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Abstract 
 
The article explores an energy-efficient method for allocating transmission and computation resources for federated learning 
(FL) on wireless communication networks.  The model being considered involves each user training a local FL model using 
their limited local computing resources and the data they have collected.   These local models are then transmitted to a base 
station, where they are aggregated and broadcast back to all users.  The level of accuracy in learning, as well as computation 
and communication latency, are determined by the exchange of models between users and the base station.  Throughout the 
FL process, energy consumption for both local computation and transmission must be taken into account.   Given the limited 
energy resources of wireless users, the communication problem is formulated as an optimization problem with the goal of 
minimizing overall system energy consumption while meeting a latency requirement. To address this problem, we propose 
an iterative algorithm that takes into account factors such as bandwidth, power, and computational resources.  Results from 
numerical simulations demonstrate that the proposed algorithm can reduce energy consumption compared to traditional FL 
methods up to 51% reduction. 
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1. Introduction 

There has been significant growth in mobile data in recent 
years, much of it generated in real-time and distributed to 
edge devices such as smartphones and sensors [1] [2].  
Artificial intelligence (AI) technology is widely used to 
process this mobile data and support various services, such 
as computer vision and the internet of vehicles [3].  A 
common practice is to train AI models using elastic cloud 
computing, which allows operators to achieve optimal 
performance by accessing large-scale datasets.   However, 
this process poses challenges due to privacy concerns [4], 
network congestion [5], and service latency [6]. Federated 
learning (FL) in the edge framework offers a solution to 
these issues. FL implements distributed machine learning 
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at the network edge, where clients, or edge devices, train 
local models with their private data and only share 
parameters like model weights [7] [8] [9]. An FL server is 
used to aggregate these models into a global model and 
broadcast updates to each edge device.  After several 
iterations, accuracy is achieved, and the training process is 
completed.  FL avoids the need for data uploads and 
enables rapid access to real-time data, thus reducing 
pressure on communication resources and lowering service 
latency. It is a promising distributed learning algorithm that 
is likely to be applied in future internet of things systems 
[10, 11, 12, 13, 14, 15].  

Wireless devices, such as those that communicate 
through cellular networks, benefit greatly from the use of 
distributed learning frameworks.  These frameworks allow 
for the training of locally collected data using a shared 
learning model [16, 17, 18].  However, edge devices such 
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as smartphones have limited computation resources, and 
the spectrum resource is scarce.  Only a few edge devices 
are able to upload their trained local models in each round.  
Additionally, the limited battery life of these devices is a 
growing concern, and the energy consumption caused by 
communications is increasing. 

In addition, wireless devices can cooperate and execute 
a learning task by only uploading their local learning 
models to the base station (BS) instead of sharing the full 
training data [19].   One approach to improve this process 
is the use of a gradient quantization-based digital 
transmission scheme [20].  The coverage area of wireless 
devices is also taken into consideration to reduce the 
number of edge devices needed [21].   However, the limited 
wireless resources such as time or bandwidth, make it 
necessary for wireless devices to transmit their local 
training results over wireless links [22], which can affect 
the accuracy of the FL framework in edge systems [23].  
Furthermore, the limited energy of wireless devices makes 
energy efficiency optimization crucial for the successful 
deployment of FL due to these resource constraints [24]. 

In order to address the challenges discussed above, we 
propose a framework that balances both energy 
consumption and learning accuracy. Specifically, we 
model the energy consumption of computation and 
communication in the FL framework for edge systems.  
The novelty of this work is to take both learning accuracy 
and resource constraints into consideration for FL. The 
main contribution of this paper is to construct an energy 
consumption minimization problem and provision of a 
solution to this problem. Our key contributions include: 

• Using wireless communication networks, we 
investigate the performance of FL algorithms for a scenario 
in which each user locally computes its model under a 
given learning accuracy, while the BS broadcasts the 
aggregated model to all users. The convergence rate of FL 
is first determined for the considered algorithm. 

• An optimization problem is formulated to minimize 
total energy consumption for both local computation and 
wireless transmission.  A low- complexity iterative 
algorithm is proposed to solve this problem. This algorithm 
includes new closed-form solutions for time allocation, 
bandwidth allocation, power control, computation 
frequency, and learning accuracy. 

• The FL completion time minimization problem is 
established as a feasible solution to the total energy 
minimization problem.  Our theoretical analysis shows that 
the completion time is dependent on learning accuracy. To 
minimize FL completion time, we propose a bisection-
based algorithm that is based on the theoretical result. 

2. Related works 

Mobile data is processed and supports various services 
through the use of artificial intelligence (AI) technology [3]. 
Elastic cloud computing is commonly used to train AI 
models, which can access large-scale datasets and achieve 
optimal performance [4,5,6]. However, this process 

presents challenges such as privacy concerns, network 
congestion, and service latency. To address these issues, 
federated learning (FL) in the edge framework implements 
distributed machine learning at the network edge [7,8,9]. In 
FL, clients or edge devices train local models with their 
private data and only share parameters like model weights. 

Studies have been conducted on the challenges of 
federated learning (FL) over wireless networks.  For 
example, in [25], a broadband analog aggregation scheme 
was used to minimize communication latency in multi-
access channels. In [26], the authors explored a 
minimization problem for FL in cell-free venues using 
multiple inputs and outputs (MIMO) systems, and in [27], 
an energy- aware user scheduling policy was proposed to 
maximize the number of scheduled users in FL with 
redundant data.  In [28], a novel sparse and low-rank model 
was developed to improve statistical learning performance 
for on-device distributed training, and in [29], an energy-
efficient bandwidth allocation scheme was proposed with 
constraints on learning performance.  However, these 
works tend to focus on the trade-off between completion 
time and energy in wireless transmission and do not take 
into account the trade-off between learning and 
transmission. In recent works, such as [30], [31] and [32], 
the authors considered both local learning and 
communication energy but did not take into account 
computation delays on local FL models, and it was not 
feasible for all users to send their learning model 
synchronously. 

3. System model 

This paper presents a framework for a federated edge 
learning system that includes a set of edge devices and one 
edge server (BS) as shown in Figure 1, the applications in 
federated learning can be self-driving, users augmented or 
virtual reality headsets. Typically, AI-enabled edge 
applications can also be allocated in federated learning 
frameworks. The set of edge devices is denoted as K = 1, 
2, · · ·, k, and each device has its own local data sample Dk. 
Additionally, we use xi and yi to represent the input and 
output of data sample i, respectively. The edge server and 
users jointly execute the learning model, with the learning 
algorithm trained on both the user-local side (called the 
local model) and the server side (called the global model). 
The communication between the user and server is the 
main process that consumes cost and energy. 
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Figure 1. Federated learning framework 

3.1 Computation and Communication Model 

The process of FL is illustrated in Figure 1. It can be seen 
that FL consists of three parts:  local computation on the 
user side, global computation on the server side, and global 
communication between users and the server. The process 
begins with the calculation of the model on the local side 
using its data and then obtaining the global model from the 
base station. 
(1) Local Computation:  The computation capacity of
each device is denoted as fk , which represents the CPU
circle of the devices.  So, the computation time can be
calculated by the data size and capacity

 τ𝑘𝑘 = β𝑘𝑘𝐷𝐷𝑘𝑘𝐶𝐶𝑘𝑘
𝑓𝑓𝑘𝑘

       （1） 
while Ck is the number of CPU demand of data sample at 
user k and β is the fraction of data sample executed locally. 
The energy consumption is affected by the CPU frequency 
and CPU chip. So, the energy consumption caused by local 
computation for βkDkCk is denoted as 

   𝐸𝐸𝑘𝑘𝑐𝑐 = 𝛼𝛼𝑘𝑘𝛽𝛽𝑘𝑘𝐷𝐷𝑘𝑘𝐶𝐶𝑘𝑘𝑓𝑓𝑘𝑘2 （2） 
where α is the coefficient of the chip architecture at edge 
device k. 
(2) Global Communication:  After the process of local
computation, the users upload their trained data to BS
through the wireless access.  The rate of user k is

 𝑟𝑟𝑘𝑘 = 𝑏𝑏𝑘𝑘𝑙𝑙𝑙𝑙𝑔𝑔2 �1 + 𝑝𝑝𝑘𝑘ℎ𝑘𝑘
2

𝑁𝑁0
�  (3) 

where pk is the transmit power, N0 is the Gaussian channel 
noise and hk denotes the channel gain between the user k 
and the base station.   We know that Shannon capacity 
gives an upper bound of the transmission rate. Because the 
transmitting data size is βkDk, so the rate can also be 
calculated as 

 𝑟𝑟𝑘𝑘 = 𝛼𝛼𝑘𝑘𝐷𝐷𝑘𝑘
𝑡𝑡𝑘𝑘

                     
(4) 

It is clear that, the energy consumption of uploading data 
to BS is 

𝐸𝐸𝑘𝑘𝑡𝑡 = 𝛽𝛽𝑘𝑘𝐵𝐵𝑝𝑝𝑘𝑘𝑡𝑡𝑘𝑘 = 𝛽𝛽𝑘𝑘𝐵𝐵𝑡𝑡𝑘𝑘𝑁𝑁0
ℎ𝑘𝑘
2

�2
𝛽𝛽𝑘𝑘𝐷𝐷𝑘𝑘
𝛽𝛽𝑘𝑘𝐵𝐵𝑡𝑡𝑘𝑘 − 1�.       (5) 

The overall consumption contains the cost in both process 
of computation Ek

c
  and transmission Ek

t :  
𝐸𝐸 = ∑ ⬚𝐾𝐾

𝑘𝑘=1 (𝐸𝐸𝑘𝑘𝑐𝑐 + 𝐸𝐸𝑘𝑘𝑡𝑡)  (6) 

The completion time of FL algorithm is the main concern 
of the edge systems. So, the completion time of user k 
includes both the computation and communication time, 
denoted as 
𝑇𝑇𝑘𝑘 = 𝜏𝜏𝑘𝑘 + 𝑡𝑡𝑘𝑘 = 𝛽𝛽𝑘𝑘𝐷𝐷𝑘𝑘𝐶𝐶𝑘𝑘

𝑓𝑓𝑘𝑘
+ 𝑡𝑡𝑘𝑘  (7) 

while the completion time of algorithm is the maximum 
completion time Tk. 

3.2 Federated learning model 

In federated edge learning, we use θ to represent the 
training parameters related to the global model.  We define 
Dk as the data sample for user k.  We define the loss 
function fi(θ) = (yi − θTxi)2  which represents the 
difference between the input and output.  We aim to 
minimize this loss function to find the optimal value of θ.  
The reason we adopt this expression is that in most 
federated learning applications, the training sample is large 
enough that we can assume that the difference between the 
input and output follows a normal distribution with a mean 
of 0.  Therefore, for a specific sample xi and given θ, the 
conditional probability of yi  can be expressed as: 

𝑝𝑝(𝑦𝑦(𝑖𝑖) ∣∣ 𝑥𝑥(𝑖𝑖);𝜃𝜃 ) = 1
√2𝜋𝜋𝜎𝜎

ex p �− (𝑦𝑦(𝑖𝑖)−𝜃𝜃𝑇𝑇𝑥𝑥(𝑖𝑖))2

2𝜎𝜎2
�       

(8) 
We assume that all samples are independent and identically 

distributed. To find the optimal θ, we define the likelihood 
function.  Our goal is to obtain as many observed outputs 
as possible, so we maximize the product of the likelihoods 
of each individual sample. 

𝐿𝐿(𝑥𝑥, 𝑦𝑦) = ∏ ⬚𝐷𝐷𝑘𝑘
𝑖𝑖=1

1
√2𝜋𝜋𝜎𝜎

ex p �− (𝑦𝑦(𝑖𝑖)−𝜃𝜃𝑇𝑇𝑥𝑥(𝑖𝑖))
2

2𝜎𝜎2
�                    (9)

We then convert the Eq. (9) into a log-likelihood 
function. The reason for this is that logarithms are strictly 
increasing functions, so maximizing the likelihood is 
equivalent to maximizing the log-likelihood: 

lo g 𝐿𝐿 (𝑥𝑥, 𝑦𝑦) = −𝐷𝐷𝑘𝑘
2

lo g 2𝜋𝜋 − 𝐷𝐷𝑘𝑘lo g𝜎𝜎 −
∑ ⬚
𝐷𝐷𝑘𝑘
𝑖𝑖=1 ((𝑦𝑦(𝑖𝑖)−𝜃𝜃𝑇𝑇𝑥𝑥(𝑖𝑖))2)

2𝜎𝜎2
  

(10) 
We remove items that are not related to  𝜃𝜃

:−
𝐷𝐷𝑘𝑘

2 lo g 2𝜋𝜋  and
𝐷𝐷𝑘𝑘lo g𝜎𝜎

, and convert the remaining item into a negative log-

likelihood:  ∑ ⬚𝐷𝐷𝑘𝑘
𝑖𝑖=1 ((𝑦𝑦(𝑖𝑖)−𝜃𝜃𝑇𝑇𝑥𝑥(𝑖𝑖))2)

2𝜎𝜎2
 

By setting σ = 1 we obtain the original loss function. 
Essentially, maximizing the likelihood is equivalent to 
minimizing the loss function. Thus, we can obtain the 
optimal θ by minimizing the loss function. 

The objective of federated learning is to find a set of 
parameters that minimize the value of Fk (θ). 

𝐹𝐹𝑘𝑘(θ) = 1
𝐷𝐷𝑘𝑘
∑ 𝑓𝑓𝑖𝑖(θ)𝑘𝑘                       (11) 

Since FL is designed to share a model among users, data 
communication of various data samples is crucial in the FL 
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problem.  Therefore, the FL training problem can be 
formulated as 

𝑚𝑚𝑖𝑖𝑚𝑚
𝜃𝜃
𝐹𝐹(𝜃𝜃) = � 𝐷𝐷𝑘𝑘

𝐷𝐷
𝐹𝐹𝑘𝑘(𝜃𝜃)

𝑘𝑘
= 1

𝐷𝐷
� ∑ 𝑓𝑓𝑖𝑖(𝜃𝜃)𝐷𝐷𝑘𝑘

𝑘𝑘
       

(12) where 𝐷𝐷 = ∑𝐷𝐷𝑘𝑘 is the total data size of all users in the
system. The BS collects the partially trained models from all
users and updates the global model based on the collection of
trained models and then distributes the updated model to all
users.   The process involves several local iterations and global 
iterations. The number of efficient computations is smaller
than local updates.  From the system’s perspective, it is
crucial to schedule as much as possible under the limitations
of wireless resources while providing good performance in
terms of completion time and energy consumption.

4. Problem formulation

In this section, we formulate a problem of minimizing the 
energy consumption of all devices while taking into 
account the constraint of latency.   The objective of our 
proposed model is to minimize the overall energy 
consumption of the K edge devices. The energy-oriented 
problem can be formulated as follows: 

𝑚𝑚𝑖𝑖𝑚𝑚(𝛽𝛽𝑘𝑘,𝑡𝑡𝑘𝑘) �
𝛽𝛽𝑘𝑘𝐵𝐵𝑡𝑡𝑘𝑘𝑁𝑁0

ℎ𝑘𝑘
2 (2

𝛽𝛽𝑘𝑘𝐷𝐷𝑘𝑘
𝛽𝛽𝑘𝑘𝐵𝐵𝑡𝑡𝑘𝑘 − 1)

𝐾𝐾

𝑘𝑘=1

 (13) 

s.t. ∑ 𝛽𝛽𝑘𝑘𝐾𝐾
𝑘𝑘=1 = 1,0 ≤ 𝛽𝛽𝑘𝑘 ≤ 1 (14)

𝑡𝑡𝑘𝑘𝑏𝑏𝑘𝑘𝑙𝑙𝑙𝑙𝑔𝑔2(1 + 𝑝𝑝𝑘𝑘ℎ𝑘𝑘
2

𝑁𝑁0
) ≥ 𝑑𝑑𝑘𝑘 ,∀𝑘𝑘 ∈ 𝐾𝐾 (15) 

0 ≤ 𝑡𝑡𝑘𝑘 ≤ 𝑇𝑇𝑘𝑘 ,∀𝑘𝑘 ∈ 𝐾𝐾 (16) 

0 ≤ 𝑓𝑓𝑘𝑘 ≤ 𝑓𝑓𝑘𝑘𝑚𝑚𝑚𝑚𝑥𝑥 , 0 ≤ 𝑝𝑝𝑘𝑘 ≤ 𝑝𝑝𝑘𝑘𝑚𝑚𝑚𝑚𝑥𝑥  ∀𝑘𝑘 (17) 

𝑡𝑡𝑘𝑘 ≥ 0, 𝑏𝑏𝑘𝑘 ≥ 0,∀𝑘𝑘 ∈ 𝐾𝐾 (18) 

while f k
max and p k

m ax denote the maximum computation 
capacity and maximum transmit power of user k, 
respectively.  This is the original problem P1, whose 
objective is to minimize the total energy consumption of all 
users, including the computation and communication 
phases.  Constraint Eq. (14) is based on the definition of βk, 
the resource allocated to all k users.  Constraint Eq. (15) 
indicates that the communication time is sufficient to 
transmit the data sample to the BS. The completion time 
constraint is limited in Eq. (16), and constraint Eq. (17) 
describes the limitations of frequency and transmit power. 

Lemma1 The problem P1 is a non-increasing function 
with tk and βk, ∀k ∈ K. The derivative of the P1 objective 
shows that it is a non-increasing function. Thus, the optimal 
solution is found by optimizing the transmission time of 
each device, which is independent of another parameter βk.  

Then, by applying the KKT conditions [33], the optimal 
solution of P1 can be obtained as follows.  

The optimal solution of bandwidth allocation is 

βk∗ = βkDkln2

BTk[1 + W ℎk2u∗ − BTkN0
BTkN0e ]

, k ∈ K,   (19) 

tk∗ = Tk.                                  (20)We use W to denote the Lambert W function [34].  The
transmission time Tk is strictly constrained by the 
transmission time of the device k with the largest 
completion time, when u∗ and e are used as Lagrange 
multipliers. 

Proof: From the Eq. (4.3.19), use Tk to replace tk in P1, 
so the original problem P1 can be rewritten as: 

min
(βk)

�
βkBTkN0

ℎk2
�2

βkDk
βkBTk − 1�

K

k=1

,  (21)

s. t. Eq. (14)(16)(17)(18),  (22)

Tkbklog2 �1 +
pkℎk2

N0
� ≥ dk,∀k ∈ K.  (23)

As is mentioned before, it is a convex problem. Lagrange 
multiplier μ∗ = [μ1, μ2, … , μk∗ ]T  and γ = [γ1, γ2, … , γk]T 
are applied, and the multiplier u∗, so the KKT conditions 
can be written as 

β ≥ 0, μk∗ ≥ 0, μk∗βk∗ = 0,
BTkN0

ℎk2
(2

βkDk
βkBTk −

βkDkln2
βk∗BTk

2
βkDk
βk
∗BTk − 1) − μk∗ + u∗ = 0.

To solve this problem, it can be obtained 
 γk∗ = βkDkln2

BTk�1+W
ℎk
2u∗−BTkN0
BTkN0e

�
,  (24) 

and the W(.) is the Lambert W function, the multiplier 
value u ∗ can be calculated by solving 

� βkDkln2

BTk[1+W
ℎk
2u∗−BTkN0
BTkN0e

]

K

k=1

= 1.  (25) 

Here,  x = ℎk
2u∗−BTkN0
BTkN0e

 is used, then Tk = ℎk
2u∗

(x+1e)BN0e
, and 

substitute it into γk∗ , 

γk∗ =
βkDkln2

BTk[1 + W ℎk2u∗ − BTkN0
BTkN0e ]

=
N0eβkDkln2

ℎk2u∗
x + 1

e
1 + W(x)

.

In order to solve it, this can be used 

y =
x + 1

e
1 + W(x)

=
WeW(x) + 1

e
1 + W(x)

.  (26) 

It is obvious that y is a non-decreasing variable with 
W(x), so γk∗  is also non-decrease with Tk . From the 
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equation of x, it can conclude that ℎk2 = BN0eTk
u∗

(1 + 1
e
).

Then, replace ℎk2 in γk∗ shown as 

γk∗ =
βkDkln2

BTk[1 + W ℎk2u∗ − BTkN0
BTkN0e ]

=
βkDkln2

BTk
1

1 + W(x)
.

Here, if z = 1
1+W(x)

 is defined, it is easy to obtain z is non-
increasing to W(x). Since W(x) is non-decreasing with x 
and ℎk2, so γ is also non-increasing with ℎk2. 

It can be seen that more bandwidth resources should be 
allocated to devices with weak computation capacities. 
This is because the main factor affecting the minimization 
of energy consumption is the synchronous updating and 
execution of tasks. For simplicity, weak devices require 
larger bandwidth to complete the entire process of 
computation and communication. In addition, more 
bandwidth should be allocated to weak channels, as weak 
channels have a lower transmission rate, and therefore, 
require larger bandwidth. 

5. Methodology

In this section, an efficient algorithm is proposed to solve 
problem P1, which was formulated in the previous section. 
The objective of solving problem P1 is to determine if these 
devices can finish their task within the completion time T. 
Therefore, it is equivalent to transforming P1 into the 
following problem P2: 

min
(βk,γk,tk)

�
βkBtkN0

ℎk2
(2

βkDk
βkBtk − 1)

K

k=1

− λ�βk

K

k=1

 (27)

s. t. βk ∈ {0,1}, k ∈ K,  (28)

tkbklog2 �1 +
pkℎk2

N0
� ≥ dk,∀k ∈ K,  (29)

0 ≤ tk ≤ Tk,∀k ∈ K,          (30)
0 ≤ fk ≤ fkmax, 0 ≤ pk ≤ pkmax∀k ∈ K,  (31)
tk ≥ 0, bk ≥ 0,∀k ∈ K,          (32)

while λ is defined as a pre-trained parameter. This problem 
is difficult to solve due to the integer constraint. Therefore, 
relax the constraint βk ∈ 0,1 to 0 ≤ β ≤ 1 , allowing the 
integer problem to be solved by the relaxed problem. βk 
can be considered as the importance of various devices, 
which includes both bandwidth allocation and sequence 
scheduling. In detail, the bandwidth problem can be solved 
by P1, and the second part is to decide the importance of 
devices, defined as P3, 

min
βk

�
βkBtkN0

ℎk2
(2

βkDk
βkBtk − 1)

K

k=1

− λ�βk

K

k=1

 (33)

s. t. 0 ≤ βk ≤ 1, k ∈ K,  (34)
Eq. (15)(16)(17)(18).  (35)

Based on the definition of β = [β1, β2, … , βk] and format 
of P3, another function is introduced: 

G(β) = ��
γkBtkN0

ℎk2
�2

βkDk
γkBtk − 1�

K

k=1

− λβk� .                  (36)

And the partial derivative of G(β) can be calculated as:
∂(G(β))
∂(βk)

=
N0Dkln2

ℎk2
�2

βkDk
γkBtk − 1�

− λ.  (37) 
If  ∂(G(β)

∂(βk)
= 0, the result can be obtained: 

βk′ =
γkBtK

Dk
log�

λℎk2

N0Dkln2
� .  (38) 

Here discusses the result of βk′  under the limitations of 
the P3: 
If  βk′ ≤ 0, the minimizing value will be at βk = 0; 
If  0 < βk′ ≤ 0, the minimizing value will be at βk′ = βk; 
if  βk′ ≤ 1, the minimizing value will be at βk = 1. 
In conclusion, the optimizing value is 
βk′

= min �max �
γkBtK

Dk
log�

λℎk2

N0Dkln2
� , 0� , 1� .       （39） 

From this result, it can be inferred that the importance of 
devices with strong computation capacity and bandwidth is 
higher than that of others. 

Based on the result of βk  and Eq. (39), it can be 
concluded that the importance of device k is related to 
transmission time tk and the condition of the channel ℎk. 
The effect of tk is larger than that of ℎk based on Eq. (39). 

Algorithm1 Allocation method 

The complexity of Algorithm1 is determined by the 
number of iterations of Eq. (5), (6), (7). The optimal 
solution of Eq. (11) is obtained by the bisection method, 
which has a complexity of 𝒪𝒪(Klog2n) , where n is the 
interval of βk. In this algorithm, the bandwidth allocation 
is fixed during each time slot, which results in a certain 
energy consumption at each iteration. 

Algorithm1 Allocation for User 

Input: The set of user devices, k;  
The bandwidth resources, B; 
The basic information of channel, N0 and hk; 
Output:  
Initialize parameter βk ∈ [0,1]; 
Calculate γk using Eq. (4.3.19) with βk; 
Calculate tk using Eq. (4.3.20) with βk; 
Calculate βk using Eq. (4.3.39) with {γk, tk}; 
Calculate until convergence; 
Compute βk to {0,1}; 
    Compute {γk, tk} using Eq. (4.3.19)(4.3.20); 
Return  {βk′ , γk∗ , tk∗} 
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6. Results and discussion

In this simulation settings, the device number is set as 
K=50 following the uniform distribution in the area of 
500m*500m. In the edge system, the bandwidth is set as 
B= 2MHz. The transmit power is defined as 10 dB, and the 
computation frequency is 2 GHz. In the meantime, the 
power gain that presents noise is set as -30 dB. It is 
considered that the machine learning model is CNN, and 
the data set is applied by MNIST, and 500 data samples are 
in total. 

Figure 2. The training accuracy versus the number 
of global iterations with different local iteration 

Figure 2 shows the results of training accuracy under 
different iterations. It can be seen that the accuracy of the 
running model is affected by the number of local and global 
iterations. According to this figure, it can be observed that 
with a fixed local iteration, the accuracy increases as the 
number of global iterations get larger. In the meantime, the 
overall accuracy of more significant local iterations is 
larger than smaller iterations. This shows that more local 
computation can be traded for communication among the 
edge nodes.  

Figure 3.  Completion time comparison with various 
transmit power 

Most applications in the edge systems desire for lower 
completion time, so it can compare the proposed EF 
methods with FDMA and TDMA methods (Tran et al., 
2019). Figure 3 shows the variation of completion time 
with the increase of average transmit power. It can be 
observed that the completion time decreases with the 
increase of transmit power, which is because the increase 
of transmit power can reduce the communication time of 
the end-user and BS. The proposed EF method 
demonstrates a 19.8% and 13.2% reduction in energy 
consumption compared to other methods. The method 
takes into account both energy and latency factors of tasks 
in the edge system. FDMA performs better than the TDMA 
method because the TDMA method divides time slots 
among different users, the task of the user may not be ready 
when it's their turn to use the time slot. Thus, the 
completion time of the TDMA method is worst in this 
scenario. 

Figure 4. Computation and communication 
completion time comparison with various transmit 

power 

In addition, it is necessary to find out the relationship 
between computation and communication in both methods. 
The changes in the maximum average transmit power of 
each user are illustrated in Figure 4, which shows how 
these variations affect the amount of time needed for 
communication and processing. It is clear from looking at 
the chart that both the amount of time spent communicating 
and the amount of time spent computing decreases as the 
maximum average transmit power of each user grows. It is 
also possible to notice that the amount of time required for 
computing is invariably greater than the amount of time 
required for communication, and that the rate at which the 
amount of time required for communication is decreasing 
is higher than that of the computation time. 
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Figure 5. Energy consumption comparison with 
various transmit power within T=150 

Energy consumption is an important concern for edge 
users. Figure 5 illustrates how energy consumption 
changes as transmit power increases over a period of 
T=150s. It can be seen from the figure that the proposed EF 
method outperforms TDMA and FDMA. Additionally, 
energy consumption decreases as transmit power increases, 
as a result of the reduced completion time as shown in 
Figure 3. TDMA method allocates specific time slots to 
users and the users respond periodically, which leads to 
wasted energy. 

Figure 6. Computation and communication 
consumption comparison with various transmit 

power 

Figure 6 shows the relationship between computation 
and communication energy consumption and transmit 
power. With the increase of transmit power, 
communication consumption increases because 
communication costs are affected by transmit power and 
task size. While the transmit power is smaller than 16dB, 
the proposed EF outperforms the TDMA method in both 
computation and communication energy consumption. 

When the transmit power is larger than 18dB, TDMA 
outperforms in computation energy consumption. 

Figure 7. Energy consumption comparison with 
various completion time 

The relationship between completion time and energy 
consumption is a crucial aspect of the edge system, as 
shown in Figure 7. It can be observed that the performance 
of FDMA is better in terms of low completion time since it 
schedules all data to the BS in a global iteration while only 
a fraction of users send data to the BS at one time. On the 
other hand, the performance of TDMA is similar to other 
methods when the completion time is larger. The proposed 
EF method can significantly reduce energy consumption, 
up to 51% and 27% compared to TDMA and FDMA 
respectively. 

7. Conclusion

We have studied the problem of energy-efficient 
computation and resource allocation for FL over wireless 
networks.  Based on the convergence rate, we developed 
time and energy consumption models for FL and 
formulated a joint learning and communication problem 
with the objective of minimizing the total computation and 
transmission energy of the network. We have derived 
closed- form solutions for computation and transmission 
resources at each iteration and proposed an iterative 
algorithm with low complexity to solve this problem. The 
proposed scheme is efficient in terms of energy 
consumption and outperforms conventional schemes 
TDMA and FDMA with 51% and 27% reduction, 
especially when the maximum average transmit power is 
low. 
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