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Abstract 

INTRODUCTION: This is the introductory text. Accurate data center resource projection will be challenging due to the 
dynamic and constantly changing workloads of multi-tenant co-hosted applications. Resource Management in the Cloud 
(RMC) becomes a significant research component. In the cloud's easy service option, users can choose to pay a fixed sum 
or based on the amount of time. 
OBJECTIVES: The main goal of this study is systematic method for estimating future cloud resource requirements based 
on historical consumption. Resource distribution to users, who require a variety of resources, is one of cloud computing 
main objective in this study. 
METHODS: This article suggests a Layer optimized based Long Short-Term Memory (LOLSTM) to estimate the resource 
requirements for upcoming time slots. This model also detects SLA violations when the QoS value exceeds the dynamic 
threshold value, and it then proposes the proper countermeasures based on the risk involved with the violation. 
RESULTS: Results indicate that in terms of training and validation the accuracy is 97.6%, 95.9% respectively, RMSE and 
MAD shows error rate 0.127 and 0.107, The proposed method has a minimal training and validation loss at epoch 100 are 
0.6092 and 0.5828, respectively. So, the suggested technique performed better than the current techniques. 
CONCLUSION: In this work, the resource requirements for future time slots are predicted using LOLSTM technique. It 
regularizes the weights of the network and avoids overfitting. In addition, the proposed work also takes necessary actions if 
the SLA violation is recognized by the model. Overall, the proposed work in this study shows better performance compared 
to the existing methods. 
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1. Introduction

Cloud computing has becoming more well-liked as a research 
area because of its great scalability, adaptability, and cost-

*Corresponding author. Email: sireesha.prathi@apu.edu.my

efficiency [1]. The provision of several services, including 
web, multimedia, gaming, and IoT applications, has made 
extensive use of distributed cloud computing systems, such 
as fog computing, big cloud data centers, and edge computing 
due to their added advantages in integrating hardware, 
resource configuration, and service separation.  

EAI Endorsed Transactions on 
Energy Web 

| Volume 11 | 2024 |

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
mailto:sireesha.prathi@apu.edu.my


 
 P. Sireeshar, Vishnu Priyan S, M. Govindarajan, S. Rajan and V. Rajakumareswaran 

  2      

One of the most significant issues with cloud and edge 
computing systems is energy efficiency [2]. In the cloud's 
easy service option, users can choose to pay a fixed sum or 
based on the amount of time. Power consumption is a major 
factor in how much it costs to run cloud computing systems. 
Energy costs for data will rise if the current pattern holds. 
 
In this field, Resource Management in the Cloud (RMC) 
becomes a significant research component. In earlier 
methods, the resource distribution evenness mechanism was 
utilized to distribute the available resources among the active 
applications. This strategy may result in resource overflow 
owing to high resource allocation levels above what is 
necessary and resource underflow due to low resource 
allocation levels above what is necessary.  
Depending on the number of active clients, a running 
application's resource requirements will occasionally alter. 
Recent research has developed dynamic resource 
management with virtual systems to address resource 
underflow and overflow issues caused by evenness 
distribution. When allocating resources to apps, these systems 
take into account the server's available resources and the 
demands of the various programs.  
Algorithms for unevenness and on-demand resource 
allocation are used by dynamic management systems to 
accomplish this. With the virtualization of cloud systems, this 
strategy will manage the resources in a dynamic way that is 
effective. It will also be possible to prevent SLA violations in 
a cloud environment by dynamically matching virtual 
requirements with physical resources.  
It's possible for allocation attempts to fail or for a system to 
hang on occasion due to unexpectedly high future resource 
demands. 
Resource distribution to users, who require a variety of 
resources, is one of cloud computing's main goals. For the 
model to function as a high-performance computing system, 
an efficient allocation technique is needed. Data centers that 
host cloud platforms are now being used by more people, thus 
it's imperative to create an allocation technique that offers 
higher-quality services to balance the rising and constantly 
shifting burden.  
Due to the diversity of resources, the variety of workloads, 
the heterogeneity of resource capabilities, and the restrictions 
on there are problems with allocating resources in the cloud, 
such as where to put servers that are used for workload [4]. 
For running cloud computing systems, the most important 
factor is the energy efficiency. This is because energy 
efficiency can reduce the cost of carbon emissions.  
Acceptable workloads and the server's processing power have 
been shown to have a greater impact on cloud server’s energy 
expense. Therefore, using an effective prediction model, it is 
crucial to precisely estimate the workload and resource 
requirements for the future. Due to the time-varying and 
dynamic workloads of the multi-tenant co-hosted 
applications, predicting the resources needed for future will 
be difficult for data centers [5]. 
To overcome these issues, this research suggests a novel, 
systematic method for estimating future cloud resource 
requirements based on historical consumption. A significant 

number of successful cases in the fields of speech recognition, 
object detection, and other fields have shown deep learning 
to be a cutting-edge technique for big data analysis.  
Although there are a number of deep learning network-based 
estimation strategies for making advantage of cloud resources 
[4], [6], [7], and [8].  When very large time lags of 
undetermined duration exist between critical events, an 
LSTM network is well suited for learning from experience to 
categorize, analyze, and predict time series data [7]. The term 
LSTM refers to specific RNN for deep learning. Three or four 
"gates" are present in each LSTM block, and these gates are 
an exclusive RNN for employed to regulate how information 
enters and exits the memory of the block.  
Utilizing a logistic function to generate a number between 0 
and 1, these gates are created. To partially permit or refuse 
information to enter or leave the memory, multiplication is 
applied using this value. The required memory for estimating 
the output activation of the blocks, output gate has been used 
whereas input gate maintains value in the memory. As 
mentioned in [9], the amount of value flowing into and 
outside the memory has been controlled by the forget gate.  
 

 
 

Figure 1. Illustrates a Simple LSTM Network 
Architecture for prediction 

 
The input layer and LSTM layers are the fundamental layers 
of LSTM network and a sequence input layer is utilized to 
deliver the sequence data and the input layer into the network. 
The long-term relationships between the sequence data's time 
steps has been studied by the LSTM layer. The network's 
structure is shown in Figure 1 as a straightforward LSTM 
network for categorization. The first two layers of the 
network are input layer and an LSTM layers.  
 
Class labels are predicted using the networks fully connected 
final layers of SoftMax. The factors listed below influenced 
the choice of LSTM. As suggested by its name, LSTM may 
at first pick up long-term dependence.  Through learning, the 
neural network may also choose when to remove old material 
and for how long to keep it in memory. Useful data can be 
extracted by employing the end-to-end model, LSTM, as 
opposed to an autoencoder as a pre-recurrent feature layer. 
Finally, because of its excellent nonlinear generalization 
capacity, it can successfully represent highly noisy one-
dimensional time series. 
Existing deep learning-based approaches [9][2][13] use 
LSTM for prediction. Even though these techniques' results 
are best, however they have issues with poor accuracy and 
temporal complexity. As a result, choosing the appropriate 
network structure and precisely adjusting the hyper-
parameters of the network are both necessary before training 
the model. As a result, our paper suggests a novel LSTM 
approach to address these issues. 
Following is a list of this work's main contributions. 
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• To propose Layer Optimized Based on Long Short-
Term Memory (LOLSTM), a more effective technique 
for allocating resources in the cloud. 

• To control the level of risk brought on by SLA 
violations by keeping an eye on the QoS parameter. 

• Tuning hyperparameters and hidden layers are done in 
order to train the suggested LOLSTM model. 
Resolving the vanishing gradient issue with the help of 
the rectified linear activation function (ReLU) 
improves the model's accuracy. 

• In terms of validation accuracy, validation loss, 
training accuracy, and error rate, the proposed 
LOLSTM model outperforms current approaches. 

• This paper structure is set up as follows: Section 2 
examines relevant research in the areas of cloud 
resource allocation that is energy efficient. Section 3 
describes the energy efficient resource allocation 
through the proposed LOLSTM based prediction of 
future resource requirement in cloud. Results and 
discussion in Section 4 demonstrate how effectively the 
suggested task was carried out. Section 5 discusses the 
study's conclusion. 

2.  Literature Review 

Tseng et al. [1] proposed a multi-objective genetic algorithm 
(GA) to dynamically estimate resource use and energy 
consumption in cloud data centers. They created a multi-
objective resource allocation optimization problem that takes 
into account how much CPU and RAM PMs and VMs 
consume as well as how much energy the data center uses. 
They failed to compare their work to other metaheuristics 
systems and failed to demonstrate their prediction accuracy. 
 
Nguyen et al. [2] presented a prediction method based on 
Long Short-Term Memory Encoder-Decoder (LSTM-ED) for 
predicting the real load multi-step ahead and mean load over 
successive intervals. Because the time series data is internally 
represented, the LSTM-ED based technology expands the 
LSTM's memory capacity. It is essential to improve load 
prediction accuracy.  
Song et al. improve the resource-utilization-aware energy 
efficient server consolidation method (RUAEE) by 
incorporating a resource reserve. The VM allocations can be 
changed by continuously calculating the ratio between 
resource allocation and reservation. Their migration and 
communication are expensive. 
A deep reinforcement learning model has been demonstrated 
by Karthiban and Raj [4] for supporting users with resource 
allocation in green computing. The dimensionality issue 
renders conventional Q-learning models ineffective due to the 
exponential growth of the state space and they did not predict 
future demand of resources. 
A new method was presented by Baig et al. [5] for 
automatically and adaptively selecting the optimum model to 
forecast the utilization of data center resources choose the 
optimal prediction model to apply to specific resource 
utilization observations acquired over a period of time, the 

suggested method creates a classifier based on statistical 
characteristics of previous resource usage. They did not 
enhance any machine learning techniques and not used any 
deep learning technique for workload prediction. 
Chien et al. [6] integration of cloud computing with edge 
computing in an evolving network design reduces the 
transmission of unnecessary data and addresses bottleneck 
difficulties. For dynamic throughput prediction, they 
employed LSTM, and for resource allocation optimization, 
they used GARAA, a GA-based algorithm. They weren't very 
concerned with increasing prediction precision and speeding 
up deep learning. 
Yu et al. [7] suggested an architecture for resource allocation 
based on self-organizing network-based matching slices. The 
dynamic traffic model of the multicast service in space-time 
is built using the multidimensional data and the efficient deep 
learning model known as LSTM (long short-term memory), 
which forms the basis for extra network resource allocation. 
They didn't enhance the LSTM. 
Autoencoders were utilized by Zhang et al. [8] to forecast 
how much CPU time virtual machines will need. The authors' 
tensor rank decomposition method reduced training time by 
compressing the input parameters. It needs a lot of processing 
power. Deep learning-based service composition (DLSC) 
was suggested by Haytamy and Omara [9]. This system 
combines the long short-term memory (LSTM) network of 
deep learning and particle swarm optimization (PSO).  
The PSO algorithm uses the results from the LSTM network 
to choose the best cloud service providers to work with in 
order to put together the necessary services and lower the 
consumer cost function. Using the LSTM network, precise 
predictions of the Cloud QoS values are made. 
For a dynamic resource allocation process, Praveenchandar et 
al. [10] recommended improved work scheduling and the 
optimum power minimization strategy. Resource allocation 
efficiency can be obtained in terms of task completion and 
reaction time by utilizing prediction mechanisms and 
dynamic resource table updating algorithms. For workload 
prediction, they didn't apply any deep learning techniques. 
Hussain et al. [11] looked at the procedure for finding and 
fixing SLA violations from a risk management perspective. 
As soon as an SLA was established, they provided a Risk 
Management-based Framework for SLA Violation 
Abatement (RMF-SLA), which entails SLA monitoring, 
violation prediction, and decision counseling. They used 
experiments to confirm and show that the framework is 
suitable for assisting cloud providers in avoiding service 
violations and fines. 
Banerjee et al. [12] suggested a multi-step-ahead workload 
prediction method using machine learning methods. Based on 
this forecast, it is recommended to distribute resources so they 
can be used more efficiently, reducing the data center's 
overall energy consumption. Based on the actual Bit brains 
workload trace, they assessed the efficiency of our 
framework. 
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3. Methodology 

The integration of numerous resources into a data center 
enables it to offer a range of resource services for cloud 
computing. How to deliver resources in a timely and accurate 
manner to meet user expectations is a significant concern. 
However, the resource demands of users fluctuate greatly and 
frequently change regularly. It's possible that the resource 
provision won't happen on time.  
Additionally, since some physical resources are sometimes 
turned off to save energy, they may not always be enough to 
meet user requests. To ensure positive user experiences using 
cloud computing, it is crucial to offer proactive resource 
provision. Recent cloud systems are experiencing resource 
management issues as a result of unanticipatedly high 
asynchronous resource demands (CPU time, memory, 
networks, etc.).  
Accurately predicting future resource demands is essential for 
supporting resource provision in advance. As a result, this 
work elaborately introduces the innovative technology 
known as Layer optimized based Long Short-Term Memory 
(LOLSTM). Here, the created LOLSTM approach makes 
predictions about future resource needs based on data from 
the past. For efficient resource allocation in the cloud, the 
CPU utilization, RAM, and workload are all included in the 
objective model.  
Additionally, when training the model, both internal and 
external factors such as different types and quantities of VMs 
with different leasing costs are taken into account. External 
aspects include dynamic workload. Additionally, the LSTM 
model's training process optimizes the hyperparameters and 
hidden layer count. The proposed LOLSTM model's design 
is shown in Figure 2. Four layers of the proposed LOLSTM 
technique are as follows: 

• The Input layer,  
• The Multiple hidden layer, 
• The Fully Connected layer, and  
• The Output layer. 

 
(i) The Input layer 

 
 

Figure 2.  Illustrates the architecture of proposed 
LOLSTM technique 

 
 
This is the first layer of LSTM model. The inputs for this 
layer are CPU usage time, memory, read_bytes, write_bytes, 
pid count and previous workload at different time interval 
which are formed using historical information. Let us assume 
the cloud structure with k Physical Machine’s  
 (PM) and b Virtual Machine’s (VM) and they are denoted as 
𝑃𝑃𝑃𝑃 = {𝑃𝑃𝑃𝑃1 ,𝑃𝑃𝑃𝑃2, . .𝑃𝑃𝑃𝑃𝑠𝑠 … . .𝑃𝑃𝑃𝑃𝑘𝑘}; 1 ≤ 𝑠𝑠 ≤ 𝑘𝑘  and 𝑉𝑉𝑃𝑃 =
{𝑉𝑉𝑃𝑃1,𝑉𝑉𝑃𝑃2, . .𝑉𝑉𝑃𝑃𝑎𝑎 , … . .𝑉𝑉𝑃𝑃𝑏𝑏}; 1 ≤ 𝑎𝑎 ≤ 𝑏𝑏 respectively. All 
PM will include dissimilar VMs. 

Data resource requested by the user can be denoted as, 

𝑅𝑅 = �𝑅𝑅1,𝑅𝑅2,𝑅𝑅3, … . .𝑅𝑅𝑓𝑓�                                                    (1) 

Data rate for each user can be represented as, 

𝐷𝐷 = �𝐷𝐷1,𝐷𝐷2,𝐷𝐷3, … . .𝐷𝐷𝑓𝑓�                                                    (2) 

The history of the users (previously used resources) can be 
given as, 

𝐻𝐻 =  {ℎ1, ℎ2, ℎ3, … … ℎ𝑥𝑥}                                                     (3)                                        

(ii) Multiple hidden layers  
This layer has several LSTM layers, each of which has 
several LSTM blocks. In LSTM layers, the number of hidden 
layers and hyperparameters are controlled. Additionally, QoS 
monitoring will be done, and users will be assigned resources 
based on the outcomes of the predictions. The building blocks 
of a typical LSTM network are called cells. Both the 
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concealed state and the cell state are carried over to the 
subsequent cell. The memory blocks, which are managed by 
three crucial parts known as gates, are in charge of recalling 
information. Three distinct input, output, and forget gates are 
shown on a single LSTM block in Figure 3. The LSTM uses 
three different gate mechanisms to monitor and safeguard 
data [14]. 
 

 
 
Figure 3. Shows the composition of one LSTM block 

 
LSTM can be expressed mathematically as follows. Input 
gate outputs two values after receiving input 𝑥𝑥𝑡𝑡,and 
outputℎ𝑡𝑡−1 from the previous time step. 
Input gate: 
𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖)                                                   (4)  
                                                                                                    
�̃�𝐶𝑡𝑡 = tanh (𝑊𝑊𝐶𝐶[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝐶𝐶                                              (5)  
                           
Forget gate: 
𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑓𝑓[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓)                                                        (6) 

 
Cell state: 
𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 ∗ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ∗ �̃�𝐶𝑡𝑡                                                         (7)                                                                      
Output gate: 
𝑜𝑜𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑜𝑜[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡 + 𝑏𝑏𝑜𝑜)                                                    (8) 
The LSTM unit's final output is: 
ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ∗ tanh (𝐶𝐶𝑡𝑡)                                                              (9)                                                                     

The weight matrix ‘W’ and bias vector ‘b’ in the equation 
above represent the learnable parameters in each gate. The 
sigmoid function is (x), and * stands for dot formation. After 
each LSTM block, the Rectified Linear Unit (ReLU) has been 
employed because it is easier to train and performs better. In 
the neural network, activation functions play a big role, where 
output at a network node corresponds to input. It improves 
learning rate, enables the neural network to understand 
nonlinear dependencies, and helps it stay away from 
vanishing gradients.  

In addition, there is no transform performed. For network 
predictions, At the output layer, linear activation functions 
are utilized. Every LSTM block uses ReLU because of its 
simple computations, linear nature, and simplicity of training. 
The ReLU function using x as the input vector looks like this: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝑥𝑥) = max (0, 𝑥𝑥)                                                   (10)   

Tuning the Hidden layers and Hyperparameters    

Hidden layers are acknowledged as being a crucial 
component of neural network activity, particularly when 
addressing difficult conditions. This is only possible, though, 
if the network has a complete understanding of the issue 
without any restrictions due to under or over-fitting. 
Generally speaking, neural networks with several hidden 
layers will perform better on challenging and larger issues. 
Neuronal networks need more neurons and hidden layers in 
order to provide outcomes that are acceptable.  

Some of the LSTM hyperparameters are the batch size, the 
number of units in a dense layer, the number of nodes and 
hidden layers, momentum, the number of epochs, the 
activation function, dropout, decay rate, and learning rate. In 
an effort to provide the most accurate predictions, the learning 
rate and epochs will be modified. A hyperparameter that 
controls how many iterations the learning algorithm performs 
on the entire training set is the number of epochs.  

To prevent overfitting and boost the neural network's capacity 
for generalization, the suggested LOLSTM was trained for 
the advised number of epochs. For the proposed study, the 
model is validated and its output is checked using a fraction 
of the training data utilized in each training session. The 
epoch at which the model begins to overfit was determined 
by tracking the accuracy and loss on the training and test 
datasets.  

The most important hyperparameter for maximizing deep 
neural network training is learning rate. Training is impacted 
by the learning rate's value. Neither convergent training nor 
divergent training will take place when the learning rate is 
high. Additionally, excessively poor learning rates are a result 
of insufficient instruction. As a result, selecting the 
appropriate learning will be critical for successful prediction. 
After selecting optimal hyperparameters and hidden layers, 
the required resources are predicted and allocated to the cloud 
users.  

To distribute the resource in cloud, the VM is selected based 
on bandwidth, processor, memory and Million Instructions 
Per Second (MIPS) and it is given as,  

𝑃𝑃𝑠𝑠,𝑎𝑎 = 𝐵𝐵𝑠𝑠,𝑎𝑎 ,𝑃𝑃𝑠𝑠,𝑎𝑎, 𝑅𝑅𝑠𝑠,𝑎𝑎,𝐻𝐻𝑠𝑠,𝑎𝑎,𝑇𝑇𝑠𝑠,𝑎𝑎                                                  (11) 

Where 𝐵𝐵𝑠𝑠,𝑎𝑎 denotes the required number of processor by 𝑎𝑎𝑡𝑡ℎ 
VM contained in 𝑠𝑠𝑡𝑡ℎ PM, 𝑃𝑃𝑠𝑠,𝑎𝑎 ,  denotes the required 
memory by 𝑎𝑎𝑡𝑡ℎ VM contained in 𝑠𝑠𝑡𝑡ℎ PM, , 𝑅𝑅𝑠𝑠,𝑎𝑎 is the MIPS 
of  𝑎𝑎𝑡𝑡ℎ VM contained in 𝑠𝑠𝑡𝑡ℎ PM, , 𝐻𝐻𝑠𝑠,𝑎𝑎 denotes the required 
bandwidth by 𝑎𝑎𝑡𝑡ℎ VM contained in 𝑠𝑠𝑡𝑡ℎ PM and 𝑇𝑇𝑠𝑠,𝑎𝑎 denotes 
the frequency scaling of 𝑎𝑎𝑡𝑡ℎ VM contained in 𝑠𝑠𝑡𝑡ℎ PM. 

The load of VM can be expressed as, 

𝑅𝑅𝑠𝑠,𝑎𝑎 = ∑ (𝑉𝑉𝑏𝑏+𝑉𝑉𝑚𝑚+𝑉𝑉𝑙𝑙+𝑉𝑉ℎ+𝑉𝑉𝑡𝑡)∗𝑋𝑋
𝑚𝑚𝑎𝑎𝑥𝑥(𝑉𝑉𝑏𝑏+𝑉𝑉𝑚𝑚+𝑉𝑉𝑙𝑙+𝑉𝑉ℎ+𝑉𝑉𝑡𝑡)∗𝑛𝑛

𝑛𝑛
𝑑𝑑=1 ∗ 1

𝑁𝑁
                        (12)                

Where 𝑉𝑉𝑏𝑏, 𝑉𝑉𝑚𝑚,𝑉𝑉𝑙𝑙,𝑉𝑉ℎ, 𝑉𝑉ℎ and 𝑉𝑉𝑡𝑡 represents a processing 
element, memory units, bandwidth component, MIPS 
element and frequency component in𝑎𝑎𝑡𝑡ℎ VM respectively 
and n denotes total number of users. 
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𝑋𝑋 = �1, 𝑖𝑖𝑓𝑓𝑑𝑑𝑡𝑡ℎ𝑤𝑤𝑜𝑜𝑤𝑤𝑘𝑘𝑤𝑤𝑜𝑜𝑎𝑎𝑑𝑑𝑤𝑤𝑤𝑤𝑤𝑤𝑏𝑏𝑤𝑤𝑎𝑎𝑡𝑡ℎ  VM
0, 𝑂𝑂𝑂𝑂ℎ𝑅𝑅𝑤𝑤𝑤𝑤𝑖𝑖𝑠𝑠𝑅𝑅

               (13)                                      

The load of PM can be denoted as, 

𝑅𝑅𝑠𝑠 = ∑ 𝑅𝑅𝑠𝑠,𝑎𝑎
𝑓𝑓
𝑎𝑎=1                                                         (14) 

(iii) Fully Connected layer 

This layer is in charge of determining when a SLA has been 
violated by comparing the expected QoS value to the 
threshold value. Using a dynamic threshold technique based 
on median absolute deviation (MAD), SLA violations are 
managed. The standard deviation is less prone to outliers and 
is more stable than the MAD [15]. Based on historical server 
use data, MAD generates new threshold values. Furthermore, 
MAD values for a given dataset 𝑥𝑥1, 𝑥𝑥2, … . 𝑥𝑥𝑛𝑛 can be created 
using the following approach. 

𝑃𝑃𝑀𝑀𝐷𝐷 = 𝑚𝑚𝑅𝑅𝑑𝑑𝑖𝑖𝑎𝑎𝑤𝑤(|𝑥𝑥𝑎𝑎 − 𝑚𝑚𝑅𝑅𝑑𝑑𝑖𝑖𝑎𝑎𝑤𝑤(𝑋𝑋𝑏𝑏)|)                                    (15) 

here 𝑋𝑋𝑏𝑏stands for prior CPU consumption and 𝑥𝑥𝑎𝑎 stands for 
current CPU utilization. The threshold value is represented as 

𝑇𝑇𝐻𝐻 = 1 − 𝑍𝑍 × 𝑃𝑃𝑀𝑀𝐷𝐷                                                             (16) 

In the equation above, the safety parameter Z is utilized to 
regulate how the threshold mechanism behaves. SLA 
violation can be identified based on above defined threshold 
𝑇𝑇𝐻𝐻.An SLA breach occurs if the CPU utilization approaches 
or exceeds the TH, and the next layer will estimate the 
severity of the risk violation. If the CPU utilization is within 
the defined 𝑇𝑇𝐻𝐻, no action will be taken. 

User level experience can be denoted as, 

𝐸𝐸 =  𝑇𝑇1𝐷𝐷 − 𝑇𝑇2𝐷𝐷                                                              (17) 

Where 𝑇𝑇1 and 𝑇𝑇2 are the constants. 

Delay 𝐷𝐷  can be expressed as, 

𝐷𝐷 = ∑ 𝑡𝑡𝑎𝑎
𝑘𝑘𝑤𝑤

𝑏𝑏
𝑎𝑎=1 + 𝐻𝐻𝑎𝑎                                                            (18) 

Where 𝑘𝑘𝑤𝑤 denotes writing speed in hard disk, 𝑂𝑂𝑎𝑎 denotes file 
size and 𝐻𝐻𝑎𝑎 denotes initialization period of VM. 

The factors that make up each job are memory size 𝑚𝑚_𝑠𝑠𝑖𝑖𝑠𝑠𝑅𝑅𝑖𝑖 
input data size (𝐼𝐼𝑖𝑖), CPU utilization (𝐶𝐶𝑖𝑖), use of memory for 
security (𝑚𝑚_𝑠𝑠𝑅𝑅𝑠𝑠𝑖𝑖), use of memory for scheduling (𝑚𝑚_𝑠𝑠𝑠𝑠ℎ𝑅𝑅𝑖𝑖), 
using the CPU for security (𝐶𝐶_𝑠𝑠𝑅𝑅𝑠𝑠𝑖𝑖) using the CPUfor 
scheduling (𝐶𝐶_𝑠𝑠𝑠𝑠ℎ𝑅𝑅𝑖𝑖). 

𝐶𝐶𝑡𝑡𝑑𝑑 , 𝐶𝐶𝑚𝑚, 𝐶𝐶𝐵𝐵stands for the transferring costs for task 𝑖𝑖 CPU, 
memory, and input data size, respectively. The weighted costs 
for each task, 𝑤𝑤𝑡𝑡𝑑𝑑, 𝑤𝑤𝑚𝑚, 𝑤𝑤𝑏𝑏   result in various minimization 
cost factors. 

The cost minimization factor [16] can be expressed as, 

min [(𝐶𝐶𝑡𝑡𝑑𝑑 × 𝑤𝑤𝑡𝑡𝑑𝑑) + (𝐶𝐶𝑚𝑚 × 𝑤𝑤𝑚𝑚) + (𝐶𝐶𝑏𝑏 × 𝑤𝑤𝑏𝑏)](19) 

𝐶𝐶𝑡𝑡𝑑𝑑 =  ∑ 𝐼𝐼𝑖𝑖𝑛𝑛
𝑖𝑖=1                                                                   (20) 

𝐶𝐶𝑚𝑚 = ∑ 𝑚𝑚_𝑠𝑠𝑖𝑖𝑠𝑠𝑅𝑅𝑖𝑖𝑛𝑛
𝑖𝑖=1 + ∑ 𝑚𝑚_𝑠𝑠𝑅𝑅𝑠𝑠𝑖𝑖𝑛𝑛

𝑖𝑖=1 + ∑ 𝑚𝑚_𝑠𝑠𝑠𝑠ℎ𝑅𝑅𝑖𝑖𝑛𝑛
𝑖𝑖=1      (21)                 

𝐶𝐶𝐵𝐵 = ∑ 𝐶𝐶𝑖𝑖𝑛𝑛
𝑖𝑖=1 + ∑ 𝐶𝐶_𝑠𝑠𝑅𝑅𝑠𝑠𝑖𝑖𝑛𝑛

𝑖𝑖=1 + ∑ 𝐶𝐶_𝑠𝑠𝑠𝑠ℎ𝑅𝑅𝑖𝑖𝑛𝑛
𝑖𝑖=1                  (21)  

A single task requires N time slots to be completed as follows: 

𝑁𝑁𝑥𝑥 = 𝐶𝐶𝑥𝑥
𝜏𝜏𝑓𝑓𝑥𝑥

                                                                         (23)                                  

Where 𝐶𝐶𝑥𝑥 denotes total number of CPU cycles; 𝑓𝑓𝑥𝑥denotes the 
operating frequency and 𝜏𝜏 denotes the allocated time slot for 
user x. 

(iv) Output layer 

The LOLSTM model's initial evaluation of the severity of the 
risk of SLA violation is done in the final layer. Then, using 
the softmax function, the necessary appropriate actions to be 
taken are classified according to the risk. The softmax 
function can be given as, 

𝜎𝜎(𝑠𝑠���⃗ )𝑖𝑖 = 𝑒𝑒𝑍𝑍𝑖𝑖

∑ 𝑒𝑒𝑍𝑍𝑗𝑗𝐾𝐾
𝑗𝑗=1

                                                              (24) 

where the zi values signify how serious a danger of SLA 
violation it is. By guaranteeing that the output values of the 
function add up to 1, the normalization factor at the formula's 
core creates an adequate probability distribution. The 
Softmax function is used to translate the training results in 
this case between 0 and 1. 

4.  Result and Discussion 

The execution of the specified task was assessed using the 
following criteria. 
 
(i) Prediction performance over 5 minutes interval 
 
  

Table 1.  Shows the estimated CPU usage with actual observed values

Methods Time period (5 mins interval) 
11.00 11.05 11.10 11.15 11.20 11.25 11.30 11.35 11.40 11.45 11.50 11.55 12.00 

Observed 
data 

452 460 475 485 495 499 510 517 532 545 548 550 558 

SVM 437 445 465 455 454 460 485 500 498 570 514 565 570 
RNN 428 428 432 550 460 450 485 590 570 518 504 589 580 
CNN 460 450 480 499 490 510 515 510 528 540 545 560 545 
Proposed 
LOLSTM 

450 459 470 484 494 501 508 518 532 544 545 551 557 
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Figure 4. Performance of CPU response time over 5 

minutes interval 
 
In comparison to RNN, SVM, and CNN, the proposed 
LOLSTM produces the greatest overall results. The results 
of the predicted and observed values are given for 5-min 
intervals and units are measured in millisecond (ms). 
Figure 4 shows that, when compared to other current 
methodologies, the proposed LOLSTM model predicts the 
resource value approximately closer to the observed value. 
 
(ii) Error rate 

 
MAD and RMSE are used to estimate the correctness of the 
model. Table 2 shows the error rate for various suggested 
and existing approaches. 
 

Table 2.  Error rate for various prediction methods 
 

Prediction 
methods RMSE MAD 

RNN 0.458 0.292 
SVM 0.309 0.254 
CNN 0.213 0.224 
Proposed 
LOLSTM 0.127 0.107 

 

 
 

Figure 5. Error rate for proposed and existing 
methods 

 
Figure 5 shows how often suggested and existing 
techniques fail. RMSE and MAD is comparatively low for 

the proposed LOLSTM technique when compared to RNN, 
SVM and CNN techniques. The suggested model is 
optimized for efficiency by selecting the appropriate 
hyperparameter values during training. The number of 
hidden layers in the model is another factor that can be 
optimized for high accuracy and low error rate. 
 
(iii) The Receiver Operating Characteristics 

(ROC) 
  
The ROC curve appears to be a significant signal for 
categorizing and identifying issues. The signal from the 
noise is separated using a probability curve known as a 
ROC by contrasting the TPR against the FPR at various 
threshold levels. 
 
TPR, which is often referred to as sensitivity, is a gauge of 
how accurately the negative class is computed. The 
specificity, or FPR, determines how much the model has 
overestimated the negative class. The ROC curves for the 
recommended and current approaches are shown in Table 
3. 
 
(iv) Receiver Operating Characteristics (ROC) 

The probability curve known as the ROC curve serves as 
the fundamental statistic for location and classification 
issues. Additionally, the ROC curve is employed to 
separate the noise signals in order to compare FPR and TPR 
at various threshold values. TPR nothing but the True 
Positive Rate is a sensitivity measure used for 
approximation of negative class accurately. Whereas the 
FPR which is the False Positive Rate determines the extent 
to where the negative class has been overestimated by the 
proposed model.   

Table 3. ROC curves for the proposed and existing 
methods are displayed. 

False 
Positive 
Rate 

True Positive Rate  

RNN SVM CNN Proposed 
LOLSTM 

0 0 0 0 0 
0.05 0.83 0.87 0.89 0.95 
0.1 0.84 0.88 0.9 0.96 
0.2 0.85 0.88 0.91 0.97 
0.3 0.85 0.89 0.92 0.98 
0.4 0.86 0.9 0.93 0.99 
0.5 0.87 0.91 0.94 0.99 
0.6 0.88 0.92 0.94 0.99 
0.7 0.89 0.92 0.95 0.99 
0.8 0.9 0.93 0.96 0.99 
0.9 0.9 0.93 0.97 0.99 
1 0.91 0.94 0.98 0.99 

 

EAI Endorsed Transactions on 
Energy Web 

| Volume 11 | 2024 |



 
 P. Sireeshar, Vishnu Priyan S, M. Govindarajan, S. Rajan and V. Rajakumareswaran 

  8      

 
Figure 6. ROC curve for proposed and current 

methods 

The ROC curve for both recommended and established 
approaches is displayed in Figure 6. When compared to 
previous works, the suggested work accurately predicts the 
need for resources, according to the ROC curve that is more 
pronounced in the upper left corner. 

(i) Training and Validation loss 

The loss function, which calculates the model's prediction 
error, is a crucial component of neural networks. 

 
Figure 7. Shows the training loss comparison 

 

 
Figure 8. Illustrates the Validation loss comparison 

Figure 7 and 8 illustrates the graphical performance of 
proposed LOLSTM and other techniques such as SVM, 
RNN, and CNN during the training and validation stages. 

The suggested LOLSTM's training and validation losses at 
epoch 100 are 0.6092 and 0.5828, respectively. The 
proposed method has a minimal training and validation loss 
when compared to previous methods. 

Also, Validation loss of proposed LOLSTM is low when 
compared to training loss which indicates the model is 
fitting to new data and there is no overfitting problem. The 
model generalizes well for all type of new data. 

(ii) Training and Validation accuracy 

 
Figure 9. Comparison of training accuracy 

 

 
Figure 10. Illustrates the comparison of Validation 

accuracy 

Moreover, Figures 9 and 10 accurately show how the 
planned LOLSTM performed during the training and 
validation phases. At epoch 100, validation accuracy is 
97.6% and training accuracy is 95.9%. Using the 
LOLSTM, higher training and validation accuracy scores 
were obtained than with the other methods. The suggested 
LOLSTM model is trained by adjusting hyperparameters 
and hidden layers. Hyperparameters like learning rate and 
epochs will be adjusted in this effort in order to produce the 
best prediction results. 
The suggested model is validated using the training data 
throughout each training session, and the results are 
validated. The proposed LOLSTM model predicts the 
resource value approximately closer to the observed value. 
When compared to previous works, the suggested work 
accurately predicts the need for resources, according to the 
ROC curve that is more pronounced in the upper left 
corner. Validation loss of proposed LOLSTM is low when 
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compared to training loss which indicates the model is 
fitting to new data and there is no overfitting problem. 
Using the LOLSTM, higher training 95.9% and validation 
accuracy 97.6% scores were obtained than with the other 
methods.  

Conclusion 

In this work, the resource requirements for future time slots 
are predicted using LOLSTM technique. By include hidden 
layer adjustment and hyperparameter optimization during 
training, the suggested model's accuracy is increased. It 
regularizes the weights of the network and avoids 
overfitting. In addition, the proposed work also takes 
necessary actions if the SLA violation is recognized by the 
model. Using the metrics MAD, validation loss, ROC 
curve, RMSE, training and validation accuracy, and 
training loss, evaluation process of the proposed model was 
done. The model's accuracy of 97.6% is 2.3%, 2.3%, 4.7%, 
and 6.6% higher than that of CNN, SVM, and RNN, 
respectively. Additionally, it was discovered that this 
proposed work had a 5% higher efficiency than the current 
works.    
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