 

These features, taking underlying process dissimilarities, 

show high correlations with quality indices. Matched to 

customary dynamic Partial Least Squares (DPLS), this 

method validates greater active estimate precisions and 

enables a semi-supervised learning framework by combining 

fast-rate process data with erratically experimented quality 

data. Following delays introduced Bayesian learning methods 

to remove dynamic features with unstable dynamics and 

improved regularized SFA for quality estimate in industrial 

processes (23, 24). 

The initiation of deep learning characterizes the spirit of 

demonstration learning and has been smeared to soft-sensing 

chores with notable success. Early efforts used Deep Neural 

Networks (DNNs) to envisage critical parameters such as the 

cut-point temperature of thick diesel in unfinished refinement 

units. The training process of DNNs includes both unverified 

and administered learning steps, with unverified learning 

efficiently removing nonlinear basic features that improve the 

regression model's enactment (25). Learning methods have 

further found applications in different areas such as crude oil 

grouping and carbon dioxide (CO2) capture process 

modeling, leveraging the essential features removed in the 

unverified learning phase for process monitoring and fault 

analysis (26). 

Moreover, soft sensing models can deed other feature 

removal methods, such as correlations within a low-

dimensional subspace. Principal Component Regression 

(PCR) stands as an primary example in this domain, using 

simple Principal Component Analysis (PCA) for feature 

extraction (27). The use of low-dimensional hidden variable 

models for soft sensing purposes has been widely reviewed, 

with methods like neighborhood maintaining entrenching 

working to learn the basic nonlinear structure of data and 

establish analysts based on it (28). 

Optimal Control and High-Level Decision-Making 

Optimal control and high-level decision-making are 

crucial in various industries like manufacturing, energy 

management, robotics, and autonomous systems. They enable 

precise manipulation of system variables to achieve desired 

objectives while minimizing costs and resource utilization. 

High-level decision-making involves strategic planning, 

resource allocation, and policy formulation based on data 

analysis and predictive modeling. These applications drive 

automation, optimization, and adaptability in complex 

environments (29). 

3.1 Leveraging Data Analytics and Machine Learning for 

Optimal Control 

Data-driven monitoring is a critical aspect in the process 

industries, using historical and real-time data to monitor the 

health of production processes. The main methods of data-

driven monitoring include but are not limited to time series 

analysis, machine learning models and deep learning 

technology. In practical applications, problems such as data 

quality, model generalization ability and real-time 

performance are usually encountered. Data-driven estimation 

technology estimates process variables by establishing a 

mathematical model between input and output data; however, 

there are also some limitations and shortcomings, such as 

high dependence on data, poor model interpretability, and 

applicability issues in complex systems.  

Model Predictive Control (MPC) is a widely recognized 

methodology for advanced industrial process control. It relies 

on a mathematical model to describe system dynamics and 

develop optimal control approaches(30). The use of data 

analytics and machine learning in optimum control can be 

approximately classified into two functional domains. First, 

prediction models are established for the doubts by fitting 

historical data, thus breaking down doubt into a deterministic 

element known before and a stochastic component 

representing estimate errors. For example, in the perspective 

of smart grid operations, estimations of electricity group from 

renewable sources can be imitative based on weather 

forecasts and other environmental factors (31). Likewise, in 

situations where online measurement of product quality and 

other critical indices isn't possible, soft sensor models are 

hired to offer real-time estimations, critical for executing 

closed-loop control. Machine learning techniques such as 

Support Vector Machines (SVM) and neural networks find 

widespread application in emerging these forecast models. 

The precision of such models is dominant as it directly effects 

control performance. 

Secondly, data analytics and machine learning are applied 

to define ambiguity distributions in an unconfirmed manner 

within the MPC framework. Real-world systems are always 

liable to ambiguous instabilities that can depart system states 

from the insignificant trajectory. Robust Model Predictive 

Control (RMPC) and Stochastic Model Predictive Control 

(SMPC) have been invented to attack this doubt using diverse 

mathematical tools (32). RMPC pays ambiguity sets to define 

potential regions of ambiguity recognitions, while SMPC 

directly uses probability distributions. A topical trend in 

RMPC and SMPC includes dynamically modeling ambiguity 

using data-driven methods. Old-fashioned norm-based sets in 

RMPC often want the tractability to successfully represent 

ambiguity distributions, encouraging the use of data-driven 

ambiguity sets created via invalid learning methods. For 

example, retaining Support Vector Clustering (SVC) to learn 

a dense high-density region from existing data can troupe the 

subsequent optimal control problem as a classic robust 

optimization (RO) problem, thus attractive workability and 

dropping traditionalism (33). This method has proven 
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important progresses in irrigation control, showcasing the 

prospective of taking out meaningful information from data 

(34). In accumulation, learning-based schemes integrated into 

MPC frameworks have been developed to handle 

uninteresting control tasks in autonomous systems (35). 

3.2 Ensemble Data Analytics and Machine Learning for 

High-Level Decision Making 

General optimization techniques under ambiguous, such as 

Stochastic Programming (SP)  (36), Robust Optimization 

(RO) (37), and Distributionally Robust Optimization (DRO) 

(38), have found widespread applications in energy system 

operations and supply-chain design (39). The eminence of 

scenario programs pivots on choosing an enough number of 

serious scenarios with theoretical outcomes proven to guide 

this selection process (40). Though prompted optimum issues 

often need massive limits, posing good computational 

challenges. To address this, many decomposition algorithms 

and distributed optimization techniques have been 

established, supporting the parallel solution of sub problems 

with partial communications (41). 

In data-driven RO, ambiguity sets are made directly from 

ambiguity data, presenting an unconfirmed learning task. 

Nevertheless, not all unconfirmed learning methodologies are 

right due to the requirement to balance the precision and 

compliance of prompted optimum issues. Many unconfirmed 

learning methods designed for data-driven construction of 

ambiguity sets have been established. For example, a novel 

methodology using piecewise linear kernel-based SVC has 

been offered to capture the distributional geometry of 

ambiguous data, successfully minimizing conservation in RO 

issues (42). In the same way, data-driven ambiguity sets 

developed through PCA and kernel density approximation 

offer systematic usage of correlations and asymmetry (43). 

Then, deep learning is used as the basic algorithm to build a 

data-driven model. The model architecture is shown in Figure 

4. 

Figure 4: Deep learning-based data-driven optimization model (10) 

In Figure 4, The manufacturing process optimum method 

offered using financial and production data as inputs for the 

deep learning algorithm, particularly using the artificial 

neural network (ANN). Deep learning, described by its 

refined architecture, is proficient at processing wide-ranging 

datasets. Vital to this methodology is the usage of deep 

neural networks, designed alike to brain cells, making them 

able to consider vast amounts of information and extract 

appropriate abstract features from it (10). 

An Outlook on Future Research Directions 

The future of industrial process optimization is set to see 

significant advancements in the integration of advanced 

technologies like AI, machine learning, and IoT into 

control and decision-making frameworks. Researchers aim 

to develop adaptive control systems using AI algorithms 

and real-time data analytics, enhancing efficiency and 

precision. The growing interest in quantum computing and 

block chain technology offers new opportunities for 

security, scalability, and decentralization. Interdisciplinary 

collaboration between experts in engineering, computer 

science, and data analytics is crucial for navigating 

challenges and seizing potential in technology and 

industrial optimization. This research aims to enhance 

sustainability, productivity, and resilience of industrial 

processes. 
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4.1 Advancements in Process Monitoring 

Process monitoring is undergoing significant 

advancements, leveraging IoT, sensors, and data analytics 

to enable real-time monitoring and control of complex 

processes. The integration of predictive analytics and 

machine learning algorithms minimizes downtime, reduces 

operational costs, and enhances productivity. Remote 

monitoring solutions allow operators to oversee critical 

processes from anywhere, facilitating agile decision-

making and improving responsiveness to changing 

conditions. As process monitoring evolves, it promises to 

revolutionize industrial operations by optimizing 

performance, ensuring quality, and ensuring safety across 

various applications. Several methods are available in the 

literature, proposed by researchers for the features 

selection in the design monitoring process models. The 

extracted set of features must be closely related to the 

previous knowledge to provide a comprehensive insight 

about the data that is important for the process (44, 45). A 

good process model extracts useful features and provides 

clear interpretations for industrial experts. Future focus 

should be on high-level features like slowness, non-

stationarity, and causality. Including industrial experts' 

knowledge, such as monotonicity and range data, can 

create interpretable models for root cause analysis and 

error recognition. Transfer learning can be adapted to 

synthesize data information under diverse operating 

conditions or manufacturing devices. (46, 47). Designing 

user-friendly visualization methods can aid decision-

making by enabling better understanding of high-

dimensional process data (48).  

Considering the diversity and complexity of data in 

process industries, future research can explore new data 

integration and fusion techniques. This may include 

developing algorithms that can handle heterogeneous data 

from multiple sources and designing methods that can 

extract deeper information from big data. Through smarter 

data fusion strategies, the accuracy of monitoring and 

estimation can be significantly improved in the future. 

4.2 Advancements in Soft Sensing 

Soft sensing is revolutionizing data acquisition and 

interpretation in industrial processes by integrating 

machine learning algorithms and advanced signal 

processing techniques. This fusion of data-driven 

approaches with traditional sensing technologies helps 

engineers overcome challenges like sensor degradation, 

drift, and variability, enhancing the reliability and 

performance of soft sensing systems. Novel sensor 

modalities, such as flexible and stretchable electronics, 

offer real-time, in-situ sensing in harsh or inaccessible 

environments. As soft sensing evolves, it holds the promise 

of revolutionizing understanding and control of industrial 

processes with greater precision and adaptability, leading 

to smarter, more responsive manufacturing and production 

systems. Soft sensors in industrial processes can easily 

decrease over time, requiring significant workload for 

model maintenance and updates. Quality forecasting 

should be considered more than just a regression problem, 

and research should focus on the adaptive mechanism of 

estimate models, especially in the presence of regular 

operating condition deviations (49).  

Furthermore, the imprecision of laboratory data 

produced by humans could be taken, such as ambiguous 

time delay, large and changing sampling intervals, and 

sampling practices of different operators. Out-dated 

controlled models are usually under a strong idea that data 

samples are free and identically distributed (50). The 

growing online learning theory offers innovative solutions 

for modeling tasks without specific data conventions, 

potentially addressing the complex mechanism of process 

variables affecting product eminence (51). Online learning 

can effectively handle deterministic, stochastically 

produced data, making it valuable for quality-control issues 

in the era of big data. With advancements in imaging 

technologies, more image and spectral data are being 

gathered in industries, providing valuable information for 

creating reliable prediction models (52, 53). Researchers 

have successfully utilized image processing, machine 

learning, and deep learning in various domains, including 

industrial process optimization, to overcome challenges in 

high dimensionality and strong correlations (54, 55). 

4.3 Advancements in Data-Driven Optimal Control 

Upcoming research struggles can be accepted in 

combining domain-specific knowledge into developing 

ambiguity sets in RMPC (34). Data-Driven Optimal 

Control has revolutionized industrial process optimization, 

offering more efficient, cost-effective, and 

environmentally friendly solutions. Traditional 

optimization relied on mathematical models and theoretical 

frameworks, which struggled to capture complex real-

world systems. Key advancements include data collection 

and integration, machine learning and predictive analytics, 

real-time control and optimization, model-free control 

techniques, and scalability and generalization. Data 

collection and integration involve the use of sensors, IoT 

devices, and automation systems to capture real-time 

information about various aspects of the industrial process. 

Machine learning algorithms, such as neural networks, 

support vector machines, and random forests, can analyze 

historical data and make accurate predictions about future 

outcomes, enabling proactive decision-making and 

preemptive interventions. With the rapid development of 

artificial intelligence and machine learning technologies, 

future research can explore new applications of these 

technologies in process industries. For example, use deep 

learning to model complex processes, or develop adaptive 

control algorithms to cope with uncertainty and dynamic 

changes in production processes. Real-time control and 

optimization enable operators to optimize process 

parameters in response to changing conditions, ensuring 
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optimal performance under dynamic operating 

environments. Model-free control techniques like 

reinforcement learning and evolutionary algorithms learn 

optimal control policies directly from data, enabling more 

robust and adaptive control strategies (56).  

4.4 Advancements in High-Level Decision Making 

In contrast with the other applications, high-level 

decision-making is most significant, since it have the 

impact regarding the environment and economy of a 

company industrial process. High-level decision-making is 

crucial for a company's environment and economy, and 

data-driven RO and DRO are expected to be used in 

process industries in the future. However, these decisions 

are often made under ambiguity, making it essential to 

improve their solution eminence and computational 

effectiveness. Recent DRO methods use moment 

information to define probability distribution uncertainty, 

utilizing various types of moment information from simple 

data analytics tactics (54). The use of unsupervised 

learning methods is being encouraged to remove high-level 

information, such as distribution within high-dimensional 

feature spaces, to reduce uncertainty. Machine learning can 

help lessen probability distribution uncertainty, leading to 

less conventional solutions. Kernel-based machine 

learning algorithms can be used to derive nested sets, 

capturing the mainstream of data samples, despite the lack 

of systematic study on their creation (57). 

Conclusion 

This paper examines recent research on data-driven 

monitoring, estimation, control, and optimization in 

modern process industries. It highlights the importance of 

interpretability in inactive applications and the necessity 

for functionality in active ones. Despite the significant 

impact of big data, most data-driven techniques have not 

been applied in practice. The paper emphasizes the need for 

prior knowledge of plants and processes for successful 

applications and suggests challenges and openings for the 

future research. 
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