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Abstract 

INTRODUCTION: Photovoltaic (PV) energy sources frequently experience issues, including fragmentation, open-circuit, 
short-circuiting, and other common and hazardous problems. The current focus of PV research is on fault detection within 
solar arrays. Traditional models encounter challenges in identifying errors due to uncertainties in panel settings and the 
complex nature of the actual PV structure. 
OBJECTIVES: This study aims to introduce a novel Extreme Gradient Boosting (XGBoost) approach for fault diagnosis in 
PV arrays. 
METHODS: The XGBoost algorithm is trained using collected PV array defect data samples. Data preprocessing is 
performed to manage missing values and remove noisy data. Feature extraction is conducted using Linear Discriminant 
Analysis (LDA) to improve detection accuracy. To further enhance XGBoost’s performance, the World Cup Optimization 
(WCO) approach is applied to select optimal features from the extracted data. Fault detection is then conducted using the 
XGBoost algorithm on the processed data. Various indicators are utilized for performance assessment within the Python 
environment. 
RESULTS: The comparative analysis demonstrates that this research improves fault detection efficiency in PV arrays 
compared to existing methodologies. 
CONCLUSION: The study presents an effective method for enhancing fault detection in PV systems, showcasing the 
advantages of the XGBoost and WCO-based approach over conventional methods. 
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1. Introduction

Interest in solar energy as a sustainable power source has 
grown as conventional fossil resources are becoming 
depleted. As a vital component of solar power era 
buildings, photovoltaic (PV) arrays are extremely 
susceptible to damage due to the placement of their 
components in hazardous exterior environments [1]. PV 
array fault detection is an essential safety measure for 
providing great, commercially viable PV energy 
technology. Due to its many benefits, including consistent 
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overall performance, long term viability zero emissions, 
and adaptability, solar PV generating is now widely 
employed in the renewable power sector [2]. The need to 
guarantee the uninterrupted functioning of PV systems is 
growing in conjunction with their installed capacity. One 
major operational issue with these systems is effectively 
identifying and managing crises. Fault detection is now 
crucial for raising revenue and preventive expensive 
maintenance, rather than only safeguarding the 
dependability and security of PV power plants [3]. 
Identifying disorders effectively is a significant approach, 
especially when it comes to PV systems DC side. There is 
now a significant void in the standard administration and 
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protection of PV structures due to the incapacity of 
traditional protective devices to accurately identify and 
categorize problems [4]. Because PV arrays operate in a 
range of environmental conditions, they can eventually 
experience physical damage or degeneration. Defects such 
as short circuits or grounding problems can lead to 
electrical shocks, fries, or heating if they are not discovered 
and corrected promptly. Fault analysis increases the safety 
of consumers and nearby workers by identifying potential 
threats before they escalate. Solar PV structures require 
efficient failure detection and active repair. The probability 
of a fireplace increases during power outages, and 
ineffective fault detection can lead to several safety 
concerns. PV structures could face several issues [6]. Thus, 
before developing surveillance and fault identification 
algorithms, it is crucial to understand the failures observed 
in real world situations. 
The aging process has several reasons why PV systems 
malfunction. The essential parts that transform the DC 
generated by solar panels into alternating current (AC) 
suitable for use in houses or on the grid are inverters. 
Factors such as thermal stress, aged components, or 
manufacturing errors can cause inverters to fail, which can 
lead to diminished performance or system breakdown as a 
whole [7]. The three main classifications of PV system 
defects are incipient, sudden, and intermittent based on the 
features of their time course. Some defects are transient or 
irregular and show up gradually, such as partial shadows 
and environmental stress [8]. Problems including 
disconnector loneliness, junction box failures, failures of 
open circuits and short circuits from line to line or line to 
ground that occur abruptly and repeatedly as a consequence 
of damage to the PV array are referred as "permanent" or 
"abrupt" flaws [9].  
Hot spots are regarded as irreversible flaws. Since these are 
so minute and have a tendency to alter gradually over time, 
early detection of these flaws is thought to be the most 
difficult [10]. These PV array problems include open 
circuits, short circuits, hot spots, shadows, and aging. 
These PV array flaws have the potential to lower 
efficiency, shorten service life, and create a fire danger 
[11]. The solar array's nonlinear properties and the 
inverter's Maximum Power Point Tracking technologies 
prevent traditional safety systems from tripping under 
certain faults, hence decreasing system efficiency and 
raising fire hazard threats [12]. 

1.1 Aim of this study  

Variations in weather, shading effects, and aging-related 
deterioration could impact on PV systems and cause weak 
or transient fault symptoms. Sophisticated methods or 
more sensors could be needed to increase fault detection 
accuracy and reliability as traditional diagnostic techniques 
can have trouble differentiating between real defects and 
typical operating changes. This study proposes a new 
XGBoost technique for fault detection in solar arrays to 
address common and serious PV issues.  

1.2 Key contribution of this study  

• Datasets were gathered from PV array defect data. 
• The purpose of pre-processing data is to deal with 
missing values or eliminate noisy data.  
• LDA for defect diagnosis in PV arrays effectively 
extracts discriminative features, enhancing classification 
accuracy. 
• WCO provides accurate and efficient 
maintenance solutions by optimizing feature selection for 
accurate fault diagnosis in PV arrays. 
• Photovoltaic array problems could be effectively 
identified with the XGBoost approach. 

1.3 Structure of this paper  

The remaining study aspects could be categorized as 
follows: In section 2, we will discuss the related work. 
Section 3 discusses the approaches. Section 4 presents the 
outcomes of the experiment. The discussion is presented in 
Section 5, and the conclusion is covered in Section 6.  

2. Related works 

An approach to failure diagnostics based on the PV array 
output deviation characteristics was presented in the 
research [13]. The analysis of the PV array output deviation 
characteristics under various array configurations and time 
series was done which is based on the PV array's current on 
the direct current (DC) side.It significantly contributes by 
proposing a deviation function that could be used to extract 
fault characteristics from PV arrays and by providing an 
easy-to-apply fault detection approach that used array 
current in PV plants. 
An approach to defect diagnostics for solar arrays using a 
clustering technique and an array auto-encoder was 
provided in study [14]. The method was capable of 
extracting features and mining data collection features for 
fault detection using a limited amount of labeled data 
samples. The membership function was utilized for defect 
diagnostics, and the clustering procedure yields clusters 
and clustering centers. Moreover, the effectiveness of the 
suggested fault diagnostic approach was confirmed using 
both simulation and experimental information. 
The current drop across two maximum power point 
tracking (MPPT) sampled instants was used as the basis for 
a sensor less detection approach that was suggested in 
study [15]. Simulations were used to confirm its ability to 
identify problems in a range of conditions, independent of 
misalignment and irradiance levels. Different voltages 
could be modified to distinguish between normal and faulty 
filament currents to easily discover problems. 
An Adaptive Neuro-Fuzzy Inference System (ANFIS) 
approach-based intelligent PV fault identification system 
was demonstrated in research [16]. The Grid Partitioning 
(GP) and Subtracted Clustering (SC) algorithms were 
important for an effective PV fault identity and 
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categorization system that could be implemented utilizing 
certain study data to train the ANFIS model. When it came 
to predicting and categorizing different PV system 
problems, the accuracy of the ANFIS SC methodology 
turned into better than that of the ANFIS GP technique 
To identify line-line (LL) and open circuit (OC) defects in 
PV systems, research [17] provided an effective and 
automated fault detection method by figuring out and 
choosing traits for the duration of the training phase using 
an ensemble learning algorithm and a smaller dataset. The 
nonlinear nature of PV features, their dependence on the 
operating environment, and the MPPT methods could 
render it hard for traditional shielding devices to evaluate 
failures in PV systems. The recommended approach started 
by determining the PV arrays fundamental voltage and 
current operating parameters. 
Through the use of semi-supervised graph signal 
processing, study [18] tackled the issue of defect 
classification in PV arrays. Extensive labelled data sets 
were needed for training in traditional fault detection and 
classification systems. Obtaining associated data for 
various failure classes in utility-scale solar arrays required 
a lot of resources. The suggested approach generally 
produced strong classification results. They showed 
notable improvements over previous approaches and test 
their methodology using a real-time dataset. 
Research [19] suggested a flaw diagnosis system based on 
a genetic algorithm optimizing deep belief network (GA-
DBN). The network's effectiveness and rate of 
convergence were raised by modifying the weight and bias 
of the network using the GA approach. The fitness function 
was built using the restricted Boltzmann machine 
recovering error. It showed how the suggested approach 
increases the detection accuracy of solar array faults and 
enhances the generalization capacity of conventional DBN. 
The effectiveness of ML models appropriate for module-
level embedding in inexpensive hardware was assessed in 
study [20] by discussing eight distinct PV module defects 
and how they affect PV module output. The flaws were 
replicated and applied to a real solar system, allowing 
measurement data to be collected and annotated at the 
panel level. A number of ML approaches were used to 
classify the mistakes with respect to the standard state. 
In an attempt to develop a suitable ML framework, article 
[21] intended to automatically identify and diagnose 
common PV array problems. PV systems were becoming 
more and more common in contemporary electrical grids, 
which have raised concerns about how to diagnose faults in 
PV arrays. Furthermore, the optimization hyperparameters 
of the fault classifiers were selected using Bayesian 
optimization. To assess the performance of the described 
classifiers, simulated and experimental scenarios were 
performed. 
A mechanism to use current-voltage characteristics, orI-V 
curves for PV defect diagnostics was established in study 
[22]. PV modules' I-V curves reveal a wealth of data 
regarding their condition. Diagnoses were made using a 
subset of the data from the I-V curve. Then the fault 
characteristics could be acquired directly from the 

resample current vectors, through a Gramian angular 
difference region, or through the recurrent plot. Along with 
measurement errors and background noise, it also included 
resilience. Three aspects of classifier analysis were feature 
dimension reduction, disturbance resilience, and 
transformation effect.  
An intelligent fault detection model was presented in study 
[23] to identify and classify defects in PV systems. 
Throughout the experimental validation, a number of fault 
state and average state data were gathered over the winter 
in a variety of weather conditions. To efficiently identify 
defects in solar systems, it was vital to understand how the 
current/voltage (I/V) characteristics respond under 
different environmental settings. In some challenging 
circumstances of a PV system, especially in the winter, I/V 
characteristics were almost identical to those of normal 
states. 
Developing a precise method for identifying errors in PV 
systems was the primary objective of study [24]. The two 
main stages of the conventional failure detection and 
diagnosis (FDD) method were feature extraction and fault 
diagnosis. The PV arrays maximum electricity point 
trackers, dependency on isolation efficiency, fault 
magnitudes, and non linear PV characteristics have made 
FDD more difficult. Multiple metrics and data sets 
gathered from different grid connected PV (GCPV) tool 
operating scenarios were used to evaluate the FDD 
performance. 
Study [25] suggested a flawed diagnosis method for PV 
systems that relied on the application of ensemble learning 
(EL) technology. By aggregating the predictions of many 
ML systems, El approaches beat single ML algorithms in 
terms of quality and applicability prediction. By utilizing 
the appropriate features and ideal parameters for each 
unique learning technique and the EL model, the proposed 
strategy improved classification performance but also 
demonstrated outstanding generalization ability for 
identifying PV system defects. 

2.1. Problem statement 

The timely and effective diagnosis of issues with PV 
arrays is essential to maximizing solar energy's 
performance and durability. Current fault-detecting 
approaches are not scalable, inaccurate, or efficient enough 
to ensure the overall dependability and maintenance 
effectiveness of PV systems. The difficulty is in creating a 
reliable fault diagnostic technique that can use data from 
sensors or monitoring systems to precisely identify and 
indicate several kinds of defects including shading, module 
failures and wiring problems in real-time or almost real-
time. This approach should be flexible to accommodate 
varying PV array designs and environmental factors while 
guaranteeing rapid action to prevent operational losses and 
performance deterioration.  
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3. Methodology 

We collect defect data samples for PV arrays. The purpose 
of pre-processing data is to deal with missing values or 
eliminate noisy data. Feature extraction is done using the 
LDA to enhance detection performance. To improve 
XGBoost's efficacy, the WCO approach is applied to 
produce the best features from the recovered data. Then we 
utilize the XGBoost method to detect issues with the PV 
arrays. Figure 1 shows the overall flow. 

 

Figure 1. Overall flow 

3.1. Data Collection 

The 2 × 6 PV array's DC characteristics are detected to 
gather the fault data set. It is possible to ascertain using the 
𝐼𝐼 − 𝑉𝑉 curve detector of  𝐼𝐼𝑉𝑉𝐼𝐼 − 30 − 1000 (IVT stands for 
IV Tester or IV Tracer, 30 indicates specific features, and 
1000 denotes maximum current capacity), the DC 
characteristics of the 2 × 6  PV array. Additionally, the 
𝐼𝐼𝑉𝑉𝐼𝐼 − 30 − 1000 detector is capable of detecting the PV 
array's maximum power voltage (Vmp), open circuit (OC) 
current, maximum power current (Imp), and short circuit 
(SC) current. 
The OC, SC, and lack of irradiance faults could be 
simulated using a 2 × 6 PV array, and a PV array defect 
data set can be gathered. Additionally, there are 325 fault 
data used to evaluate the fault diagnostic technique in 
addition to the 550 fault data used to train the fault 
diagnosis model. Moreover, the percentage of every fault 
data used to train the fault diagnostic model. 
 

3.2. Data preprocessing 

Preprocessing data with missing values or eliminating 
noisy data is essential for precise analysis and efficient 
maintenance in solar array defect diagnostic techniques. 
Imputation procedures or exclusion are required when 
there are missing values, as they could distort findings and 
make more difficult to identify errors. In similar, noisy data 
that is data including outliers or sensor errors can wrap 
trends, cause false alarms, or fail to detect real problems. 

3.2.1. Identifying missing values 
The dataset contains defect data from devices such as the 
IVT-30-1000 and features of a 2x6 PV array, therefore 
faults in measurement or equipment operation could result 
in missing outcomes. 
Detection: Locate entries or columns with missing values. 
Thus, there could be missing values for characteristics like 
open circuit current, short circuit current, maximum power 
voltage, and maximum power current. 
Handling: Choose methods to deal with information that 
is lacking. If there is a large amount of missing data that 
cannot be properly imputed, options include removing the 
rows and columns or imputation (changing missing values 
with approximated ones, such as mean or median). 

3.2.2. Noise removal 
There are several potential causes of noise in data, 
including errors in measurements, defective sensors, and 
external influences on the instruments. 

3.3. Feature extraction 

PV array defect diagnostics use LDA to extract 
discriminative features from the data. By using this 
technique, LDA intends to identify a feature set that 
maximizes the separability between various fault or 
condition categories inside the PV array. LDA determines 
the directions which distinguish different faults by 
projecting the data into a lower dimensional space. 

3.3.1. LDA 
A supervised method of reducing dimensionality is LDA. 
LDA works on the basis of projecting high-dimensional 
data into low-dimensional space. In the predicted space, 
similar categories will be nearer to one another, whereas 
data from other classes will be further away. 
𝑍𝑍 = �𝑧𝑧1, 𝑧𝑧2, . . , 𝑧𝑧𝑗𝑗 , . . � is the fault-related feature matrix, 
where 𝑧𝑧𝑗𝑗 is the feature vectors of the 𝑗𝑗𝑡𝑡ℎ sample. 
Considering the mean vector of the 𝑖𝑖𝑡𝑡ℎclasssamples 𝜇𝜇𝑗𝑗(𝑖𝑖 =
1,2, . . , 𝑙𝑙) is defined as follows in equation (1). 
𝜇𝜇𝑖𝑖 = 1

𝑀𝑀𝑖𝑖
∑ 𝑤𝑤 
𝑤𝑤∈𝑊𝑊𝑖𝑖 ,   𝑖𝑖 = 1,2, … , 𝑙𝑙   

      (1) 
Where𝑀𝑀𝑖𝑖 indicates thequantity of samples from the 𝑖𝑖𝑡𝑡ℎ 
class, 𝑊𝑊𝑖𝑖 represents the set of samples from the 𝑖𝑖𝑡𝑡ℎ sample, 
and 𝑙𝑙 is the number of sample classes in the training set. 
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The class samples' correlation matrix, or𝑄𝑄𝑖𝑖 , is defined as 
follows in equation (2). 
𝑄𝑄𝑖𝑖 =  ∑ (𝑤𝑤 − 𝜇𝜇𝑖𝑖)(𝑤𝑤 − 𝜇𝜇𝑖𝑖)𝑆𝑆𝑤𝑤∈𝑊𝑊𝑖𝑖 ,   𝑖𝑖 = 1,2, … 𝑙𝑙 
      (2) 
Let us assume that the space with low dimensions projected 
by LDA has dimension 𝑟𝑟, and that the appropriate basis 
vector is𝑤𝑤1,𝑤𝑤2 … . ,𝑤𝑤𝑟𝑟 . 𝑋𝑋 is a 𝑛𝑛 ×  𝑟𝑟 matrix made up of the 
basis vectors. The optimization desire for the objective of 
the greatest between-class distance and the shortest within-
class distance following LDA projection is as follows in 
equation (3-5). 
 arg max

𝑥𝑥
�𝑋𝑋

𝑆𝑆𝑇𝑇𝑎𝑎𝑋𝑋
𝑋𝑋𝑆𝑆𝑇𝑇𝑥𝑥𝑋𝑋

�     
     (3) 
Where, the within-class scatter matrix is indicated by𝐼𝐼𝑥𝑥. 
𝐼𝐼𝑥𝑥 = ∑ ∑𝑤𝑤∈𝑤𝑤𝑖𝑖 (𝑤𝑤 − 𝜇𝜇𝑖𝑖)(𝑤𝑤 − 𝜇𝜇𝑖𝑖)𝑆𝑆𝑙𝑙

𝑖𝑖=1   
      (4) 
The between-class scatter matrix is shown by 𝐼𝐼𝑎𝑎. 
𝐼𝐼𝑎𝑎 = ∑ 𝑀𝑀𝑖𝑖(𝜇𝜇𝑖𝑖 − 𝜇𝜇)(𝜇𝜇𝑖𝑖 − 𝜇𝜇)𝑆𝑆𝑙𝑙

𝑖𝑖=1    
      (5) 
Where 𝜇𝜇 is the average vector. 
An objective function for LDA optimization is defined as 
follows since the function under consideration is not scalar 
and could not be optimized as a scalar function (see 
equation (6)). 

arg max
𝑥𝑥

𝐼𝐼(𝑋𝑋) =
∏ 𝑋𝑋𝑆𝑆𝑇𝑇𝑎𝑎𝑋𝑋𝑑𝑑𝑖𝑖𝑎𝑎𝑑𝑑
∏ 𝑋𝑋𝑆𝑆𝑇𝑇𝑥𝑥𝑋𝑋𝑑𝑑𝑖𝑖𝑎𝑎𝑑𝑑

   

      (6) 
Where the product of 𝐴𝐴's primary diagonal components is 
indicated by the symbol ∏ 𝐴𝐴𝑑𝑑𝑖𝑖𝑎𝑎𝑑𝑑 . The 𝐼𝐼(𝑋𝑋) optimization 
procedure could be converted into equation (7). 

𝐼𝐼(𝑋𝑋) =
Π𝑗𝑗=1
𝑟𝑟 𝑋𝑋𝑗𝑗

𝑆𝑆𝑇𝑇𝑎𝑎𝑋𝑋𝑗𝑗
Π𝑗𝑗=1
𝑟𝑟 𝑋𝑋𝑗𝑗

𝑆𝑆𝑇𝑇𝑥𝑥𝑋𝑋𝑗𝑗
= ∏

𝑋𝑋𝑗𝑗
𝑆𝑆𝑇𝑇𝑎𝑎𝑋𝑋𝑗𝑗

𝑋𝑋𝑗𝑗
𝑆𝑆𝑇𝑇𝑥𝑥𝑋𝑋𝑗𝑗

𝑟𝑟
𝑗𝑗=1    

     (7) 
The eigenvectors 𝑥𝑥1, 𝑥𝑥2, . . . 𝑥𝑥𝑟𝑟 that correspond to the 𝑟𝑟 
biggest eigenvalues thus represent the projection matrix 𝑋𝑋. 
Consequently, the feature matrix following projection 
could be expressed as equation (8). 

�̂�𝑍 = �

𝑥𝑥1
𝑥𝑥2
⋮
𝑥𝑥𝑟𝑟

� �𝑧𝑧1𝑧𝑧2 … . . 𝑧𝑧𝑗𝑗� = 𝑋𝑋𝑆𝑆𝑍𝑍   

      (8) 

3.4. Feature selection 

PV array defect diagnostic techniques are using WCO, a 
feature selection technique inspired by the competitive 
dynamics of soccer organizations. By carefully choosing 
the most pertinent characteristics, this novel method 
intends to improve the exactness and efficacy of problem 
detection in PV systems. 

3.4.1. World Cup Optimization (WCO) 
The World Cup Optimization Algorithm (WCO) draws 
inspiration from the global battle between teams competing 
for the World Cup title. Based on their Ranks, teams are 
divided into many seeds. Teams' previous performances on 

prior courses are used to determine their rank. Teams are 
arranged according to their positions in WCO algorithms, 
with the stronger teams going to the first seed, the weaker 
teams going to the next seed, and so on. In the first era, 
stronger teams persevere through the struggle to save and 
elevate themselves to a superior status. The challenge 
begins after the sowing phase. 
Usually, a preparatory task is given to teams in small 
groups all over the world to begin the competition. After 
the preliminary contests, the best two teams from each 
group move on to the next phase, with the worst teams 
being eliminated. Before the global competition begins, 
teams in small groups are usually given an initial task. 
Following the preliminary matches, each group's top two 
teams advance to the next round, while the worst two teams 
are eliminated. 
The first stage is to choose the teams and continents. 
Teams from each of the continents currently taking part in 
the challenges are represented by an array of 1 × 𝑀𝑀𝑣𝑣𝑎𝑎𝑟𝑟in a 
𝑀𝑀 variable dimensional (𝑀𝑀𝑣𝑣𝑎𝑎𝑟𝑟) optimization challenge 
with 𝑁𝑁 number of continents. The following is an example 
of this array (equation (9 and 10)). 
𝐶𝐶𝐶𝐶𝑛𝑛𝐶𝐶𝑖𝑖𝑛𝑛𝐶𝐶𝑛𝑛𝐶𝐶 = [𝐶𝐶𝐶𝐶𝑛𝑛𝐶𝐶𝑟𝑟𝐶𝐶1,𝐶𝐶𝐶𝐶𝑛𝑛𝐶𝐶𝑟𝑟𝐶𝐶2, … ,𝐶𝐶𝐶𝐶𝑛𝑛𝐶𝐶𝑟𝑟𝐶𝐶𝑀𝑀𝑣𝑣𝑎𝑎𝑟𝑟] 
     (9) 
𝐶𝐶𝐶𝐶𝑛𝑛𝐶𝐶𝑟𝑟𝐶𝐶𝑗𝑗 = [𝑤𝑤1,𝑤𝑤2, … ,𝑤𝑤𝑀𝑀𝑣𝑣𝑎𝑎𝑟𝑟]   
      (10) 
Where, 𝑤𝑤𝑖𝑖  represent the country's 𝑖𝑖𝑡𝑡ℎ team. The values 
�𝑤𝑤1 ,𝑤𝑤2, … ,𝑤𝑤𝑀𝑀𝑣𝑣𝑎𝑎𝑟𝑟�of the variable are floating point 
numbers. An approach to determine the rank of the 
countries is to value the rank function 𝐶𝐶𝑞𝑞 at a continent 
of�𝑤𝑤1,𝑤𝑤2, … ,𝑤𝑤𝑀𝑀𝑣𝑣𝑎𝑎𝑟𝑟� (equation (11 and 12)). 
𝑅𝑅𝑅𝑅𝑛𝑛𝑅𝑅 = 𝐶𝐶𝑞𝑞(𝑐𝑐𝐶𝐶𝑛𝑛𝐶𝐶𝑖𝑖𝑛𝑛𝐶𝐶𝑛𝑛𝐶𝐶) = 𝐶𝐶𝑞𝑞�𝑤𝑤1,𝑤𝑤2, … ,𝑤𝑤𝑃𝑃𝑣𝑣𝑎𝑎𝑟𝑟� 
      (11) 
𝑃𝑃 = 𝑀𝑀 × 𝑁𝑁     
      (12) 
Where, 𝑁𝑁 is the number of continents and 𝑀𝑀 is the 
dimensions of the variables. An interval is chosen, given 
random values, and divided into sections that constitute 
forward the continents to speed up the convergence 
process. 
Cost-function Analysis 
This stage involves calculating the geographical locations 
on the continent. The points attained could not be entirely 
evident since there could exist a continent where certain 
teams have the highest point total (optimum fitness) while 
other teams have weak points. As a result, this method 
additionally takes consideration of the continents' mean 
value and standard deviation (equations (13 and 14)). 
𝑊𝑊 = 1

𝑚𝑚
∑ 𝑊𝑊𝑗𝑗
𝑚𝑚
𝑗𝑗=1      

      (13) 

𝜎𝜎 = � 1
𝑚𝑚−1

∑ �𝑊𝑊𝑗𝑗 −𝑊𝑊�
2𝑚𝑚

𝑗𝑗=1    
      (14) 
Where 𝐶𝐶 represents the continent 𝑊𝑊′𝑠𝑠 standard deviation, 
𝑚𝑚 characterizes its members, and 𝑊𝑊 displays the continent 
𝑊𝑊′𝑠𝑠 mean value. 
Ranking 
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Teams are rated using the following equation (15 and 16). 
𝑊𝑊5 = [𝑊𝑊51, . .𝑊𝑊5𝑚𝑚]𝑆𝑆    
      (15) 
𝑊𝑊𝑇𝑇𝑇𝑇𝑡𝑡𝑎𝑎𝑙𝑙 = [𝑊𝑊11, . .𝑊𝑊1𝑚𝑚,𝑊𝑊21, . .𝑊𝑊2𝑚𝑚,𝑊𝑊51, . .𝑊𝑊5𝑚𝑚]𝑆𝑆 
     (16) 
Where, 𝑆𝑆 is the transposition operator and 𝑚𝑚 is the quantity 
of teams on every continent. After this procedure, the two 
best values from each continent were chosen and combined 
into a new vector (𝑊𝑊𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅) for the upcoming championship 
contests. The best values from 𝑊𝑊𝑇𝑇𝑇𝑇𝑡𝑡𝑎𝑎𝑙𝑙 determine who will 
win the first cup (see equation 17 and 18). 
(𝑊𝑊𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅) = [𝑊𝑊11,𝑊𝑊12,𝑊𝑊21,𝑊𝑊22, … .𝑊𝑊51, . .𝑊𝑊52]𝑆𝑆 
     (17) 
𝑊𝑊𝑐𝑐ℎ𝑎𝑎𝑚𝑚𝑎𝑎𝑖𝑖𝑇𝑇𝑅𝑅 = 𝑚𝑚𝑖𝑖𝑛𝑛(𝑊𝑊𝑇𝑇𝑇𝑇𝑡𝑡𝑎𝑎𝑙𝑙) =
𝑚𝑚𝑖𝑖𝑛𝑛([𝑊𝑊11, . .𝑊𝑊1𝑚𝑚,𝑊𝑊21, . .𝑊𝑊2𝑚𝑚,𝑊𝑊51, . .𝑊𝑊5𝑚𝑚]𝑆𝑆) 
  (18) 
Where the minimal value of the responses is described by 
𝑊𝑊𝑐𝑐ℎ𝑎𝑎𝑚𝑚𝑎𝑎𝑖𝑖𝑇𝑇𝑅𝑅  
Repeat the team competition phase 
After the initial team tournament, new continents and the 
teams that compete in them will be created again using the 
results of previous championship games and the team 
rankings. Two-part vectors can be used in this situation as 
follows in equation (19). 
𝑃𝑃𝐶𝐶𝑃𝑃 =  𝑊𝑊𝑇𝑇𝑇𝑇𝑡𝑡𝑎𝑎𝑙𝑙 = [𝑊𝑊𝐵𝐵𝐵𝐵𝑡𝑡 ,𝑊𝑊𝑟𝑟𝑎𝑎𝑅𝑅𝑑𝑑]   
     (19) 
Where the new population of size (𝑀𝑀 × 𝑁𝑁) is described by 
function 𝑃𝑃𝐶𝐶𝑃𝑃 𝑊𝑊𝑇𝑇𝑇𝑇𝑡𝑡𝑎𝑎𝑙𝑙 , 𝑊𝑊𝑟𝑟𝑎𝑎𝑅𝑅𝑑𝑑 in this case indicates a random 
value among the intervals of issue constraints, and 𝑊𝑊𝐵𝐵𝐵𝐵𝑡𝑡  is 
an array according to equation (20-22). 
𝐾𝐾 < 𝑊𝑊𝐵𝐵𝐵𝐵𝑡𝑡 < 𝑉𝑉     
      (20)
   
𝑉𝑉 = 1

2
× 𝑏𝑏𝑏𝑏 × (Ub + Lb)    

     (21) 
𝐾𝐾 = 1

2
× 𝑏𝑏𝑏𝑏 × (Ub − Lb)    

     (22) 
Where, the coefficient 𝑏𝑏𝑏𝑏 lies between the problem's low 
and high bounds, 𝐿𝐿𝑏𝑏 and 𝑈𝑈𝑏𝑏. 
Exploration and exploitation 
𝑊𝑊𝐵𝐵𝐵𝐵𝐵𝐵𝑡𝑡 is the process of looking at areas of a search space 
that are close to the sites that were visited first, and 
comprehensive looking through fresh areas of a search 
space is referred as 𝑊𝑊𝑅𝑅𝑎𝑎𝑅𝑅𝑑𝑑. Cross Point (𝐶𝐶𝑃𝑃) divides the 
sizes of 𝑊𝑊𝐵𝐵𝐵𝐵𝐵𝐵𝑡𝑡 and 𝑊𝑊𝑅𝑅𝑎𝑎𝑅𝑅𝑑𝑑 is follows in equations (23, and 
24). End the algorithm if the criteria are met if not, repeat 
the entire process. 
𝑊𝑊𝑅𝑅𝑎𝑎𝑅𝑅𝑑𝑑 = 𝑃𝑃𝐶𝐶𝑃𝑃(1:𝐶𝐶𝑃𝑃,𝑁𝑁)    
     (23) 
𝑊𝑊𝐵𝐵𝐵𝐵𝐵𝐵𝑡𝑡 = 𝑃𝑃𝐶𝐶𝑃𝑃(𝐶𝐶𝑃𝑃 + 1:𝑀𝑀,𝑁𝑁)   
      (24) 

 
 
 

3.5 Fault Diagnosis Method for PV Array 
based on XGBoost algorithm 

ML is used in the XGBoost algorithm-based fault 
diagnostic technique for PV arrays to effectively detect and 
categorize defects in PV systems. XGBoost is well-known 
ensemble learning and gradient boosting method that 
improves accuracy in fault condition prediction by 
combining several decision trees, including shading, 
module degradation, and wiring problems. Through the use 
of data-driven insights, this technique enhances defect 
identification, allowing for proactive maintenance and PV 
array performance enhancement. 

3.5.1. XGBoost 
Among the most effective methods for supervised learning 
are gradient boosting machines (GBM). Xgboost is one of 
its uses. It is applicable to problems with regression as well 
as classification. Because of Xgboost's exceptional out-of-
core compute execution speed (equation (25)). 
�̇�𝐵.𝑗𝑗 = 𝜙𝜙�𝑤𝑤𝑗𝑗� = ∑ 𝐶𝐶𝑅𝑅�𝑤𝑤𝑗𝑗�, 𝐶𝐶𝑅𝑅 ∈ ℱ𝐿𝐿

𝑙𝑙=1   
      (25)
   
To solve the above equation, we must minimize both the 
loss and the regularization intended to identify the optimal 
collection of functions (equation (26)). 
ℒ(𝜙𝜙) = ∑ 𝑙𝑙�𝑧𝑧𝑗𝑗 , �̇�𝐵.𝑗𝑗 � + ∑ Ω(𝐶𝐶𝑅𝑅)𝑙𝑙𝑗𝑗    
     (26)  
The disparity between the expected and actual results 𝑧𝑧𝑗𝑗, is 
represented by the symbol 𝑙𝑙, which stands for the loss 
function. While Ω is a measure of the model's complexity, 
this prevents the model from being over fit and the 
following equation (27) is used to compute it. 
Ω(𝐶𝐶𝑅𝑅) = 𝛾𝛾𝑆𝑆 + 1

2
𝜆𝜆||𝑥𝑥||2    

      (27)
   
The number of leaves on the tree is represented by 𝑆𝑆 in the 
equation above, and the weight of each leaf is represented 
by𝑥𝑥. 
Boosting, which involves adding a new function 𝐶𝐶 while 
the model continues to train, which is used in decision trees 
to lower the desired function. As a result, the following new 
function (tree) becomes available on the 𝑠𝑠𝑡𝑡ℎ iteration 
(equation (28-31)). 
ℒ (𝐵𝐵) = ∑ 1 �𝑧𝑧𝑗𝑗𝐵𝐵.𝑗𝑗

(𝐵𝐵−1)+ 𝐶𝐶𝐵𝐵�𝑤𝑤𝑗𝑗�� + Ω(𝐶𝐶𝐵𝐵)𝑚𝑚
𝑗𝑗=1   

   (28)  

ℒ𝐵𝐵𝑎𝑎𝑙𝑙𝑖𝑖𝑡𝑡 = 1
2
�

(∑ ℎ𝑗𝑗) 𝑗𝑗∈𝐽𝐽𝐾𝐾
2

∑ ℎ𝑗𝑗+𝜆𝜆𝑗𝑗∈𝐽𝐽𝐾𝐾
+

(∑ ℎ𝑗𝑗) 𝑗𝑗∈𝐽𝐽𝑄𝑄
2

∑ ℎ𝑗𝑗+𝜆𝜆𝑗𝑗∈𝐽𝐽𝑄𝑄
−

(∑ ℎ𝑗𝑗) 𝑗𝑗∈𝐽𝐽
2

∑ ℎ𝑗𝑗+𝜆𝜆𝑗𝑗∈𝐽𝐽
� – 𝛾𝛾 

   (29)   
ℎ𝑗𝑗 = 𝜕𝜕�̇�𝐵.(𝑠𝑠−1)𝐽𝐽(𝑧𝑧𝑗𝑗 , �̇�𝐵.(𝐵𝐵−1)    
   (30)   
𝑔𝑔𝑗𝑗 = 𝜕𝜕�̇�𝐵(𝑠𝑠−1)

2 1�𝑧𝑧𝑗𝑗 , �̇�𝐵.(𝐵𝐵−1) �    
   (31) 
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4. Experimental results  

4.1. Experimental Configuration  

The recommended approach is implemented on a Windows 
10 laptop with an Intel i7 core CPU and 8GB RAM using 
Python 3.10.1. Utilizing the training data, we trained our 
suggested model with Tensor Flow/Keras or Scikit-Learn.  

4.2. Performance Metrics 

4.2.1. Outcome of proposed method 
Accuracy 
It is a reference to the accuracy with the fault diagnosis 
method locates and classifies malfunctions in the PV array 
system. It evaluates how well the approach can 
differentiate between various fault circumstances and 
normal operation. 
 
Loss 
The term "loss" usually describes the discrepancy between 
the solar array's actual output and its expected or ideal 
output under ordinary operating circumstances. It measures 
the reduction of performance based on errors like shading, 
malfunctioning modules, or bad connections. 
Figures 2a and 2b show the accuracy and loss graphs for 
defect diagnosis in solar arrays, showing the efficiency of 
the diagnostic model across the training period. 
 
 

 

Figure 2. (a) accuracy (b) loss 

4.2.2. Comparison Phase  
Support vector machine (SVM) is an existing approach, 
whereas XGBoost is the method that is suggested [26]. The 
performance metrics are trained accuracy, rest accuracy, 
and difference. 
The model can more precisely detect and categorize 
various kinds of defects inside the PV array due to these 
enhanced parameters. Then the model for fault diagnostics 
is trained using the preprocessed fault data, which has 
undergone through processes to manage missing values 
and eliminate noisy data. The model will be trained on 
high-quality data as a result, enabling to choose from the 
traits and patterns connected to every kind of failure. 

Figure 3 and Table 1 provide a one-to-one method to show 
the accuracy of the classification methods. It shows the 
effectiveness of several parameter combinations in defect 
diagnostics. Thus, the combined accuracy rate of Vmp and 
Imp is 95%, indicating that these characteristics provide a 
strong basis for fault classification. In contrast, combined 
Vmp and OC voltage yield the highest accuracy of 96%, 
suggesting that both features are highly predictive of 
certain fault conditions. Vmp and SC voltage yields an 
accuracy of 91.5%. Other combinations, such as Imp with 
OC voltage and Imp with SC current, which have slightly 
lower accuracies of 93% and 91%, respectively, show that 
the model can classify problems. The high accuracy of 96% 
that is attained when the OC and SC parameters are 
combined, further demonstrates the model's robustness 
when using these specific parameter pairs for fault 
detection. 

Table 1. Values for the accuracy of every one-to-one 

technique classification model 

Number Type of mixing 
Accuracy 

(%) 

1 Vmp & Imp 95 

2 Imp & Open circuit 93 

3 Imp & Short circuit 91 

4 Vmp & Open circuit 96 

5 Vmp & Short circuit 91.5 

6 Open circuit & Short circuit 96 

 

Figure 3. Accuracy for each one-to-one method 

performance 
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 Trained accuracy

The term “trained accuracy” describes a diagnostic model 
created using ML algorithms detects and categorizes 
problems following its training on a particular dataset in 
the context of a solar panel fault diagnostics technique. It 
provides an indication of the model learns and generalizes 
from the provided data to precisely identify problems in PV 
systems by quantifying the percentage of properly detected 
faults in relation to the overall quantity of error occurrences 
in the training set. 
Table 2 and Figure 4 show the trained accuracy 
performance. The proposed method is XGBoost, it 
achieves 98.9 % when compared to the existing method 
SVM which achieves 98.72%. This shows that when it 
comes to detecting and differentiating fault states in solar 
arrays, XGBoost is slightly more successful than SVM. 

Table 2. Values for 𝑅𝑅𝑚𝑚, 𝑅𝑅𝑡𝑡 and 𝑅𝑅𝑚𝑚 − 𝑅𝑅𝑡𝑡 

Algorithm type 

Trained 

accuracy 

(𝑅𝑅𝑚𝑚) (%) 

Rest 

accurac

y (𝑅𝑅𝑡𝑡) 

(%) 

Differenc

e 

(𝑅𝑅𝑚𝑚– 𝑅𝑅𝑡𝑡) 

𝑅𝑅𝐵𝐵𝑣𝑣𝑚𝑚 98.72 97 1.72 

𝑅𝑅𝑋𝑋𝑋𝑋𝐵𝐵𝑇𝑇𝑇𝑇𝐵𝐵𝑡𝑡– 𝑅𝑅𝐵𝐵𝑣𝑣𝑚𝑚 0.18 0.5 0.32 

𝑅𝑅𝑋𝑋𝑋𝑋𝐵𝐵𝑇𝑇𝑇𝑇𝐵𝐵𝑡𝑡 [Propose

d] 
98.9 97.5 1.4 

Figure 4. Trained accuracy performance 

"Rest accuracy" describes how well the system detects 
times when the solar array is running without any defects 
in the context of fault diagnostics. The metric quantifies the 
percentage of genuine negative situations, or fault-free, 
normal conditions, that the diagnostic technique accurately 
recognized among all the fault-free occurrences. 
The rest accuracy performance is displayed in Figure 5 and 
Table 2. In comparison to the existing SVM approach, 
which achieves 97%, the suggested method, XGBoost, 
achieves 97.5%. This indicates that XGBoost outperforms 
SVM in terms of failure condition detection and 
differentiation in PV arrays. 

Figure 5. Rest accuracy performance 

 Difference

Figure 6 and Table 2 show the difference of 𝑅𝑅𝑚𝑚 − 𝑅𝑅𝑡𝑡. The 
proposed XGBoost achieves 1.4 and the existing method 
SVM achieves 1.72. XGBoost performs that much better 
than SVM. This indicates XGBoost works to increase the 
accuracy of defect identification when compared to the 
conventional SVM method. 

Figure 6.  𝑅𝑅𝑚𝑚 − 𝑅𝑅𝑡𝑡 difference performance 
Figure 7 and Table 2 show the difference 
𝑏𝑏𝐶𝐶𝐶𝐶𝑤𝑤𝐶𝐶𝐶𝐶𝑛𝑛 𝑅𝑅𝑋𝑋𝑋𝑋𝐵𝐵𝑇𝑇𝑇𝑇𝐵𝐵 𝑡𝑡 − 𝑅𝑅𝑆𝑆𝑆𝑆𝑀𝑀. The trained accuracy achieves 
0.18, the rest accuracy achieves 0.5 and the difference 
achieves 0.32. 
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Figure 7. 𝑅𝑅𝑋𝑋𝑋𝑋𝐵𝐵𝑇𝑇𝑇𝑇𝐵𝐵𝑡𝑡 − 𝑅𝑅𝑆𝑆𝑆𝑆𝑀𝑀 difference performance 

5. Discussion 

The existing method is SVM.Working with large datasets 
could make SVMs computationally and memory intensive, 
which is a significant challenge. SVMs could have trouble 
processing datasets that are very noisy or that cannot be 
linearly separated without careful kernel selection and 
modification, which could be challenging and domain-
specific. In addition, the choice of kernel functions and 
parameters for SVM is critical and requires expertise since 
it influences the robustness and generalizability of the 
models. The suggested approach is XGBoost. When used 
for defect detection in solar arrays. Initially, since it 
specializes in handling intricate, non-linear correlations 
among input features and fault states, it is ideally suited to 
identify hidden trends in data that conventional techniques 
missed. Strong management of missing data and 
exceptions makes XGBoost more reliable in real-world 
scenarios where the quality of data could vary. 

6. Conclusion 

PV energy sources commonly encounter PV issues. In 
particular, issues like fragmentation, open-circuit short-
circuiting, and others were quite common and hazardous. 
A new XGBoost technique for PV array defect diagnostics 
is presented in this study. The XGBoost algorithm is 
trained by collecting samples of PV array fault data. The 
purpose of pre-processing data was to deal with missing 
values or eliminate noisy data. Feature extraction is done 
using the LDA to enhance detection performance. To 
improve XGBoost's efficacy, the WCO approach is applied 
to produce the best features from the recovered data. Then 
we utilize the XGBoost method to effectively detect issues 
with the solar arrays. The proposed method is compared to 
the existing method as SVM in terms of trained accuracy 
(98.9%), rest accuracy (97.5%), and difference (1.4). The 
proposed method is better when compared to the existing 
methods.  

6.1. Limitation and Future Scope 

Limitation: The quality, comprehensiveness, and accuracy 
of the data used to train the algorithm have a major impact 
on the problem diagnosis's accuracy and dependability. 
Insufficient or skewed data could result in less-than-ideal 
performance or even a false diagnosis. The model's internal 
functioning could prove complicated and tricky to read, 
despite its excellent predicted accuracy. This makes it 
difficult to comprehend the underlying causes of certain 
diagnostic findings. 
Future scope: The future study in this field appears to have 
numerous interesting directions. One way to increase data 
collection and raise the caliber of information provided is 
to integrate innovative sensor technologies with Internet of 
Things (IoT) devices. This could result in defect 
identification and diagnosis are more reliable and accurate. 
The adoption of real-time defect diagnostic systems for 
large-scale solar arrays could be made possible by 
advancements in computer resource efficiency and 
scalability, which would enhance maintenance procedures 
and overall system dependability. 
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