
EAI Endorsed Transactions
on Energy Web Research Article

1

Revolutionizing Cloud Resource Allocation: Harnessing
Layer-Optimized Long Short-Term Memory for Energy-
Efficient Predictive Resource Management
Prathigadapa Sireesha1*,Vishnu Priyan S2, M. Govindarajan3, Sounder Rajan4 and V.
Rajakumareswaran5

1Asia Pacific University of Technology & Innovation, Malaysia
2Biomedical Engineering, Kings Engineering College, Irungattukottai, Sriperumbudur, Chennai, India
3Department of General Engineering, Velalar College of Engineering and Technology, Erode, Tamilnadu, India
4Department of Artificial Intelligence and Data Science, Erode Sengunthar Engineering College, Thuduppathi, Tamil Nadu,
India
5Dept of Computer Science and Design, Erode Sengunthar Engineering College, Thuduppathi, Tamil Nadu, India

Abstract

INTRODUCTION: This is the introductory text. Accurate data center resource projection will be challenging due to the
dynamic and constantly changing workloads of multi-tenant co-hosted applications. Resource Management in the Cloud
(RMC) becomes a significant research component. In the cloud's easy service option, users can choose to pay a fixed sum
or based on the amount of time.
OBJECTIVES: The main goal of this study is systematic method for estimating future cloud resource requirements based
on historical consumption. Resource distribution to users, who require a variety of resources, is one of cloud computing
main objective in this study.
METHODS: This article suggests a Layer optimized based Long Short-Term Memory (LOLSTM) to estimate the resource
requirements for upcoming time slots. This model also detects SLA violations when the QoS value exceeds the dynamic
threshold value, and it then proposes the proper countermeasures based on the risk involved with the violation.
RESULTS: Results indicate that in terms of training and validation the accuracy is 97.6%, 95.9% respectively, RMSE and
MAD shows error rate 0.127 and 0.107, The proposed method has a minimal training and validation loss at epoch 100 are
0.6092 and 0.5828, respectively. So, the suggested technique performed better than the current techniques.
CONCLUSION: In this work, the resource requirements for future time slots are predicted using LOLSTM technique. It
regularizes the weights of the network and avoids overfitting. In addition, the proposed work also takes necessary actions if
the SLA violation is recognized by the model. Overall, the proposed work in this study shows better performance compared
to the existing methods.

Keywords: Long-short-term memory, cloud computing, energy-efficient resources, and resource forecasting

Received on 26 December 2023, accepted on 27 June 2024, published on 03 July 2024

Copyright © 2024 P. Sireesha et al., licensed to EAI. This is an open access article distributed under the terms of the CC BY-NC-SA
4.0, which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so long as the
original work is properly cited.

doi: 10.4108/ew.6505

1. Introduction

Cloud computing has becoming more well-liked as a research
area because of its great scalability, adaptability, and cost-

*Corresponding author. Email: sireesha.prathi@apu.edu.my

efficiency [1]. The provision of several services, including
web, multimedia, gaming, and IoT applications, has made
extensive use of distributed cloud computing systems, such
as fog computing, big cloud data centers, and edge computing
due to their added advantages in integrating hardware,
resource configuration, and service separation.

EAI Endorsed Transactions on
Energy Web

| Volume 11 | 2024 |

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
mailto:sireesha.prathi@apu.edu.my

 P. Sireeshar, Vishnu Priyan S, M. Govindarajan, S. Rajan and V. Rajakumareswaran

 2

One of the most significant issues with cloud and edge
computing systems is energy efficiency [2]. In the cloud's
easy service option, users can choose to pay a fixed sum or
based on the amount of time. Power consumption is a major
factor in how much it costs to run cloud computing systems.
Energy costs for data will rise if the current pattern holds.

In this field, Resource Management in the Cloud (RMC)
becomes a significant research component. In earlier
methods, the resource distribution evenness mechanism was
utilized to distribute the available resources among the active
applications. This strategy may result in resource overflow
owing to high resource allocation levels above what is
necessary and resource underflow due to low resource
allocation levels above what is necessary.
Depending on the number of active clients, a running
application's resource requirements will occasionally alter.
Recent research has developed dynamic resource
management with virtual systems to address resource
underflow and overflow issues caused by evenness
distribution. When allocating resources to apps, these systems
take into account the server's available resources and the
demands of the various programs.
Algorithms for unevenness and on-demand resource
allocation are used by dynamic management systems to
accomplish this. With the virtualization of cloud systems, this
strategy will manage the resources in a dynamic way that is
effective. It will also be possible to prevent SLA violations in
a cloud environment by dynamically matching virtual
requirements with physical resources.
It's possible for allocation attempts to fail or for a system to
hang on occasion due to unexpectedly high future resource
demands.
Resource distribution to users, who require a variety of
resources, is one of cloud computing's main goals. For the
model to function as a high-performance computing system,
an efficient allocation technique is needed. Data centers that
host cloud platforms are now being used by more people, thus
it's imperative to create an allocation technique that offers
higher-quality services to balance the rising and constantly
shifting burden.
Due to the diversity of resources, the variety of workloads,
the heterogeneity of resource capabilities, and the restrictions
on there are problems with allocating resources in the cloud,
such as where to put servers that are used for workload [4].
For running cloud computing systems, the most important
factor is the energy efficiency. This is because energy
efficiency can reduce the cost of carbon emissions.
Acceptable workloads and the server's processing power have
been shown to have a greater impact on cloud server’s energy
expense. Therefore, using an effective prediction model, it is
crucial to precisely estimate the workload and resource
requirements for the future. Due to the time-varying and
dynamic workloads of the multi-tenant co-hosted
applications, predicting the resources needed for future will
be difficult for data centers [5].
To overcome these issues, this research suggests a novel,
systematic method for estimating future cloud resource
requirements based on historical consumption. A significant

number of successful cases in the fields of speech recognition,
object detection, and other fields have shown deep learning
to be a cutting-edge technique for big data analysis.
Although there are a number of deep learning network-based
estimation strategies for making advantage of cloud resources
[4], [6], [7], and [8]. When very large time lags of
undetermined duration exist between critical events, an
LSTM network is well suited for learning from experience to
categorize, analyze, and predict time series data [7]. The term
LSTM refers to specific RNN for deep learning. Three or four
"gates" are present in each LSTM block, and these gates are
an exclusive RNN for employed to regulate how information
enters and exits the memory of the block.
Utilizing a logistic function to generate a number between 0
and 1, these gates are created. To partially permit or refuse
information to enter or leave the memory, multiplication is
applied using this value. The required memory for estimating
the output activation of the blocks, output gate has been used
whereas input gate maintains value in the memory. As
mentioned in [9], the amount of value flowing into and
outside the memory has been controlled by the forget gate.

Figure 1. Illustrates a Simple LSTM Network
Architecture for prediction

The input layer and LSTM layers are the fundamental layers
of LSTM network and a sequence input layer is utilized to
deliver the sequence data and the input layer into the network.
The long-term relationships between the sequence data's time
steps has been studied by the LSTM layer. The network's
structure is shown in Figure 1 as a straightforward LSTM
network for categorization. The first two layers of the
network are input layer and an LSTM layers.

Class labels are predicted using the networks fully connected
final layers of SoftMax. The factors listed below influenced
the choice of LSTM. As suggested by its name, LSTM may
at first pick up long-term dependence. Through learning, the
neural network may also choose when to remove old material
and for how long to keep it in memory. Useful data can be
extracted by employing the end-to-end model, LSTM, as
opposed to an autoencoder as a pre-recurrent feature layer.
Finally, because of its excellent nonlinear generalization
capacity, it can successfully represent highly noisy one-
dimensional time series.
Existing deep learning-based approaches [9][2][13] use
LSTM for prediction. Even though these techniques' results
are best, however they have issues with poor accuracy and
temporal complexity. As a result, choosing the appropriate
network structure and precisely adjusting the hyper-
parameters of the network are both necessary before training
the model. As a result, our paper suggests a novel LSTM
approach to address these issues.
Following is a list of this work's main contributions.

EAI Endorsed Transactions on
Energy Web

| Volume 11 | 2024 |

 Energy Efficient Resource Allocation in Cloud Through Layer Optimized Long Short-Term Memory Based Prediction of
Future Resource Requirement

3

• To propose Layer Optimized Based on Long Short-
Term Memory (LOLSTM), a more effective technique
for allocating resources in the cloud.

• To control the level of risk brought on by SLA
violations by keeping an eye on the QoS parameter.

• Tuning hyperparameters and hidden layers are done in
order to train the suggested LOLSTM model.
Resolving the vanishing gradient issue with the help of
the rectified linear activation function (ReLU)
improves the model's accuracy.

• In terms of validation accuracy, validation loss,
training accuracy, and error rate, the proposed
LOLSTM model outperforms current approaches.

• This paper structure is set up as follows: Section 2
examines relevant research in the areas of cloud
resource allocation that is energy efficient. Section 3
describes the energy efficient resource allocation
through the proposed LOLSTM based prediction of
future resource requirement in cloud. Results and
discussion in Section 4 demonstrate how effectively the
suggested task was carried out. Section 5 discusses the
study's conclusion.

2. Literature Review

Tseng et al. [1] proposed a multi-objective genetic algorithm
(GA) to dynamically estimate resource use and energy
consumption in cloud data centers. They created a multi-
objective resource allocation optimization problem that takes
into account how much CPU and RAM PMs and VMs
consume as well as how much energy the data center uses.
They failed to compare their work to other metaheuristics
systems and failed to demonstrate their prediction accuracy.

Nguyen et al. [2] presented a prediction method based on
Long Short-Term Memory Encoder-Decoder (LSTM-ED) for
predicting the real load multi-step ahead and mean load over
successive intervals. Because the time series data is internally
represented, the LSTM-ED based technology expands the
LSTM's memory capacity. It is essential to improve load
prediction accuracy.
Song et al. improve the resource-utilization-aware energy
efficient server consolidation method (RUAEE) by
incorporating a resource reserve. The VM allocations can be
changed by continuously calculating the ratio between
resource allocation and reservation. Their migration and
communication are expensive.
A deep reinforcement learning model has been demonstrated
by Karthiban and Raj [4] for supporting users with resource
allocation in green computing. The dimensionality issue
renders conventional Q-learning models ineffective due to the
exponential growth of the state space and they did not predict
future demand of resources.
A new method was presented by Baig et al. [5] for
automatically and adaptively selecting the optimum model to
forecast the utilization of data center resources choose the
optimal prediction model to apply to specific resource
utilization observations acquired over a period of time, the

suggested method creates a classifier based on statistical
characteristics of previous resource usage. They did not
enhance any machine learning techniques and not used any
deep learning technique for workload prediction.
Chien et al. [6] integration of cloud computing with edge
computing in an evolving network design reduces the
transmission of unnecessary data and addresses bottleneck
difficulties. For dynamic throughput prediction, they
employed LSTM, and for resource allocation optimization,
they used GARAA, a GA-based algorithm. They weren't very
concerned with increasing prediction precision and speeding
up deep learning.
Yu et al. [7] suggested an architecture for resource allocation
based on self-organizing network-based matching slices. The
dynamic traffic model of the multicast service in space-time
is built using the multidimensional data and the efficient deep
learning model known as LSTM (long short-term memory),
which forms the basis for extra network resource allocation.
They didn't enhance the LSTM.
Autoencoders were utilized by Zhang et al. [8] to forecast
how much CPU time virtual machines will need. The authors'
tensor rank decomposition method reduced training time by
compressing the input parameters. It needs a lot of processing
power. Deep learning-based service composition (DLSC)
was suggested by Haytamy and Omara [9]. This system
combines the long short-term memory (LSTM) network of
deep learning and particle swarm optimization (PSO).
The PSO algorithm uses the results from the LSTM network
to choose the best cloud service providers to work with in
order to put together the necessary services and lower the
consumer cost function. Using the LSTM network, precise
predictions of the Cloud QoS values are made.
For a dynamic resource allocation process, Praveenchandar et
al. [10] recommended improved work scheduling and the
optimum power minimization strategy. Resource allocation
efficiency can be obtained in terms of task completion and
reaction time by utilizing prediction mechanisms and
dynamic resource table updating algorithms. For workload
prediction, they didn't apply any deep learning techniques.
Hussain et al. [11] looked at the procedure for finding and
fixing SLA violations from a risk management perspective.
As soon as an SLA was established, they provided a Risk
Management-based Framework for SLA Violation
Abatement (RMF-SLA), which entails SLA monitoring,
violation prediction, and decision counseling. They used
experiments to confirm and show that the framework is
suitable for assisting cloud providers in avoiding service
violations and fines.
Banerjee et al. [12] suggested a multi-step-ahead workload
prediction method using machine learning methods. Based on
this forecast, it is recommended to distribute resources so they
can be used more efficiently, reducing the data center's
overall energy consumption. Based on the actual Bit brains
workload trace, they assessed the efficiency of our
framework.

EAI Endorsed Transactions on
Energy Web

| Volume 11 | 2024 |

 P. Sireeshar, Vishnu Priyan S, M. Govindarajan, S. Rajan and V. Rajakumareswaran

 4

3. Methodology

The integration of numerous resources into a data center
enables it to offer a range of resource services for cloud
computing. How to deliver resources in a timely and accurate
manner to meet user expectations is a significant concern.
However, the resource demands of users fluctuate greatly and
frequently change regularly. It's possible that the resource
provision won't happen on time.
Additionally, since some physical resources are sometimes
turned off to save energy, they may not always be enough to
meet user requests. To ensure positive user experiences using
cloud computing, it is crucial to offer proactive resource
provision. Recent cloud systems are experiencing resource
management issues as a result of unanticipatedly high
asynchronous resource demands (CPU time, memory,
networks, etc.).
Accurately predicting future resource demands is essential for
supporting resource provision in advance. As a result, this
work elaborately introduces the innovative technology
known as Layer optimized based Long Short-Term Memory
(LOLSTM). Here, the created LOLSTM approach makes
predictions about future resource needs based on data from
the past. For efficient resource allocation in the cloud, the
CPU utilization, RAM, and workload are all included in the
objective model.
Additionally, when training the model, both internal and
external factors such as different types and quantities of VMs
with different leasing costs are taken into account. External
aspects include dynamic workload. Additionally, the LSTM
model's training process optimizes the hyperparameters and
hidden layer count. The proposed LOLSTM model's design
is shown in Figure 2. Four layers of the proposed LOLSTM
technique are as follows:

• The Input layer,
• The Multiple hidden layer,
• The Fully Connected layer, and
• The Output layer.

(i) The Input layer

Figure 2. Illustrates the architecture of proposed
LOLSTM technique

This is the first layer of LSTM model. The inputs for this
layer are CPU usage time, memory, read_bytes, write_bytes,
pid count and previous workload at different time interval
which are formed using historical information. Let us assume
the cloud structure with k Physical Machine’s
 (PM) and b Virtual Machine’s (VM) and they are denoted as
𝑃𝑃𝑃𝑃 = {𝑃𝑃𝑃𝑃1 ,𝑃𝑃𝑃𝑃2, . .𝑃𝑃𝑃𝑃𝑠𝑠 … . .𝑃𝑃𝑃𝑃𝑘𝑘}; 1 ≤ 𝑠𝑠 ≤ 𝑘𝑘 and 𝑉𝑉𝑃𝑃 =
{𝑉𝑉𝑃𝑃1,𝑉𝑉𝑃𝑃2, . .𝑉𝑉𝑃𝑃𝑎𝑎 , … . .𝑉𝑉𝑃𝑃𝑏𝑏}; 1 ≤ 𝑎𝑎 ≤ 𝑏𝑏 respectively. All
PM will include dissimilar VMs.

Data resource requested by the user can be denoted as,

𝑅𝑅 = �𝑅𝑅1,𝑅𝑅2,𝑅𝑅3, … . .𝑅𝑅𝑓𝑓� (1)

Data rate for each user can be represented as,

𝐷𝐷 = �𝐷𝐷1,𝐷𝐷2,𝐷𝐷3, … . .𝐷𝐷𝑓𝑓� (2)

The history of the users (previously used resources) can be
given as,

𝐻𝐻 = {ℎ1, ℎ2, ℎ3, … … ℎ𝑥𝑥} (3)

(ii) Multiple hidden layers
This layer has several LSTM layers, each of which has
several LSTM blocks. In LSTM layers, the number of hidden
layers and hyperparameters are controlled. Additionally, QoS
monitoring will be done, and users will be assigned resources
based on the outcomes of the predictions. The building blocks
of a typical LSTM network are called cells. Both the

EAI Endorsed Transactions on
Energy Web

| Volume 11 | 2024 |

 Energy Efficient Resource Allocation in Cloud Through Layer Optimized Long Short-Term Memory Based Prediction of
Future Resource Requirement

5

concealed state and the cell state are carried over to the
subsequent cell. The memory blocks, which are managed by
three crucial parts known as gates, are in charge of recalling
information. Three distinct input, output, and forget gates are
shown on a single LSTM block in Figure 3. The LSTM uses
three different gate mechanisms to monitor and safeguard
data [14].

Figure 3. Shows the composition of one LSTM block

LSTM can be expressed mathematically as follows. Input
gate outputs two values after receiving input 𝑥𝑥𝑡𝑡,and
outputℎ𝑡𝑡−1 from the previous time step.
Input gate:
𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖) (4)

�̃�𝐶𝑡𝑡 = tanh (𝑊𝑊𝐶𝐶[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝐶𝐶 (5)

Forget gate:
𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑓𝑓[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓) (6)

Cell state:
𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 ∗ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ∗ �̃�𝐶𝑡𝑡 (7)
Output gate:
𝑜𝑜𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑜𝑜[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡 + 𝑏𝑏𝑜𝑜) (8)
The LSTM unit's final output is:
ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ∗ tanh (𝐶𝐶𝑡𝑡) (9)

The weight matrix ‘W’ and bias vector ‘b’ in the equation
above represent the learnable parameters in each gate. The
sigmoid function is (x), and * stands for dot formation. After
each LSTM block, the Rectified Linear Unit (ReLU) has been
employed because it is easier to train and performs better. In
the neural network, activation functions play a big role, where
output at a network node corresponds to input. It improves
learning rate, enables the neural network to understand
nonlinear dependencies, and helps it stay away from
vanishing gradients.

In addition, there is no transform performed. For network
predictions, At the output layer, linear activation functions
are utilized. Every LSTM block uses ReLU because of its
simple computations, linear nature, and simplicity of training.
The ReLU function using x as the input vector looks like this:

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝑥𝑥) = max (0, 𝑥𝑥) (10)

Tuning the Hidden layers and Hyperparameters

Hidden layers are acknowledged as being a crucial
component of neural network activity, particularly when
addressing difficult conditions. This is only possible, though,
if the network has a complete understanding of the issue
without any restrictions due to under or over-fitting.
Generally speaking, neural networks with several hidden
layers will perform better on challenging and larger issues.
Neuronal networks need more neurons and hidden layers in
order to provide outcomes that are acceptable.

Some of the LSTM hyperparameters are the batch size, the
number of units in a dense layer, the number of nodes and
hidden layers, momentum, the number of epochs, the
activation function, dropout, decay rate, and learning rate. In
an effort to provide the most accurate predictions, the learning
rate and epochs will be modified. A hyperparameter that
controls how many iterations the learning algorithm performs
on the entire training set is the number of epochs.

To prevent overfitting and boost the neural network's capacity
for generalization, the suggested LOLSTM was trained for
the advised number of epochs. For the proposed study, the
model is validated and its output is checked using a fraction
of the training data utilized in each training session. The
epoch at which the model begins to overfit was determined
by tracking the accuracy and loss on the training and test
datasets.

The most important hyperparameter for maximizing deep
neural network training is learning rate. Training is impacted
by the learning rate's value. Neither convergent training nor
divergent training will take place when the learning rate is
high. Additionally, excessively poor learning rates are a result
of insufficient instruction. As a result, selecting the
appropriate learning will be critical for successful prediction.
After selecting optimal hyperparameters and hidden layers,
the required resources are predicted and allocated to the cloud
users.

To distribute the resource in cloud, the VM is selected based
on bandwidth, processor, memory and Million Instructions
Per Second (MIPS) and it is given as,

𝑃𝑃𝑠𝑠,𝑎𝑎 = 𝐵𝐵𝑠𝑠,𝑎𝑎 ,𝑃𝑃𝑠𝑠,𝑎𝑎, 𝑅𝑅𝑠𝑠,𝑎𝑎,𝐻𝐻𝑠𝑠,𝑎𝑎,𝑇𝑇𝑠𝑠,𝑎𝑎 (11)

Where 𝐵𝐵𝑠𝑠,𝑎𝑎 denotes the required number of processor by 𝑎𝑎𝑡𝑡ℎ
VM contained in 𝑠𝑠𝑡𝑡ℎ PM, 𝑃𝑃𝑠𝑠,𝑎𝑎 , denotes the required
memory by 𝑎𝑎𝑡𝑡ℎ VM contained in 𝑠𝑠𝑡𝑡ℎ PM, , 𝑅𝑅𝑠𝑠,𝑎𝑎 is the MIPS
of 𝑎𝑎𝑡𝑡ℎ VM contained in 𝑠𝑠𝑡𝑡ℎ PM, , 𝐻𝐻𝑠𝑠,𝑎𝑎 denotes the required
bandwidth by 𝑎𝑎𝑡𝑡ℎ VM contained in 𝑠𝑠𝑡𝑡ℎ PM and 𝑇𝑇𝑠𝑠,𝑎𝑎 denotes
the frequency scaling of 𝑎𝑎𝑡𝑡ℎ VM contained in 𝑠𝑠𝑡𝑡ℎ PM.

The load of VM can be expressed as,

𝑅𝑅𝑠𝑠,𝑎𝑎 = ∑ (𝑉𝑉𝑏𝑏+𝑉𝑉𝑚𝑚+𝑉𝑉𝑙𝑙+𝑉𝑉ℎ+𝑉𝑉𝑡𝑡)∗𝑋𝑋
𝑚𝑚𝑎𝑎𝑥𝑥(𝑉𝑉𝑏𝑏+𝑉𝑉𝑚𝑚+𝑉𝑉𝑙𝑙+𝑉𝑉ℎ+𝑉𝑉𝑡𝑡)∗𝑛𝑛

𝑛𝑛
𝑑𝑑=1 ∗ 1

𝑁𝑁
 (12)

Where 𝑉𝑉𝑏𝑏, 𝑉𝑉𝑚𝑚,𝑉𝑉𝑙𝑙,𝑉𝑉ℎ, 𝑉𝑉ℎ and 𝑉𝑉𝑡𝑡 represents a processing
element, memory units, bandwidth component, MIPS
element and frequency component in𝑎𝑎𝑡𝑡ℎ VM respectively
and n denotes total number of users.

EAI Endorsed Transactions on
Energy Web

| Volume 11 | 2024 |

 P. Sireeshar, Vishnu Priyan S, M. Govindarajan, S. Rajan and V. Rajakumareswaran

 6

𝑋𝑋 = �1, 𝑖𝑖𝑓𝑓𝑑𝑑𝑡𝑡ℎ𝑤𝑤𝑜𝑜𝑤𝑤𝑘𝑘𝑤𝑤𝑜𝑜𝑎𝑎𝑑𝑑𝑤𝑤𝑤𝑤𝑤𝑤𝑏𝑏𝑤𝑤𝑎𝑎𝑡𝑡ℎ VM
0, 𝑂𝑂𝑂𝑂ℎ𝑅𝑅𝑤𝑤𝑤𝑤𝑖𝑖𝑠𝑠𝑅𝑅

 (13)

The load of PM can be denoted as,

𝑅𝑅𝑠𝑠 = ∑ 𝑅𝑅𝑠𝑠,𝑎𝑎
𝑓𝑓
𝑎𝑎=1 (14)

(iii) Fully Connected layer

This layer is in charge of determining when a SLA has been
violated by comparing the expected QoS value to the
threshold value. Using a dynamic threshold technique based
on median absolute deviation (MAD), SLA violations are
managed. The standard deviation is less prone to outliers and
is more stable than the MAD [15]. Based on historical server
use data, MAD generates new threshold values. Furthermore,
MAD values for a given dataset 𝑥𝑥1, 𝑥𝑥2, … . 𝑥𝑥𝑛𝑛 can be created
using the following approach.

𝑃𝑃𝑀𝑀𝐷𝐷 = 𝑚𝑚𝑅𝑅𝑑𝑑𝑖𝑖𝑎𝑎𝑤𝑤(|𝑥𝑥𝑎𝑎 − 𝑚𝑚𝑅𝑅𝑑𝑑𝑖𝑖𝑎𝑎𝑤𝑤(𝑋𝑋𝑏𝑏)|) (15)

here 𝑋𝑋𝑏𝑏stands for prior CPU consumption and 𝑥𝑥𝑎𝑎 stands for
current CPU utilization. The threshold value is represented as

𝑇𝑇𝐻𝐻 = 1 − 𝑍𝑍 × 𝑃𝑃𝑀𝑀𝐷𝐷 (16)

In the equation above, the safety parameter Z is utilized to
regulate how the threshold mechanism behaves. SLA
violation can be identified based on above defined threshold
𝑇𝑇𝐻𝐻.An SLA breach occurs if the CPU utilization approaches
or exceeds the TH, and the next layer will estimate the
severity of the risk violation. If the CPU utilization is within
the defined 𝑇𝑇𝐻𝐻, no action will be taken.

User level experience can be denoted as,

𝐸𝐸 = 𝑇𝑇1𝐷𝐷 − 𝑇𝑇2𝐷𝐷 (17)

Where 𝑇𝑇1 and 𝑇𝑇2 are the constants.

Delay 𝐷𝐷 can be expressed as,

𝐷𝐷 = ∑ 𝑡𝑡𝑎𝑎
𝑘𝑘𝑤𝑤

𝑏𝑏
𝑎𝑎=1 + 𝐻𝐻𝑎𝑎 (18)

Where 𝑘𝑘𝑤𝑤 denotes writing speed in hard disk, 𝑂𝑂𝑎𝑎 denotes file
size and 𝐻𝐻𝑎𝑎 denotes initialization period of VM.

The factors that make up each job are memory size 𝑚𝑚_𝑠𝑠𝑖𝑖𝑠𝑠𝑅𝑅𝑖𝑖
input data size (𝐼𝐼𝑖𝑖), CPU utilization (𝐶𝐶𝑖𝑖), use of memory for
security (𝑚𝑚_𝑠𝑠𝑅𝑅𝑠𝑠𝑖𝑖), use of memory for scheduling (𝑚𝑚_𝑠𝑠𝑠𝑠ℎ𝑅𝑅𝑖𝑖),
using the CPU for security (𝐶𝐶_𝑠𝑠𝑅𝑅𝑠𝑠𝑖𝑖) using the CPUfor
scheduling (𝐶𝐶_𝑠𝑠𝑠𝑠ℎ𝑅𝑅𝑖𝑖).

𝐶𝐶𝑡𝑡𝑑𝑑 , 𝐶𝐶𝑚𝑚, 𝐶𝐶𝐵𝐵stands for the transferring costs for task 𝑖𝑖 CPU,
memory, and input data size, respectively. The weighted costs
for each task, 𝑤𝑤𝑡𝑡𝑑𝑑, 𝑤𝑤𝑚𝑚, 𝑤𝑤𝑏𝑏 result in various minimization
cost factors.

The cost minimization factor [16] can be expressed as,

min [(𝐶𝐶𝑡𝑡𝑑𝑑 × 𝑤𝑤𝑡𝑡𝑑𝑑) + (𝐶𝐶𝑚𝑚 × 𝑤𝑤𝑚𝑚) + (𝐶𝐶𝑏𝑏 × 𝑤𝑤𝑏𝑏)](19)

𝐶𝐶𝑡𝑡𝑑𝑑 = ∑ 𝐼𝐼𝑖𝑖𝑛𝑛
𝑖𝑖=1 (20)

𝐶𝐶𝑚𝑚 = ∑ 𝑚𝑚_𝑠𝑠𝑖𝑖𝑠𝑠𝑅𝑅𝑖𝑖𝑛𝑛
𝑖𝑖=1 + ∑ 𝑚𝑚_𝑠𝑠𝑅𝑅𝑠𝑠𝑖𝑖𝑛𝑛

𝑖𝑖=1 + ∑ 𝑚𝑚_𝑠𝑠𝑠𝑠ℎ𝑅𝑅𝑖𝑖𝑛𝑛
𝑖𝑖=1 (21)

𝐶𝐶𝐵𝐵 = ∑ 𝐶𝐶𝑖𝑖𝑛𝑛
𝑖𝑖=1 + ∑ 𝐶𝐶_𝑠𝑠𝑅𝑅𝑠𝑠𝑖𝑖𝑛𝑛

𝑖𝑖=1 + ∑ 𝐶𝐶_𝑠𝑠𝑠𝑠ℎ𝑅𝑅𝑖𝑖𝑛𝑛
𝑖𝑖=1 (21)

A single task requires N time slots to be completed as follows:

𝑁𝑁𝑥𝑥 = 𝐶𝐶𝑥𝑥
𝜏𝜏𝑓𝑓𝑥𝑥

 (23)

Where 𝐶𝐶𝑥𝑥 denotes total number of CPU cycles; 𝑓𝑓𝑥𝑥denotes the
operating frequency and 𝜏𝜏 denotes the allocated time slot for
user x.

(iv) Output layer

The LOLSTM model's initial evaluation of the severity of the
risk of SLA violation is done in the final layer. Then, using
the softmax function, the necessary appropriate actions to be
taken are classified according to the risk. The softmax
function can be given as,

𝜎𝜎(𝑠𝑠���⃗)𝑖𝑖 = 𝑒𝑒𝑍𝑍𝑖𝑖

∑ 𝑒𝑒𝑍𝑍𝑗𝑗𝐾𝐾
𝑗𝑗=1

 (24)

where the zi values signify how serious a danger of SLA
violation it is. By guaranteeing that the output values of the
function add up to 1, the normalization factor at the formula's
core creates an adequate probability distribution. The
Softmax function is used to translate the training results in
this case between 0 and 1.

4. Result and Discussion

The execution of the specified task was assessed using the
following criteria.

(i) Prediction performance over 5 minutes interval

Table 1. Shows the estimated CPU usage with actual observed values

Methods Time period (5 mins interval)
11.00 11.05 11.10 11.15 11.20 11.25 11.30 11.35 11.40 11.45 11.50 11.55 12.00

Observed
data

452 460 475 485 495 499 510 517 532 545 548 550 558

SVM 437 445 465 455 454 460 485 500 498 570 514 565 570
RNN 428 428 432 550 460 450 485 590 570 518 504 589 580
CNN 460 450 480 499 490 510 515 510 528 540 545 560 545
Proposed
LOLSTM

450 459 470 484 494 501 508 518 532 544 545 551 557

EAI Endorsed Transactions on
Energy Web

| Volume 11 | 2024 |

This is the title

 7

Figure 4. Performance of CPU response time over 5

minutes interval

In comparison to RNN, SVM, and CNN, the proposed
LOLSTM produces the greatest overall results. The results
of the predicted and observed values are given for 5-min
intervals and units are measured in millisecond (ms).
Figure 4 shows that, when compared to other current
methodologies, the proposed LOLSTM model predicts the
resource value approximately closer to the observed value.

(ii) Error rate

MAD and RMSE are used to estimate the correctness of the
model. Table 2 shows the error rate for various suggested
and existing approaches.

Table 2. Error rate for various prediction methods

Prediction
methods RMSE MAD

RNN 0.458 0.292
SVM 0.309 0.254
CNN 0.213 0.224
Proposed
LOLSTM 0.127 0.107

Figure 5. Error rate for proposed and existing
methods

Figure 5 shows how often suggested and existing
techniques fail. RMSE and MAD is comparatively low for

the proposed LOLSTM technique when compared to RNN,
SVM and CNN techniques. The suggested model is
optimized for efficiency by selecting the appropriate
hyperparameter values during training. The number of
hidden layers in the model is another factor that can be
optimized for high accuracy and low error rate.

(iii) The Receiver Operating Characteristics

(ROC)

The ROC curve appears to be a significant signal for
categorizing and identifying issues. The signal from the
noise is separated using a probability curve known as a
ROC by contrasting the TPR against the FPR at various
threshold levels.

TPR, which is often referred to as sensitivity, is a gauge of
how accurately the negative class is computed. The
specificity, or FPR, determines how much the model has
overestimated the negative class. The ROC curves for the
recommended and current approaches are shown in Table
3.

(iv) Receiver Operating Characteristics (ROC)

The probability curve known as the ROC curve serves as
the fundamental statistic for location and classification
issues. Additionally, the ROC curve is employed to
separate the noise signals in order to compare FPR and TPR
at various threshold values. TPR nothing but the True
Positive Rate is a sensitivity measure used for
approximation of negative class accurately. Whereas the
FPR which is the False Positive Rate determines the extent
to where the negative class has been overestimated by the
proposed model.

Table 3. ROC curves for the proposed and existing
methods are displayed.

False
Positive
Rate

True Positive Rate

RNN SVM CNN Proposed
LOLSTM

0 0 0 0 0
0.05 0.83 0.87 0.89 0.95
0.1 0.84 0.88 0.9 0.96
0.2 0.85 0.88 0.91 0.97
0.3 0.85 0.89 0.92 0.98
0.4 0.86 0.9 0.93 0.99
0.5 0.87 0.91 0.94 0.99
0.6 0.88 0.92 0.94 0.99
0.7 0.89 0.92 0.95 0.99
0.8 0.9 0.93 0.96 0.99
0.9 0.9 0.93 0.97 0.99
1 0.91 0.94 0.98 0.99

EAI Endorsed Transactions on
Energy Web

| Volume 11 | 2024 |

 P. Sireeshar, Vishnu Priyan S, M. Govindarajan, S. Rajan and V. Rajakumareswaran

 8

Figure 6. ROC curve for proposed and current

methods

The ROC curve for both recommended and established
approaches is displayed in Figure 6. When compared to
previous works, the suggested work accurately predicts the
need for resources, according to the ROC curve that is more
pronounced in the upper left corner.

(i) Training and Validation loss

The loss function, which calculates the model's prediction
error, is a crucial component of neural networks.

Figure 7. Shows the training loss comparison

Figure 8. Illustrates the Validation loss comparison

Figure 7 and 8 illustrates the graphical performance of
proposed LOLSTM and other techniques such as SVM,
RNN, and CNN during the training and validation stages.

The suggested LOLSTM's training and validation losses at
epoch 100 are 0.6092 and 0.5828, respectively. The
proposed method has a minimal training and validation loss
when compared to previous methods.

Also, Validation loss of proposed LOLSTM is low when
compared to training loss which indicates the model is
fitting to new data and there is no overfitting problem. The
model generalizes well for all type of new data.

(ii) Training and Validation accuracy

Figure 9. Comparison of training accuracy

Figure 10. Illustrates the comparison of Validation

accuracy

Moreover, Figures 9 and 10 accurately show how the
planned LOLSTM performed during the training and
validation phases. At epoch 100, validation accuracy is
97.6% and training accuracy is 95.9%. Using the
LOLSTM, higher training and validation accuracy scores
were obtained than with the other methods. The suggested
LOLSTM model is trained by adjusting hyperparameters
and hidden layers. Hyperparameters like learning rate and
epochs will be adjusted in this effort in order to produce the
best prediction results.
The suggested model is validated using the training data
throughout each training session, and the results are
validated. The proposed LOLSTM model predicts the
resource value approximately closer to the observed value.
When compared to previous works, the suggested work
accurately predicts the need for resources, according to the
ROC curve that is more pronounced in the upper left
corner. Validation loss of proposed LOLSTM is low when

EAI Endorsed Transactions on
Energy Web

| Volume 11 | 2024 |

 Energy Efficient Resource Allocation in Cloud Through Layer Optimized Long Short-Term Memory Based Prediction of
Future Resource Requirement

9

compared to training loss which indicates the model is
fitting to new data and there is no overfitting problem.
Using the LOLSTM, higher training 95.9% and validation
accuracy 97.6% scores were obtained than with the other
methods.

Conclusion

In this work, the resource requirements for future time slots
are predicted using LOLSTM technique. By include hidden
layer adjustment and hyperparameter optimization during
training, the suggested model's accuracy is increased. It
regularizes the weights of the network and avoids
overfitting. In addition, the proposed work also takes
necessary actions if the SLA violation is recognized by the
model. Using the metrics MAD, validation loss, ROC
curve, RMSE, training and validation accuracy, and
training loss, evaluation process of the proposed model was
done. The model's accuracy of 97.6% is 2.3%, 2.3%, 4.7%,
and 6.6% higher than that of CNN, SVM, and RNN,
respectively. Additionally, it was discovered that this
proposed work had a 5% higher efficiency than the current
works.

Acknowledgements

The author would like to thank the editors and reviewers for their
work. No specific grant was given to this research by funding
organizations in the public, private, or not-for-profit sectors.

References

[1] Tseng F-H, Wang X, Chou L-D, Chao H-C, Leung
VCM. Dynamic resource prediction and allocation for
cloud data center using the multiobjective genetic
algorithm. IEEE Syst J. 2018; 12(2):1688–1699.

[2] Nguyen HM, Kalra G, Kim D. Host load prediction in
cloud computing using Long Short-Term Memory
Encoder–Decoder. J Supercomput. 2019; 75(11):7592–
7605.

[3] Song T, Wang Y, Li G, Pang S. Server consolidation
energy-saving algorithm based on resource reservation
and resource allocation strategy. IEEE Access. 2019;
7:171452–171460.

[4] Karthiban K, Raj JS. An efficient green computing fair
resource allocation in cloud computing using modified
deep reinforcement learning algorithm. Soft Comput.
2020; 24(19):14933–14942.

[5] Baig S-U-R, Iqbal W, Berral JL, Erradi A, Carrera D.
Adaptive prediction models for data center resources
utilization estimation. IEEE Trans Netw Serv Manag.
2019; 16(4):1681–1693.

[6] Chien W-C, Lai C-F, Chao H-C. Dynamic resource
prediction and allocation in C-RAN with edge artificial
intelligence. IEEE Trans Industr Inform. 2019;
15(7):4306–4314.

[7] Yu P, Zhou F, Zhang X, Qiu X, Kadoch M, Cheriet M.
Deep learning-based resource allocation for 5G

broadband TV service. IEEE Trans On Broadcast.
2020; 66(4):800–813.

[8] Zhang Q, Yang LT, Yan Z, Chen Z, Li P. An efficient
deep learning model to predict cloud workload for
industry informatics. IEEE Trans Industr Inform. 2018;
14(7):3170–3178.

[9] Haytamy S, Omara F. A deep learning based
framework for optimizing cloud consumer QoS-based
service composition. Computing. 2020; 102(5):1117–
1137.

[10] Praveenchandar J, Tamilarasi A. RETRACTED
ARTICLE: Dynamic resource allocation with
optimized task scheduling and improved power
management in cloud computing. J Ambient Intell
Humaniz Comput. 2021; 12(3):4147–4159.

[11] Hussain W, Hussain FK, Hussain O, Bagia R, Chang E.
Risk-based framework for SLA violation abatement
from the cloud service provider’s perspective. Comput
J. 2018; 61(9):1306–1322.

[12] Banerjee S, Roy S, Khatua S. Efficient resource
utilization using multi-step-ahead workload prediction
technique in cloud. J Supercomput. 2021; 77(9):10636–
10663.

[13] Rendyk. 2021 Tuning the hyperparameters and layers
of neural network deep Learning. Analytics Vidhya.
[accessed 2023 Aug 25].
https://www.analyticsvidhya.com/blog/2021/05/tuning
-the-hyperparameters-and-layers-of-neural-network-
deep-learning.

[14] Xiao H, Sotelo MA, Ma Y, Cao B, Zhou Y, Xu Y,
Wang R, Li Z. An improved LSTM model for behavior
recognition of intelligent vehicles. IEEE Access. 2020;
8:101514–101527. doi:10.1109/access.2020.2996203.
http://dx.doi.org/10.1109/access.2020.2996203.

[15] Gul B, Khan IA, Mustafa S, Khalid O, Khan A ur R.
CPU–RAM-based energy-efficient resource allocation
in clouds. J Supercomput. 2019; 75(11):7606–7624.

[16] Anoop S, Singh JAP. RETRACTED ARTICLE: Multi-
user energy efficient secured framework with dynamic
resource allocation policy for mobile edge network
computing. J Ambient Intell Humaniz Comput. 2021;
12(7):7317–7332.

EAI Endorsed Transactions on
Energy Web

| Volume 11 | 2024 |

