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Abstract 

As the global demand for energy continues to grow and the rapid development of renewable energy sources, the energy 
sector faces complex data processing and analysis challenges. This paper discusses the probabilistic and statistical 
application of set algebraic system based on data mining in the field of energy, uses data mining technology to effectively 
integrate multidimensional data such as energy consumption, production and distribution, and uses set algebraic system to 
build data models. Then, probabilistic statistical methods are used to analyze the energy data to identify potential patterns 
and trends. Evaluate the economic and environmental impacts of different energy technologies through case studies. The 
research shows that the set algebra system based on data mining can effectively improve the ability to analyze energy data 
and help identify the key drivers of energy consumption. At the same time, probability statistical analysis can predict the 
effects of different energy policies after implementation, providing data support for decision-making. The utilization rate of 
renewable energy significantly reduces carbon emissions after adopting this method. Therefore, the set algebra system based 
on data mining combined with probability statistics provides an innovative solution for the energy field, which can better 
data analysis and decision support, and promote the efficient use of energy and sustainable development. 
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1. Introduction

In recent years, the world is faced with the increasingly severe 
energy crisis and environmental pollution, and the sustainable 
use of energy has become the core issue of economic 
development and social progress of all countries. With the 
continuous advancement of technology, especially the rapid 
development of information technology and data science, the 
amount of data generated in the field of energy has increased 
dramatically. These data cover all aspects of energy 
production, consumption, storage, transmission and 
management, providing valuable resources for in-depth 
understanding of the operating mechanism of the energy 
system and optimizing resource allocation. However, the 
traditional data analysis method is often powerless when 
dealing with complex, multi-dimensional and high-

dimensional data, and it is difficult to dig out the potential 
rules and patterns. At the same time, the rapid development 
of data mining technology provides a new idea for data 
analysis in the field of energy. By applying data mining 
techniques, researchers can extract valuable information from 
massive amounts of data and identify key factors that affect 
the efficiency and sustainability of energy systems. In 
addition, set algebraic systems are widely used in modeling 
and optimization of complex systems because of their unique 
advantages in expressing and dealing with uncertainty. In the 
field of energy, combining probabilistic and statistical 
methods of data mining and set algebra can not only improve 
the analytical ability of various energy data, but also help 
decision makers to effectively predict the effect and impact 
of policy implementation. This integration not only provides 
a scientific basis for energy demand forecasting, supply chain 
management, smart grid optimization and other issues, but 
also provides a new solution for the development of 
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renewable energy and the transformation of traditional 
energy. 
Set algebra expands its application scope on the basis of 
Boolean algebra, accurately characterizing complex 
phenomena in the real world, especially in the field of data 
mining [1]. It not only solves difficult problems, but also 
ensures the reliability, certainty, and interpretability of 
results, promoting the development of decision support 
systems. Probability theory includes probability logic and 
statistical probability, the former combining the advantages 
of probability theory and logic to deal with uncertainty 
problems; The latter explains probability phenomena from a 
frequency perspective [2]. The set algebra system can 
accurately reflect and simulate probability problems in 
various fields, and has important academic and practical 
value [3]. Signals are an indispensable element in daily life, 
and information can be obtained through signal acquisition 
and processing to achieve various functions [4]. Traditional 
digital signal processing often has redundancy, and the 
compression sensing theory adopts non adaptive linear 
measurement to reduce the number of sampling points, 
achieve high probability and accurate signal reconstruction, 
and break through the limitations of Nyquist sampling 
theorem [5]. The combination of data mining technology with 
databases and artificial intelligence has become a cutting-
edge research direction, applied in fields such as information 
management, query response, and decision support. This 
article proposes a set algebra system that combines 
compressed sensing and data mining, applied to probability 
and statistics problems, to improve stability and robustness, 
and to address issues such as outliers and missing values, 
demonstrating significant advantages [6]. 

2. Related work

In the context of growing global energy demand and 
increasing awareness of environmental protection, the energy 
sector is facing serious challenges. In order to cope with these 
challenges, more and more researchers begin to pay attention 
to the application of data mining and statistical analysis in the 
field of energy, especially the probabilistic statistical method 
based on set algebraic system. The application of data mining 
in the field of energy has been paid more and more attention. 
Energy management involves large-scale, high-dimensional 
and complex data, which is difficult to deal with effectively 
by traditional data analysis methods. It is mentioned in the 
literature that data mining technologies, such as cluster 
analysis, classification algorithm and association rule mining, 
are widely used in energy consumption pattern recognition, 
load forecasting, anomaly detection and so on. Literature uses 
clustering algorithm to analyze residential electricity 
consumption data, successfully identifies user behavior 
patterns, and puts forward targeted energy-saving 
suggestions. This research not only optimizes energy 
management, but also improves the efficiency of resource 
use. The set algebraic system provides a flexible way to 
model the relationship between data, which makes the 
analysis of uncertainty and fuzziness more efficient. 

Literature shows that set algebra can help to deal with the 
complexity problems caused by multi-source data fusion. In 
the study of smart grid management, the set algebra method 
is applied to establish the dynamic model of energy flow, 
which improves the response speed and reliability of the 
system. In probabilistic statistics, the literature applies 
statistical methods to analyze and forecast energy demand 
and supply. Traditional statistical models often assume that 
data are independent and equally distributed, but in reality, 
energy data may show complex temporal dependence and 
spatial correlation. For this reason, more and more 
researchers have begun to try methods such as hybrid models 
and Bayesian statistics. The literature uses Bayesian networks 
to analyze the impact of existing energy policies on future 
energy demand, and the results show that the interaction 
between different policies significantly affects the accuracy 
of the forecast. This approach provides a scientific basis for 
energy policy making and promotes more sustainable energy 
development strategies. 
Methods that combine data mining with probability statistics 
are also being used in the field of renewable energy. For 
example, many studies have explored the prediction of 
renewable energy sources such as wind and solar energy, 
using time series data mining technology to improve the 
accuracy of power generation prediction. Data mining 
method was used to analyze the relationship between 
historical meteorological data and power generation data, 
from which weather factors were found to have a significant 
impact on renewable energy power generation, and then a 
prediction model based on machine learning was proposed, 
which effectively improved the scheduling capability of 
renewable energy. Therefore, the probabilistic statistics of set 
algebraic system based on data mining is gradually applied in 
the field of energy, and relevant research results provide 
important support for energy management and policy 
making. However, current research still faces several 
challenges, including data quality and availability, model 
complexity, and the integration of different data sources. 
The literature points out that set algebra systems have wide 
applications in various fields such as electronic circuits, 
navigation, and aviation [7]. These fields are often 
accompanied by time delay and noise interference, and 
considering time delay or random factors can form 
corresponding set algebraic systems. Due to the difficulty in 
obtaining theoretical solutions for most systems, the study of 
numerical methods is particularly crucial. Therefore, the 
study of stability and convergence of numerical methods has 
become an important topic in numerical analysis. The 
literature indicates that based on the data obtained in the 
previous stage, this stage is dedicated to deep processing it to 
construct a dataset suitable for data mining [8]. This process 
involves two core steps, and through various measures, we 
have laid a solid foundation for subsequent data mining work. 
The literature points out that traditional information 
acquisition models often adopt a sampling followed by 
compression approach [9]. In this process, only the relevant 
numbers with larger absolute values are written, so that 
coefficients with zero are equal or similar. This approach 
actually treats a lot of valuable information as useless data, 
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leading to the loss of information resources. This not only 
increases the burden of storage space, but also extends the 
time for collecting samples, thereby restricting the 
development of the information processing field. In order to 
overcome this limitation, we urgently need to explore new 
information processing methods to more effectively utilize 
information and promote rapid progress in the field of 
information processing. The literature indicates that 
reconstruction algorithms play a crucial role in sensing 
technology [10]. Not being able to carefully select the 
appropriate reconstruction algorithm may result in us being 
unable to accurately reconstruct the signal within the 
allowable error range. In algorithm design, two crucial factors 
are the precise reconstruction probability of compressed 
signals and the ease of calculation. The key to measuring 
algorithm performance is the precise reconstruction 
probability [11]. However, when using compressed sensing 
technology to reconstruct the original signal, the 
computational complexity is too high, resulting in a lengthy 
reconstruction process, which is not accepted in practical 
applications [12]. Therefore, the current research focus is on 
how to improve the efficiency and accuracy of signal 
reconstruction while reducing computational complexity. 
The literature points out that the NP hard problem cannot be 
quickly solved through polynomial time complexity 
algorithms due to its inherent difficulty [13]. When we face 
specific challenges, the calculation of determining the 
remaining probabilities is often more complex than decision-
making problems. However, in an environment like Maple, if 
the number of values can make the algorithm very clear, the 
processing of probability reconstruction and table verification 
tasks can usually be carried out with linear time efficiency. 
This highlights the significant advantages brought about by 
decomposing the probability space into classes. Literature 
data mining is a complex process that involves multiple 
stages and requires repeated processing [14]. Each stage 
requires the collaboration of experts, data analysts, and other 

professionals. During the process, it is often necessary to 
make cyclic adjustments until satisfactory results are 
achieved. Its core is to mine knowledge patterns from raw 
data, with the goal of foresight and description. Predicting 
future values and describing them reveals interpretable data 
patterns [15]. 

3. Compression sensing technology

3.1. Basic Theory 

It is essential to conduct in-depth analysis of signal 
characteristics and establish appropriate mathematical 
models before processing signals. In nature, analog signals 
often need to be converted into discrete digital signals 
through sampling processes. Therefore, we often model one-
dimensional signals as vectors and two-dimensional signals 
as matrices. When constructing a mathematical model for 
compressed sensing, in order to simplify processing, we 
assume that the signal is a sequence of discrete values 
obtained based on the Nyquist sampling frequency, which can 
be represented by a one-dimensional vector. In this way, for 
signal x(xϵRn), the compression sensing theory describes its 
measurement process 

In most cases, signals in nature often do not have sparsity, 
so we need to transform signals into sparse signals through 
domain transformation, namely: 

x = Ψα(1) 
The measurement of signals can be done using the 

formula: 
y = ΦΨα = Θα(2) 
The compressed sensing technique identifies the non-zero 

element in the vector α by the m measurements, thus restoring 
the original signal. The whole process of signal processing by 
compressed sensing is shown in Figure 1. 

Original signal Sparse 
acquisition

Signal 
reconstruction

Approximation of 
the original signal

Figure 1. Compression sensing signal processing flow 

Compression sensing theory mainly consists of three 
components: sparse representation, measurement matrix, 
and reconstruction algorithm. 

3.2. Algorithm design 

Facing the problem of wireless link, this paper proposes a 
new compressed sensing data collection algorithm based 
on sparse block observation matrix (CS-SBM). In this 
algorithm, the sparse block observation matrix operates 
within the cluster, and the member nodes determine 

whether they participate in the current round of data 
collection according to the non-zero states of their stored 
sparse observation vector elements. If the packet loss 
occurs in the data transmission and the data received by the 
cluster head is incomplete, the MC (Matrix Completion) 
theory can be used to recover the lost data. 

 However, the observation vector Y= ΦX obtained by 
directly using the observation vector Φ does not have the 
characteristics of low rank or approximate low rank, and 
there is no way to directly recover the observation value Y' 
of the loss with MC theory. To this end, this paper proposes 
a sparse block observation (SBM) matrix to observe the 
original data vector X. The matrix is characterized by only 
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one non-zero element 1 per row, which reduces the energy 
loss of each round of data transmission, because only one 
node of data is sent per round. At the same time, the 
observation matrix still maintains the approximate low 
rank feature, making the data processing more efficient and 
accurate. 

The matrix form in which the data vector is represented 
as m×n is: 

Xmn =

⎝

⎜
⎛

x11 ⋯ ⋯ ⋯ xin

⋮ xij ⋯ xi(j+qk−1) ⋮
⋮
⋮

xm1

⋮
x(i+pk−1)

⋯

⋱ ⋮ ⋮
⋯ x(i+pk−1)(j+qk−1) ⋮

⋯ ⋯ xmn ⎠

⎟
⎞

m×n

(3) 

Where m×n=N1, its block matrix is: 

Xpk×qk

′ = �
xij ⋯ xi(j+qk−1)

⋮ ⋱ ⋮
x(i+pk−1)1 ⋯ x(i+pk−1)(j+qk−1)

�

pk×qk

(4) 

X exhibits the characteristic of approximate low rank, 
and its corresponding block matrix X' also possesses this 
property. In order to maintain the corresponding properties 
of the observation matrix, we constructed a sparse block 
observation matrix so that X' can be presented in the matrix 
form of the observation vector Y. In this way, we can 
effectively restore matrix X' using the MC principle. 
Therefore, the SBM matrix is defined as: 

ΦE(h, g) = �1, g = Ωh

0, others
(5) 

3.3. Experimental Results 

In order to comprehensively demonstrate the excellent 
functions of the algorithm proposed in this paper, the signal 
reconstruction probability was used as an evaluation 
indicator to compare the OMP (Orthogonal Matching 
Pursuit) algorithm with the algorithm proposed in this 
paper in detail. This comparison was made under different 
observation conditions of M. By comparison, we can more 
intuitively see the advantages of our algorithm in signal 
reconstruction. The specific results are shown in Figure 2. 

Figure 2. Compared the reconstruction probabilities 
of two algorithms under different observation values 

Observing Figure 2, we can observe that when the 
observation value M is small, the reconstruction 
probabilities of the two algorithms are almost the same. 
However, as the observed value M gradually increases, the 
reconstruction probability of the algorithm proposed in this 
paper gradually surpasses that of the OMP algorithm, and 
the reconstruction probability of the algorithm proposed in 
this paper shows relatively stable performance. In addition, 
this comparison helps to comprehensively evaluate the 
performance characteristics of the two algorithms. The 
specific results are shown in Figure 3. 

Figure 3. Comparison of reconstruction probabilities 
between two algorithms under different sparsity 

levels 

It can be clearly seen from the graph that as the sparsity 
K increases, the reconstruction probabilities of both 
algorithms show a decreasing trend. However, as the 
sparsity K gradually increases, the reconstruction 
probability of our algorithm is always higher than that of 
the OMP algorithm. Specifically, when the sparsity K is 45, 
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the reconstruction probability of our algorithm reaches 
50%, while the reconstruction probability of the OMP 
algorithm is 0. Furthermore, it is worth noting that in the 
case of sparsity K not exceeding 30, the reconstruction 
probabilities of both algorithms have reached their 
maximum value, which is 100%. 

Figure 4 illustrates the relationship between the number 
of observations M and the normalized mean absolute error 
(NMAE) when p=0.4. 

Figure 4. The relationship between observation 
frequency and reconstruction accuracy 

Even when facing challenges, the algorithm proposed in 
this paper can still effectively improve the reconstruction 
accuracy by increasing the number of observations, thereby 
significantly reducing the adverse impact of packet loss on 
data reconstruction accuracy. 

4. Data mining algorithms

4.1. Algorithm design 

Given the differences in source and semantic information 
among modal data, we need to design specific feature 
extraction methods for each modality to accurately capture 
its unique representation. Next, we will take the integration 
scenario of three sparse modalities as an example to 
elaborate in detail. Imagine a spatiotemporal prediction 
task that includes data from three modalities: x∈RR×C×Tx, 
Y∈RR×C×TY, and z∈RR×C×TZ. For these three modalities, we 
have designed corresponding feature extractors to extract 
their key information. The data distribution obtained after 
processing by these feature extractors is defined as: 

pθX
(Xe) = ∫

X
q(Xe|X, θX)p(X)dX ; pθY

(Ye) =

∫
Y

q(Ye|Y, θY)p(Y)dY ; pθZ
(Ze) =

∫
Z

q(Ze|Z, θZ)p(Z)dZ(6) 

Where q(Xe|X,θX) represents that the feature extractor 
maps input data X to the hidden space Xe function, θX is 
the core parameter, and the hidden space PθX(Xe) reveals 
the feature distribution characteristics. For information X, 
Y, and Z, the respective feature extractors are used to 
obtain feature representations such as Xe, Ye, and Ze. These 
extractors are based on deep neural networks. Compared 
with other modes, the corresponding representations 
proposed are all used in the same channel dimension. 

Although single-modal representation can be directly 
applied to prediction tasks in nature, it may be 
accompanied by semantic bias and semantic insufficiency. 
Especially sparse mode, because of the limited amount of 
data, its representation often lacks sufficient semantics. 
Therefore, it is necessary to make up the semantic 
deficiency through the interaction of features between 
modes. In this paper, we aim to explore the interaction 
between modes by integrating high-dimensional 
representations of all single modes. Inspired by the idea of 
graph fusion, we design a multi-layer feature interaction 
module (MFI), which is similar to the structure of 
hierarchical neural networks, and can successively 
simulate the interaction process between single, two-mode 
and three-mode modes. The MFI module is composed of 
single-mode, two-mode and three-mode dynamic learning 
layers. It treats each interaction as a vertex and sets the 
weight of the edge according to the similarity between the 
interactive vertices and the importance of the vertices. 

In the first layer, the single-modal dynamic learning 
layer, we introduce the single-modal vertices of three 
modes, whose information vectors are represented as ΨX, 
ΨY, and ΨZ, respectively, which correspond to their 
respective high-dimensional representations Xe, Ye, and Ze. 
In this layer, we treat each vertex with a modal attention 
network to highlight the importance of different modes in 
the interaction process. By calculating the weighted 
average of the information of all single-mode vertices, we 
obtain the final single-mode dynamic representation, where 
the weight of each vertex is determined according to its 
contribution during the interaction, and the weight of each 
single-mode vertex is defined as: 

Aϕ = MAN(Ψϕ; θMAN)(7) 

In modal attention networks, θMAN as a parameter. And 
these weights, the final single modal vector is: 

ΔU = 1
3
∑ Aϕ ∙ϕ Ψϕ(8) 

The second layer is a bimodal dynamic learning layer. 
In this layer, we adopted a multi-layer neural fusion 
network (MLP) to fuse every two unimodal vertices, 
thereby generating corresponding bimodal vertices: 

Ψϕ1ϕ2
= MLP(Ψϕ1

⊕ Ψϕ2
; θMLP)(9)

Regarding the weight setting of the edges connecting the 
first and second layers, we first use inner product to 
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estimate the similarity of every two unimodal information 
vectors in the first layer. Based on an assumption: if two 
information vectors are similar, there is relatively little 
complementary information between them, and this 
information has been fully explored in the first layer. 
Therefore, we infer that the higher the similarity between 
two information vectors, the lower the interaction 
importance between their corresponding bimodals. Here, 
we define the similarity between two information vectors 
as: 

Sim(ϕ1, ϕ2) = ψ�ϕ1

T
ψ�ϕ2

(10) 

Based on similarity estimation, we further define the 
weight of the second layer vertex Φ1Φ2, the formula is as 
follows: 

A�ϕ1,ϕ2
=

Aϕ1
+Aϕ2

Sim(ϕ1,ϕ2)+0.5
(11) 

We construct a bimodal dynamic network, which fuses 
bimodal vertices into three modal vertices to form a three 
modal dynamic learning layer. The MLP network here does 
not share parameters with the second layer. At the same 
time, the specific bimodal vertices are fused with the 
unimodal vertices that are not involved in their formation, 
resulting in an additional three modal vertices. Therefore, 
there are six three modal vertices in the learning layer. We 
use a unified weight calculation method and the same 
importance measurement in the second layer to summarize 
the weight information of each three modal vertex and get 
the final three modal information. Importance 
measurement method. Then we add the weighted 
information from each three modal vertex to obtain the 
final three modal information ΔT. 

4.2. Experimental Analysis and Results 

Firstly, we constructed an undirected network with 200 
nodes and two equally sized nodes using a random module 
model. Among them, half of the data that matches the 
community is randomly allocated to obtain the adjacency 
matrix and metadata information of the network data. 

Subsequently, we combined the essential information of 
adjacency matrix and metadata, applied the data mining 
model proposed in this paper, and estimated the model 
parameters to ultimately understand the results of 
community partitioning. Statistical inference algorithms 
are very stable and not easily affected by data interference. 
Even if the data is incomplete or has issues, it can still 
effectively identify the communities in the data. Moreover, 
this algorithm is very powerful, even if half of the metadata 
of nodes in the network is random, it will not affect its 
effectiveness in conducting community testing. It is worth 
noting that although there is randomly assigned metadata 
in this network, it cannot have a significant impact on the 
final community detection performance. Figure 5 shows 
the approximate process of the proposed data mining 
model in artificial data. 

Adjacency network is generated by 
random module model

Half of the nodes are set on the 
community to match the metadata, the 

others are random

Calculate model parameter estimation 
based on Bayesian conditional 

probability

Get the community division of the 
artificial network

Figure 5. The application process of the model in 
artificial data in this article 

The data mining model constructed in this article is 
applied to artificial networks, and the resulting data first 
lists the number of each node, followed by providing 
metadata information of the nodes. In addition, the results 
also show the probability values of nodes being assigned to 
the first and second communities. It is worth noting that the 
community detection results in this article are not simply 
classified, but rather use a probability form to reflect the 
possibility of nodes belonging to different communities. 
This processing method also has potential application value 
for the study of overlapping communities and can be one 
of the future research directions. Table 1 shows the 
performance indicators of community detection results 
obtained from the model in this article. 

Table 1. Regarding the community detection results 
of the model in this article, community indicators 

Classification of clubs Club 1 Club 2 
Accuracy rate 0.9028 0.7718 

Recall rate 0.5889 0.8817 
F1 metric 0.7489 0.8231 

From these data, it can be seen that the algorithm has 
high accuracy in identifying nodes belonging to the 
community. These results fully demonstrate that the data 
mining model proposed in this article demonstrates 
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excellent performance in computer synthesized data, 
effectively extracting structural information from artificial 
networks. This article observes the changes in runtime of 
the OMP algorithm and our algorithm, as shown in Figure 
6. 

Figure 6. Run time 

From Figure 6, it can be observed that in all datasets, the 
running time consumed by the algorithm in this paper is 
less than that of the OMP algorithm, and the startup time 
of the algorithm in this paper does not show a significant 
change with the variation of minutil, indicating that the 
algorithm is less sensitive to minutil. 

Observations have shown that our algorithm 
outperforms the OMP algorithm in handling dense 
datasets. Because the algorithm in this article adopts an 
extended branch pruning strategy, which prunes the search 
space by using the utility upper limit of the extended branch 
itemset, abandoning the inefficient construction of linked 
lists, making the algorithm more efficient in data 
processing. Therefore, the algorithm in this article runs 
faster on dense datasets. As shown in Figure 7, a 
comparison was made between the algorithm proposed in 
this paper and the OMP algorithm in terms of memory 
wear. 

As shown in Figure 7, the memory loss of our algorithm 
and OMP algorithm was compared. 

Figure 7. Memory consumption 

Figure 7 shows the comparison between our algorithm 
and OMP algorithm in terms of memory consumption. On 
all datasets, our algorithm exhibits lower memory 
consumption. This is mainly due to a series of optimization 
measures adopted by the algorithm. Firstly, by using linked 
list overlay technology to reduce duplicate data in the 
linked list, the memory usage during the initial utility 
linked list construction is reduced. Secondly, utilizing a list 
buffering structure to efficiently utilize memory resources 
and optimize the storage of utility linked list information. 
In addition, the priority filtering strategy reduces the 
construction of inefficient linked lists, thereby reducing the 
number of utility linked lists and memory consumption. 
Finally, the extended branch pruning strategy prunes the 
search space based on the actual utility upper limit, 
effectively reducing memory usage. These innovative 
designs together make our algorithm superior to the OMP 
algorithm in terms of memory consumption. 

5. Probability and Statistical
Observations of Set Algebraic Systems

5.1. Preparatory knowledge 

In order to discuss the relevant content of non smoothness 
analysis, we first need to clarify some basic terms and 
nature. 

We define the Euclidean projection from x to Ω. If Ω is 
a bounded closed set, then any x∈Rn, set Π(x;Ω) are all non 
empty. Using Euclidean projection to define a normal cone 
on a finite dimensional space: 

N(x�; Ω) ≜ lim sup
x→x�

[cone(x −∏(x, Ω))](12) 

The formation of the subdifferential ∂Φ(x) depends on 
the specific normal cone and the image characteristics of 
the function Φ. Here, we set Φ as a finite real-valued 
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function and introduce the corresponding cone concept. 
The original intention of this introduction comes from the 
in-depth study of the optimal control problem with terminal 
geometric constraints. In deriving the necessary conditions 
for this kind of problem, we find that the problem can be 
transformed into a more manageable form of free terminal 
control when the limit treatment is taken. 

Notably, this cone is non-convex, and the convex 
envelope of the subdifferential of a locally Lipschitz 
continuous function is just the Clarke generalized 
subdifferential of that function. If Φk is lower half constant 
near point x, here: 

∂�ϕ(x0) ≜ {x∗∗ ∈ Rn �lim inf
u→x0

ϕ(u)−ϕ(x)−〈x∗∗,u−x〉
|u−x|

≥

0}(13) 
Represents the Frechet subdifferential. Using the 

positive and negative symmetric structure method, we 
have: 

∂+ϕ(x0) ≜ −∂(−ϕ)(x0)(14) 

It should be noted that for a few Lipschitz functions, the 
basic subdifferential and the Frechet subdifferential are 
probably not the same. 

5.2. Set algebraic system model 

Variable delay differential algebraic systems are widely 
used in many fields of science and engineering, such as 
computer aided design, circuit analysis, mechanical 
systems, chemical reaction simulation and real-time 
simulation of automatic control systems, so it is of great 
theoretical significance and practical value to study such 
problems. However, such equations have both delay terms 
and algebraic constraints, which makes the analysis 
process extremely complicated. Therefore, this paper 
mainly discusses a class of variable delay differential 
algebraic systems with specific indexes. Let x '(t) be the 
inner product in the space CM and ǁ·ǁ be the norm derived 
from that inner product. 

The upper bound is obtained for every x,u∈CM, y∈CN, 
and for example L1,L2,L3 are fixed and invariant numbers 
of appropriate size. In addition, another step assumes that f 
satisfies the following conditions: 

Re〈x1 − x2, f(x1 − u1, y) − f(x2 − u2, y)〉 = α‖x1 −
x2‖2 + β‖u1 − u2‖2(15) 
�f(x, u, y1) − f(x, u, y2)� ≤ γ�y1 − y2�, x, u ∈

CM, y1, y2CN(16)

5.3. Probability Statistics of Set Algebraic 
Systems 

According to the finite nature of storage tapes, automata 
can be divided into two categories: finite band automata 

and infinite band automata. Among them, finite automata 
play a crucial role in modeling discrete input-output 
systems due to their limited control states and symbol sets. 
In practical applications, finite automata are further divided 
into Moore type finite state machines and Mealy type finite 
state machines based on whether input signals are utilized 
or not. A notable feature of the Moore type finite state 
machine is that its output signal is influenced by the current 
state, meaning that its output is actually a function of the 
current state. As a form of deterministic finite automaton, 
i.e. a 5-tuple:

A = (Q, ∑, δ, h, q0)(17)

Finite automata can be regarded as a device composed 
of an input band and a controller. The input strip is 
subdivided into multiple squares, each of which is used to 
store a specific symbol, all of which come from a limited 
set of symbols Σ. The controller has a limited number of 
potential states, which constitute the set Q. The controller 
is equipped with a read in head to capture symbols from the 
input band. It is worth noting that the concept of time here 
is discrete, and at system startup, the controller is initialized 
to state q0. Its core function is to determine the next state 
based on the current state q and the symbol a captured from 
the input by the read in header, and to achieve the transition 
from state q to state q': 

q′ = f(q, a)(18) 

And move the reading head one grid to the right. As 
shown in Figure 8. 

a b c d d e e ……

controller

Input tape

Figure 8. Finite automaton 

The Moore machine identifies its condition by 
conveying letters, and it is not very attentive to accepting 
requests, so it is not used to accept or reject input, but to 
perform calculations. For special input sequences, Moore's 
machines can perform accurate calculations like finite 
deterministic automata, and their output results are 
sequentially accessed state identification series. When a 
Moore's machine has countless states, it can be represented 
by a list containing two aspects: one is a square table 
derived from natural number pairs, used to describe the 
transition function, i.e. m exists in (i, j); The other part is a 
list of state identifiers, arranged in the order of the states in 
the transition table, where the first state is the initial state. 
The status identifier has three values: 0 (false), 1 (true), and 
2 (undetermined). 

J. Yu 
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In computer algebra systems, a probability table is a 
complex data structure that has a unique function of 
extracting and deriving probability values that are not 
directly stored but can be calculated from existing data. 
This means that users only need to input some initial data, 
and the system can automatically calculate the remaining 
probability. Taking n independent original events as an 
example, users only need to input 2n probabilities, and 
other probabilities can be automatically calculated as 
needed. If this feature is not available, users will need to 
manually input all 2n probability values. This table is based 
on the principle of independence between events and 
allows for reconstruction of unspecified values. The atoms 
of a free Boolean algebra, as the index of the original event, 
can accurately define a discrete probability space, where 
the measurable element field is the Boolean algebra. A 
probability space can be decomposed into the product of 
multiple small probability spaces, which we call a class. 
The characteristics of each class are determined by the 
probability assignment method of its atoms, and elements 
with zero probability do not need to be specifically 
specified. 

There are two strategies for dealing with unclear 
probabilities: 

(1) Class level: The probability of missing is usually
considered zero; 

(2) Probability space level: The probability associated
with different atomic events should remain in an 
unspecified state, and these probabilities can be 
reconstructed under the premise of inter class 
independence. 

For example, event a, let its probability be: 

P(a) = u, P(a′) = 1− u(19) 

Note that probability is a numerical value that exists in 
symbolic form here. Based on the previous explanation, we 
may need to artificially assign probabilities to event a and 
its complement a', despite the existence of certain 
correlations between them. Although we can derive the 
probability of a', this derivation may bring some problems: 
(1) a large amount of calculations; (2) It is difficult to
combine another more fundamental and easily
implementable extension method, so we set it to zero for
all unspecified probabilities.

So the system can infer the probability that the input is 
not yet clear: 

P(b ∧ a) = P(b)P(a) = [P(b ∧ c) + P(b ∧
c′)]P(a) = 1

4
u(20) 

This article discusses in detail the calculation problem 
of probability statistics in set algebra systems. By 
implementing the conversion process from Moore's 
machine to probability table, we have verified the 
feasibility and enormous potential of the proposed method. 
Especially for large-scale set algebra problems, using this 
computational method can fully simplify the process, 

improve its efficiency, and demonstrate broad application 
prospects and important theoretical value. 

6. Conclusion

 With the continuous increase of global energy demand and 
the promotion of sustainable development goals, the 
application of data mining based set algebra system and 
probability statistics in the energy field is particularly 
important. Data mining has shown its powerful ability in 
the identification and analysis of energy consumption 
patterns, helping managers to better understand user 
behavior to formulate effective energy conservation 
strategies. At the same time, combined with the ensemble 
algebra system, it can process multi-dimensional and 
multi-source energy data, and enhance the real-time 
analysis ability of energy flow and equipment operating 
state. This is important for improving the reliability and 
efficiency of the energy system. The application of 
probability statistical method brings a new perspective for 
energy demand forecast. By using sophisticated statistical 
models, researchers are able to accurately assess 
uncertainty and analyze the impact of policy changes on 
energy demand, thereby providing a scientific basis for 
policy formulation. In addition, for the prediction and 
management of renewable energy, the combination of data 
mining technology and probabilistic models makes the 
scheduling of wind and solar power generation more 
accurate, and further promotes the utilization efficiency of 
renewable energy. Therefore, the probability statistics of 
set algebraic system based on data mining has shown a 
broad prospect in the field of energy, and has great practical 
value and research significance. As the technology 
develops and its application deepens, it is expected to 
provide strong support for building more efficient, reliable 
and sustainable energy systems. 
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