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Abstract 

INTRODUCTION: Significant advances have been made in photovoltaic (PV) systems, resulting in the development of new 
Maximum Power Point Tracking (MPPT) methods. The output of PV systems is heavily influenced by the varying 
performance of solar-facing PV panels under different weather conditions. Partial shading (PS) conditions pose additional 
challenges, leading to multiple peaks in the power-voltage (P-V) curve and reduced output power. Therefore, controlling 
MPPT under partial shading conditions is a complex task. 
OBJECTIVES: This study aims to introduce a novel MMPT algorithm based on the ant colony incorporated bald eagle 
search optimization (AC-BESO) method to enhance the efficiency of PV systems. 
METHODS: The effectiveness of the proposed MPPT algorithm was established through a series of experiments using 
MATLAB software, tested under various levels of solar irradiance. 
RESULTS: Compared to existing methods, the proposed AC-BESO algorithm stands out for its simplicity in implementation 
and reduced computational complexity. Furthermore, its tracking performance surpasses that of conventional methods, as 
validated through comparative analyses. 
CONCLUSION: This study confirms the efficacy of the AC-BESO method over traditional strategies. It serves as a 
framework for selecting an MPPT approach when designing PV systems. 
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1. Introduction

The depletion of natural fossil fuel supplies can be rapidly 
addressed by employing certain forms of renewable energy 
to meet the growing requirement for power. Renewable 
energy sources prove the capacity to generate electricity 
[1]. Solar energy is perhaps one of the most sustainable 
energy sources in the world given its availability and 
replenishment without necessarily polluting the 
environment and it can substitute for the production of 
electricity. The generation of solar energy is soaring higher 
each day. The increase in the reliability and convergence 
speed as a result of getting the most energy from harvesting 
are the reasons for this growth [2]. In addition, every 

* Corresponding author. Email: 15285646532@163.com 

industry uses heating, electricity, etc. One estimate of the 
demand for renewable energy puts the figures for wind and 
solar energy at the promotion of renewable energy 
development [3]. 
To maximize the energy from the PV modules, several 
MPPT approaches have been developed over the past ten 
years. Still unclear, though, is how to choose a certain 
approach [4]. Sunlight incident on a solar cell (SC) 
generates DC power. To create a PV module, many SCs are 
linked. Eventually, the solar array is created by assembling 
the solar modules into groups. The nonlinear properties of 
the SCs cause PV elements to have comparatively poor 
transformation effectiveness. Utilizing the greatest power 
that the PV modules can produce, so it becomes essential 
[5]. 
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SCs generate direct current (DC) electricity when sunlight 
strikes them. A PV module is made up of several SCs 
associated with one another to generate more power [6][24-
30]. A solar array can be made by combining these modules 
further. Nonetheless, the nonlinear properties of SCs place 
an occasionally tight restriction on the efficiency of the PV 
system. To optimize the quantity of energy that PV 
modules can create, it is imperative to enhance their power 
output (PO) [7]. Various circumstances in the atmospheric 
environment including sun direction, bird droppings, and 
array tilt angle PS from building structures and clouds 
make the intensity of light on the PV methods non-uniform. 
In addition, it may cause hotspots to appear as evidence of 
an extreme heat wave as a result of damaging the PV 
system. A PV system is connected in parallel with the 
bypass diode to minimize heat and power loss [8]. 
The most efficient operation guarantee of PV systems in a 
variety of climatic circumstances is the key rationale, 
where the MPPT algorithm exists based on complex 
mathematical models and control strategies [9]. The 
technology optimizes the amount of solar energy collected 
and enhances the overall efficiency and dependability of 
the photovoltaic approach by continuously determining the 
maximum power point tracking (MPPT) of the PVarray. 
Further, to reduce the limiting effects of power loss and 
stress on the components the MPPT algorithm prolongs the 
PV system's life span. It is also important to note that 
system efficiency increases with the avoidance of 
superfluous heating while achieving better system 
reliability when a system is driven nearer to the MPP [10]. 
Therefore, this research aims at developing a new unique 
MPPT strategy called Ant-Colony Integrated Bald Eagle 
Search Optimization (AC-BESO) that will improve the 
effectiveness and dependability of PV systems. 
Contribution of this paper 
• This paper proposes a new MPPT algorithm 
known as AC-BESO MPPT algorithm to improve the 
performance of PV systems. 
• The PS situations that lead to several points in the 
P-V curve and decreased power production are the specific 
issues that the suggested AC-BESO approach intends to 
overcome. 
• Tracking efficiency is improved by the AC-BESO 
algorithm over traditional MPPT techniques. 
Section 2 contains a list of related works. Section 3 presents 
the methodology. Section 4 is mentioned in the results. In 
section 5, the conclusion is provided.  

2. Related works 

Two approaches for reinforcement learning (RL) based 
on MPPT were presented in the investigation [11] through 
the Q-learning technique. Furthermore, of the two 
suggested techniques, the RL-Q-network (QN) MPPT 
approach produced maximum average energy, and the RL-
Q-table (QT) MPPT approach performed with less 
oscillation.  

The investigation subsequently builds a back 
propagation neural network (BPNN) based deep learning 
model [12] to get the MPP. The experiment demonstrated 
that the suggested approach obtains the optimum output 
energy from every panel contrasted to the traditional 
regression assessment techniques on the training, 
evaluation, and validating sets. 

The investigation [13] presented the advanced memetic 
reinforcement learning (MRL) dependent MPPT approach 
for the PV systems, working in partial shadowing 
circumstances (PSC). However, when it compared to MRL 
with other traditional metaheuristic algorithms for MPPT 
of PSC, for example, MRL was much closer to the GMPP 
and their algorithm yields a better standard optimum. 
Consequently, a system could generate more power in 
different vagaries of a weather situation and seasons. 

In the investigation [14] a proposed low-cost portable 
data logger for monitoring PV systems was developed, 
tested and analyzed. As indicated by the reported findings 
and derived features, the superiority of the suggested 
strategies in power generation prediction was validated. 

The potential of using ML-based MPPT strategies for 
accomplishing the responsibility of power optimization in 
a PV system under a PSC scenario was discussed in the 
investigation [15]. The performance of the testing was 
revealed, indicating that the recommended ML-based 
algorithm, which was Weighted K-Nearest Neighbors 
(WK-NN) outperformed the remaining by a slight margin. 

The ultra-short-term energy forecasting for the solar 
power manufacturing process was proven to have enhanced 
reliability with the use of an adaptive k-means (AK-M) and 
Gated Recurrent Unit (GRU) ML technique for short-term 
PV power forecast [16]. The comparison findings 
demonstrated the superiority, stability, and lower error rate 
of the suggested AK-M and GRU network model for 
immediate PV energy production forecast. 

The purpose of the investigation [17] was to develop an 
ML data science innovative blended PV system power 
estimation for the building concerning its different facades. 
The findings showed that if a time and place were fixed, 
the model functions reliably and consistently with its 
functions. It could be ascertained that proper utilization of 
linear regression coefficients when employing the neural 
network might help to bring the forecasters to their 
maximum reliability. 

The investigation aims to show [18] how an FNN 
controller could be used to depict an influential PV method 
with DC capability. The experimental results showed that, 
as compared to the conventional method, the proposed 
FNN controller based MPPT was higher at keeping the 
optimal values of power. 

To provide an ML-based PV power generation 
projection in the short and long term, an effort was made 
by the investigation [19]. The work might be valuable to 
grid operators in selecting a suitable method for PV power 
prediction and scheduling the volatility of generation ahead 
of time. 

A high-efficiency power point tracking technique was 
proposed in the investigation [20] to decrease power 
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oscillation and current ripple around the MPP. The fast 
variation of solar irradiation from 25% to 100% has been 
used to authorize the dependability and reliability of 
MPPT.  

Regression controller (RC) based MPPT was 
established in the investigation [21] to attain maximum 
peak voltage under the PS effect. Perturb and Observe 
(P&O), Particle Swarm Optimization (PSO), and Flower 
Pollination Algorithm (FPA) algorithms were 
outperformed by the RC-based MPPT hardware and 
simulation outcomes where PV was PS by approximately 
20%, 16.96%, and 15%, respectively.  

An MPPT technique based on an irradiance estimate and 
a multi-kernel extreme learning machine (MKELM) was 
proposed in the investigation [22] to lower investment 
costs and increase the efficiency of PV systems. The 
recommended method's benefits over the conventional 
MPPT algorithm were confirmed through simulated 
studies conducted on the PV system in various operating 
circumstances. 

The investigation [23] proposed a pulse width 
modulation (PWM) control boost converter in conjunction 
with an innovative support vector machine regression 
(SVMR) ML approach for solar panel MPPT. Despite 
fluctuating weather during the stable stage of operation of 
the solar PV system, the MPP tracking efficiency was more 
than 94% due to the SVM regression control approach. 

The investigation [24] provided a scheduling method for 
hybrid solar and power management networks that relies 
on the proximal policy optimization (PPO) technique. 
These results showed that computing the time and 
generalization, the suggested deep reinforcement learning 
(DRL) based control strategy outperformed the 
conventional approaches. 

The investigation [25] provided an overview of the 
MPPT technique for solar PV panels using a Deep 
Deterministic Policy Gradient (DDPG) agent of RL and a 
Digital Twin (DT). The overall power production 
improved by 10.45%, while simulations' settling time was 
24.54 times faster. 

3. Methodology 

In PV infrastructure, the fast advancement of MPPT 
technology tackles issues caused by variable solar radiation 
and PS. To improve PV system performance, this work 
presents a novel MPPT algorithm called AC-BESO, which 
integrates bald eagle search with ant colony optimization. 
When compared to conventional techniques, experimental 
validation shows better tracking efficiency, providing a 
useful foundation for future PV system development. 

3.1. PV array in PS situations 

An array of PV modules is a network of several PV 
modules combined either in parallel or in series. Through a 

series connection to increase the voltage intensity and a 
parallel interaction to increase the current stage, this 
configuration aims to increase the PV array's power 
capability. However, several variables, like surrounding 
construction, tree shades, cloud activity, and so forth, affect 
how evenly the series-connected PV modules get light. The 
uneven insolation on the panels results in PSC. Blocking 
and bypass diodes are employed to address these issues. In 
a PV structure, bypass diodes𝐶𝐶𝐵𝐵𝐵𝐵𝐵𝐵 are employed to 
decrease the adverse impacts of shade and shield the 
method from reverse bias circumstances-related damage. 
To ensure that other SCs continue to generate electricity 
and to prevent excessive power loss, they generate alternate 
pathways for current when an SC is covered. In contrast, 
blocking diodesCBlock are used, especially in off-grid 
networks with energy storage, to reset the solar panel's 
capacity or cease the battery's reversible current stream. 
This ensures effective energy transmission and safeguards 
the system's tools. The solar PV system's overall 
dependability and efficiency are enhanced by both kinds of 
diodes. This examination looks at a PV system that has 
three modules coupled in series. The P-V characteristics of 
these three components are under the assumption of 
irregular insolation. The non-uniform insolation results in 
three peaks. Two of these are local maxima, while one peak 
represents the global maximum. The performance of the 
overall string of series-associated PV modules is greatly 
impacted by the PS. Energy is lost when a shaded panel's 
effective voltage falls and frequently becomes negative due 
to reverse-biased conditions. 
The distinction between local and global maxima is 
difficult for conventional MPPT algorithms to make since 
both points have zero slopes. Engineers have been using 
metaheuristic-based optimization strategies to solve this 
problem since they can search the whole space of solution 
vectors and find and utilize the maximum point. 
Population-based metaheuristic methods, including AC, 
have shown promise in solving this issue. Improved AC 
variations are introduced in the next section, to solve the 
energy monitoring issue in solar PV systems. 

3.2. MPPT 

The MPPT framework, shown in Figure 1, consists of a 
driving circuit, a DC-to-DC boost converter, a 
microcontroller, and a closed-loop controller combined 
with the aid of sensors. The computer determines the duty 
ratio value (𝐷𝐷𝐷𝐷𝑣𝑣), detects the PV array's voltage and 
current, and then uses the gate controller transistor to 
provide the tuned signal for the transformation. The 
controller uses the MPPT technique to find the optimal 𝐶𝐶𝑂𝑂 
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values from the PV array for (𝑂𝑂𝑀𝑀𝑀𝑀𝑀𝑀 𝑂𝑂) extraction. Equation 
(1), which specifies the target variable (𝑦𝑦) for the 
optimization procedure, is used to formulate the MPPT 
issue. 
𝑒𝑒(𝐷𝐷𝐷𝐷𝑈𝑈) = 𝑂𝑂𝑀𝑀𝑀𝑀𝑀𝑀 𝑂𝑂    
      (1) 
In this work, the AC-BESO technique is utilized to 
determine the global MPP (GMPP), or maximum PO 
(𝑂𝑂𝑀𝑀𝑀𝑀𝑀𝑀 𝑂𝑂) corresponding to the ideal value of (𝐷𝐷𝐷𝐷𝑈𝑈). 

 
 

Figure 1. A typical PV system with MPPT control 

3.3. Simulation of the PV System 

A variant featuring just one diode is shown in Figure 2. 
Therefore, it consists of a unique current generator that is 
series impedance, shunt impedance, and anti-parallel to a 
single diode, to consider for ohmic losses and bleeding 
impedance to the bottom. Though it is more accurate and it 
can yield superior results, a two-diode model has certain 
drawbacks that make a problem harder. However, the 
single-diode model produces reasonable approximations 
and simplifies the modeling of PV cells. Consequently, a 
single-diode model is recommended for PV modeling. 
Multi-cell arrays coupled in series or parallel are 
commonly used to create PV modules. With the present 
generation, there are three modules associated with the 
series. The properties of the PV model depend on the 
temperature and solar radiation levels. Additionally 
influencing the properties of the single-diode model are the 
parallel conflicts and the series. The PV cell output current 
is denoted by the following formula (2) in mathematics. 

𝐽𝐽 = 𝐽𝐽𝑜𝑜 − 𝐽𝐽𝑆𝑆𝑆𝑆𝑆𝑆 �exp �𝑟𝑟�𝑈𝑈𝑝𝑝+𝐽𝐽.𝑄𝑄𝑆𝑆𝑆𝑆�
𝑏𝑏.𝐿𝐿.𝑆𝑆

� − 1� − 𝑈𝑈𝑃𝑃+𝐽𝐽+𝑄𝑄𝑆𝑆𝑆𝑆
𝑄𝑄𝑆𝑆𝑆𝑆

 (2) 

Where 𝐽𝐽𝑆𝑆𝑆𝑆𝑆𝑆  stands for the diode saturation current and 𝐽𝐽 is 
the PV current. The diode current is shown by the 𝐽𝐽𝑜𝑜 
imagethe current flowing through the parallel resistor is 
called 𝐽𝐽𝑆𝑆𝑆𝑆. 𝐷𝐷 is the electronic charge symbol. 𝑈𝑈𝑃𝑃 is the PV 
model's output voltage. Series resistance is known as 𝑄𝑄𝑆𝑆𝑆𝑆 . 
Parallel impedance standards element𝑄𝑄𝑆𝑆𝑆𝑆 , is represented 
by 𝑚𝑚. 𝐿𝐿 is Boltzmann's persistent𝑆𝑆 stands for the cell's 
temperature in degrees Celsius. 

 
 

Figure 2. Analogous circuit of SCs 

3.4. Characteristics of SCs 

When an SC𝐼𝐼𝑠𝑠𝑠𝑠  is linked in a short-circuit (Sh-C) 
configuration, the current that passes through it is known 
as Sh-C current. On the other hand, the maximum voltage 
that an SC can produce while there is no current flowing 
through it is 𝑉𝑉𝑜𝑜𝑠𝑠  known as the open-circuit voltage. It is 
imperative to realize that neither the open circuit nor the 
Sh-C phases effectively aid in the generation of energy. But 
there is a certain relationship between voltage and current 
that optimizes power production𝑂𝑂𝑚𝑚𝑀𝑀𝑀𝑀. The performance of 
a PV cell at different levels of solar irradiation and constant 
temperature is depicted in Figures 3 and 4. PV power-
voltage characteristics are shown in Figure 4, whereas 
current voltage characteristics are shown in Figure 3. These 
data indicate that while the Sh-C current of the PV cell 
maximizes significantly, the open-circuit voltage is only 
slightly affected by an increase in solar irradiation. 
Consequently, at constant temperature, the PV cell's power 
production is directly influenced by the amount of 
insolation. 

 
 

Figure 3. The effect of fluctuating Insolation on the 
current-voltage features of the SC 
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Figure 4. The effect of fluctuating Insolation 
quantities on the SC's power voltage properties 

3.5. Ant-colony integrated bald eagle 
search optimization (AC-BESO) 

It is intended to improve maximum power tracking in PV 
power generation devices. Maximizing the PO from solar 
panels and dynamically adapting to changing 
circumstances, improves efficiency. 

3.5.1. ACO 
A probabilistic approach called ant colony optimization 
(ACO) is used to determine the global optimal solution to 
a nonlinear issue. To optimize the path in a graph, ACO 
imitates the ants' foraging activity. A positive feedback 
phenomenon is created when several ants work together. 
At first, the ants arbitrarily search the path and leave behind 
pheromones for other ants to observe. The density of 
pheromone on a path increases with the number of ants that 
traverse it, increasing the probability that ants will follow 
identically and choose that path. Eventually, the majority 
of ants follow the route until individual ants use the sharing 
of such information to choose the quickest path. The ACO 
algorithm is first applied to combinational problems. More 
academics are using this technology in the constant domain 
these days, and their findings indicate that the 
𝐴𝐴𝐶𝐶𝑂𝑂𝑄𝑄performs better than other similar ACO algorithms. 
The process of creating solutions for continuous problems 
differs slightly from that of combinational problems. 
Assume that 𝑁𝑁 parameters in a𝑁𝑁-dimensional problem 
require optimization. The following is a description of the 
solution construction process. 
First, 𝐿𝐿 randomly generated solutions are created and kept 
in a solution archive of size( 𝐿𝐿 ≥ 𝑀𝑀). Subsequently, these 
𝐿𝐿 solutions are ordered based on the evaluation valuein the 
minimization issue  𝑒𝑒(𝑡𝑡1) ≤ 𝑒𝑒(𝑡𝑡2) ≤ ⋯ . .≤ 𝑒𝑒(𝑡𝑡𝑘𝑘) … … ≤
𝑒𝑒(𝑡𝑡𝐿𝐿). This ranking is performed from greatest to poorest. 
The probability density variable for every dimension is a 
Gaussian function made up of several Gaussian sub-
functions. This Gaussian kernel, which is provided, and 

sampled for every dimension to produce the updated 
possibilities. 

𝐻𝐻𝑗𝑗(𝑤𝑤) = ∑ 𝜔𝜔𝑘𝑘ℎ𝑘𝑘
𝑗𝑗 (𝑤𝑤) = ∑ 𝜔𝜔𝑘𝑘

1

𝜎𝜎𝑘𝑘
𝑗𝑗√2𝜋𝜋

exp �(𝑤𝑤−𝜇𝜇𝑘𝑘
𝑗𝑗 )

2𝜎𝜎𝑘𝑘
𝑗𝑗2 �𝐿𝐿

𝑘𝑘=1
𝐿𝐿
𝑘𝑘=1

      (3) 
In this case, the 𝑗𝑗𝑡𝑡ℎ element of the solution's Gaussian 
kernel is denoted by𝐻𝐻𝑗𝑗(𝑤𝑤), the 𝑘𝑘𝑡𝑡ℎ sub-Gaussian operates 

is denoted by ℎ𝑘𝑘
𝑗𝑗 (𝑤𝑤), and the 𝑗𝑗𝑡𝑡ℎstandard deviation and 

dimensional mean value are denoted by𝜇𝜇𝑘𝑘
𝑗𝑗  𝑎𝑎𝑎𝑎𝑎𝑎 𝜎𝜎𝑘𝑘

𝑗𝑗, 
accordingly. The three Gaussian kernel parameters are 
determined using the following equations with 𝐿𝐿 solutions 
in the repository. 
Mean: 
 𝜇𝜇𝑗𝑗 = �𝜇𝜇1

𝑗𝑗 , … … . , 𝜇𝜇𝑘𝑘
𝑗𝑗 , … …𝜇𝜇𝐿𝐿

𝑗𝑗� = �𝑡𝑡1
𝑗𝑗 , … … , 𝑡𝑡𝑘𝑘

𝑗𝑗 , … … 𝑡𝑡𝐿𝐿
𝑗𝑗� 

      (4) 
Where 𝑡𝑡𝑘𝑘

𝑗𝑗denotes the 𝑘𝑘𝑡𝑡ℎ solution's 𝑗𝑗𝑡𝑡ℎ numerical 
component. 
Standard deviation: 

 𝜎𝜎𝑘𝑘
𝑗𝑗 = 𝜉𝜉 ∑ |𝑡𝑡𝑖𝑖

𝑗𝑗−𝑡𝑡𝑘𝑘
𝑗𝑗 |

𝐿𝐿−1
𝐿𝐿
𝑖𝑖=1     

      (5) 
Where the average distance between the selected 
response𝑡𝑡𝑙𝑙and other responses in the preserve is multiplied 
by the parameter 𝜉𝜉indicating the speed of convergence to 
determine the standard deviation for the 𝑗𝑗𝑡𝑡ℎ size of the 𝑘𝑘𝑡𝑡ℎ 
approach. 
Weight: 

𝜔𝜔𝑘𝑘 = 1
𝑄𝑄𝑄𝑄√2𝜋𝜋

exp �− (𝑘𝑘−1)2

2𝑅𝑅2𝐿𝐿2
� , (𝜔𝜔𝐿𝐿 ≤ ⋯ ≤ 𝜔𝜔𝑘𝑘 ≤ ⋯ ≤ 𝜔𝜔2 ≤

𝜔𝜔1)     (6) 
Where 𝐷𝐷is the technique variable that denotes the 
significance of the top-ranked solutions, 𝜔𝜔𝑘𝑘 is the weight 
and 𝑘𝑘 is the rank of the solution 𝑡𝑡𝑘𝑘. The probability of 
selecting the optimal ranking solution increases when 𝐷𝐷 is 
small. There is an equal chance of selecting each response 
when it is enormous. 
Two stages are involved in sampling a Gaussian kernel 
with numerous Gaussian sub-functions selecting the 
Gaussian function and then randomly sampling the selected 
Gaussian sub-function using the parameterized normal 
distribution. One can compute the possibility of selecting 
the 𝑘𝑘𝑡𝑡ℎ Gaussian function employing. 
𝑜𝑜1 = 𝜔𝜔𝐽𝐽

∑ 𝜔𝜔𝑞𝑞
𝑞𝑞=𝐿𝐿
𝑞𝑞=1

     

      (7) 
For every new solution, the sampling procedure is repeated 
for every dimension (𝑗𝑗 = 1, … . ,𝑀𝑀) until 𝑁𝑁, also known as 
the number of ants. Fresh approaches are developed. 
Following that, the initial solutions are supplemented with 
these 𝑁𝑁 new ones. After ranking each of the 𝑁𝑁 +
𝐿𝐿    responses once more, only the top 𝐿𝐿 solutions are 
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retained in the archive. Consequently, the process is 
repeated in its entirety until either the higher amount of 
iterations is performed or the termination requirements are 
met. All of the ants will be successfully led to the optimal 
place in the search process by using this solution 
construction strategy. 
A method for greedy search, dispersed computing, and 
positive feedback are combined in the ACO. It's quite good 
at finding the best solution. An early discovery of the ideal 
solution is ensured by the AC algorithm through the 
positive feedback mechanism. By avoiding premature 
integration distributed computing aids the ACO. The 
system's efficiency has improved since the greedy search 
finds an acceptable solution more quickly. 

3.5.2. BESO 
The BESO is a novel search optimization method inspired 
by the environment. It is a fish-hunting meta-heuristic 
algorithm that employs deceptive strategies. The BE uses 
devious social behavior to complete its three phases of 
ideal goal-achieving. Choosing the hunting area with the 
highest concentration of fish is the initial phase. The 
second phase is to search the hunting region. At this point, 
the eagle transfers into the area in search of fish by figuring 
out where the greatest place to search exists. Utilizing the 
finest categorizing position chosen in the second phase, the 
eagle chooses the optimal hunting spot in the third phase. 
It's the swooping phase right now. Swooping begins at the 
optimal hunting location and monitors entire subsequent 
actions toward it. 
These are the phases of hunting that are taken into 
consideration. 

I. Select phase 
BEs choose the optimal fishing spot at this stage based on 
their prior awareness of food sources. As shown in (8), the 
novel hunting location selection, 𝑂𝑂𝑗𝑗,𝑛𝑛𝑛𝑛𝑤𝑤 is indicated. 
𝑂𝑂𝑗𝑗,𝑛𝑛𝑛𝑛𝑤𝑤 = 𝑂𝑂𝑏𝑏𝑛𝑛𝑠𝑠𝑡𝑡 + 𝛼𝛼 × 𝑞𝑞�𝑂𝑂𝑚𝑚𝑛𝑛𝑀𝑀𝑛𝑛 − 𝑂𝑂𝑗𝑗�  
     (8) 
Where 𝑂𝑂𝑏𝑏𝑛𝑛𝑠𝑠𝑡𝑡  denotes the ideal hunting position as 
determined by prior data. The regulating parameter 𝛼𝛼 is 
assigned a value between 1.5 and 2. The random quantity 𝑞𝑞 
has a range of 0 to 1.28. 𝑂𝑂𝑚𝑚𝑛𝑛𝑀𝑀𝑛𝑛 , the mean position, is a 
reflection of all the data gathered from the earlier search 
regions. Eagles randomly examine all locations close to the 
previously chosen search spaces in the select stage for a 
new ideal hunting space. 

II. Search phase 
Eagles use circular motions in every direction inside the 
search area after choosing it. The eagle's updated posture 
to be prepared for a swoop is expressed as. 

 𝑂𝑂𝑗𝑗,𝑛𝑛𝑛𝑛𝑤𝑤 = 𝑂𝑂𝑗𝑗 + 𝑧𝑧(𝑗𝑗) × �𝑂𝑂𝑗𝑗 − 𝑂𝑂𝑗𝑗+1� + 𝑤𝑤(𝑗𝑗) × �𝑂𝑂𝑚𝑚𝑛𝑛𝑀𝑀𝑛𝑛 −
𝑂𝑂𝑗𝑗�     (9) 
Where 𝑤𝑤(𝑗𝑗)and   𝑧𝑧(𝑗𝑗)are given as. 
𝑤𝑤(𝑗𝑗) = 𝑤𝑤𝑤𝑤(𝑗𝑗)

max (|𝑤𝑤𝑤𝑤|)
   , 𝑧𝑧(𝑗𝑗) = 𝑧𝑧𝑤𝑤(𝑗𝑗)

max (|𝑧𝑧𝑤𝑤|)
  

     (10) 
𝑤𝑤𝑞𝑞(𝑗𝑗) = 𝑞𝑞(𝑗𝑗) × sin�𝜃𝜃(𝑗𝑗)� , 𝑧𝑧𝑞𝑞(𝑗𝑗) = 𝑞𝑞(𝑗𝑗) × cos�𝜃𝜃(𝑗𝑗)�
     (11) 
𝜃𝜃(𝑗𝑗) = 𝑏𝑏 × 𝜋𝜋 × 𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎     
     (12) 
𝑎𝑎𝑎𝑎𝑎𝑎 𝑞𝑞(𝑗𝑗) = 𝜃𝜃(𝑗𝑗) + 𝑄𝑄 × 𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎    
      (13) 
Equations 10–13 in a set describe Equation (9) uses spiral 
space as the form, the number of cycles and the movement's 
form are determined by the parameters 𝑏𝑏 𝑎𝑎𝑎𝑎𝑎𝑎 𝑄𝑄there is a 
polar axis movement in the direction of the center point. 
While "𝑄𝑄" is between 0.5 and 2, 𝑏𝑏 has a value between 5 
and 10. The spiral path leading to the central point depicts 
the search space. The polar plots' moving point positions 
are between the range of 1 and 1.28. The ideal place to 
swoop is determined by comparison with the spiral space 
center location. 

III. Swooping phase 
Eagles move quickly in the direction of their prey after the 
optimal spot to swoop is identified. Eagles fly from the 
central point in the direction of their prey during this phase. 
The descriptions of 14–18 provide the updating of every 
point's position. 
𝑂𝑂𝑗𝑗,𝑛𝑛𝑛𝑛𝑤𝑤 = 𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎 × 𝑂𝑂𝑏𝑏𝑛𝑛𝑠𝑠𝑡𝑡 + 𝑤𝑤1(𝑗𝑗) × �𝑂𝑂𝑗𝑗 − 𝑎𝑎1 × 𝑂𝑂𝑚𝑚𝑛𝑛𝑀𝑀𝑛𝑛� +
𝑧𝑧1(𝑗𝑗) × �𝑂𝑂𝑗𝑗 − 𝑎𝑎2 × 𝑂𝑂𝑏𝑏𝑛𝑛𝑠𝑠𝑡𝑡�               (14) 
Where 
𝑤𝑤1(𝑗𝑗) = 𝑤𝑤𝑤𝑤(𝑗𝑗)

max (|𝑤𝑤𝑤𝑤|)
   , 𝑧𝑧1(𝑗𝑗) = 𝑧𝑧𝑤𝑤(𝑗𝑗)

max (|𝑧𝑧𝑤𝑤|)
  

     (15) 
𝑤𝑤𝑞𝑞(𝑗𝑗) = 𝑞𝑞(𝑗𝑗) × sinh�𝜃𝜃(𝑗𝑗)� , 𝑧𝑧𝑞𝑞(𝑗𝑗) = 𝑞𝑞(𝑗𝑗) × cosh�𝜃𝜃(𝑗𝑗)�
                   (16) 
𝜃𝜃(𝑗𝑗) = 𝑏𝑏 × 𝜋𝜋 × 𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎    
     (17) 
𝑎𝑎𝑎𝑎𝑎𝑎 𝑞𝑞(𝑗𝑗) = 𝜃𝜃(𝑗𝑗)     
     (18) 
Where 𝑎𝑎1 𝑎𝑎𝑎𝑎𝑎𝑎  𝑎𝑎2are in the range. 

3.6. Proposed technique 

The combined AC-BESO technique, which incorporates 
the best aspects of both ACO and BESO, improves the 
performance and efficacy of the PV system MPPT. By 
using this method, PV systems' PO can be increased while 
simultaneously cumulative their general efficiency and 
dependability. The AC-BESO algorithm is especially 

EAI Endorsed Transactions 
on Energy Web | 

| Volume 12 | 2025 |



Research on a New Maximum Power Tracking Algorithm for Photovoltaic Power Generation Systems 
 
 
 

7 

useful in situations where the environment is changing 
quickly, including temperature and sunshine fluctuations, 
where typical MPPT approaches might not be as effective. 
The combined AC-BESO algorithm is very effective for 
MPPT in dynamic and changing situations because it 
makes use of the strong exploratory characteristics of ACO 
and the fine-tuning specificity of BESO. Even in situations 
where partial shading is present, the hybrid algorithm 
increases the probability of locating the actual MPP by 
merging the ACO's broad search abilities with BESO's 
local refinement. The qualities of ACO and BESO are 
successfully combined in this combination approach, 
improving tracking precision, accelerating convergence, 
and producing robust performance all of which raise the 
overall efficiency and dependability of PV systems. 
Algorithm 1 shows the pseudo-code of Ant-colony 
integrated bald eagle search optimization (AC-BESO). 
 
Table 1. Pseudo-code of Ant-colony integrated bald 

eagle search optimization (AC-BESO) 
 

Algorithm1: AC-BESO 
% 𝐼𝐼𝑎𝑎𝐼𝐼𝑡𝑡𝐼𝐼𝑎𝑎𝐼𝐼𝐼𝐼𝑧𝑧𝑒𝑒 𝑝𝑝𝑎𝑎𝑟𝑟𝑎𝑎𝑚𝑚𝑒𝑒𝑡𝑡𝑒𝑒𝑟𝑟𝑝𝑝 

𝑎𝑎𝑛𝑛𝑚𝑚𝐴𝐴𝑎𝑎𝑡𝑡𝑝𝑝 =  10; % Number of ants in the colony 
𝑎𝑎𝑛𝑛𝑚𝑚𝐼𝐼𝑡𝑡𝑒𝑒𝑟𝑟𝑎𝑎𝑡𝑡𝐼𝐼𝑜𝑜𝑎𝑎𝑝𝑝 =  100; % Number of iterations 
𝑝𝑝ℎ𝑒𝑒𝑟𝑟𝑜𝑜𝑚𝑚𝑜𝑜𝑎𝑎𝑒𝑒𝐷𝐷𝑒𝑒𝑒𝑒𝑎𝑎𝑦𝑦 =  0.5; % Pheromone decay rate 
𝑎𝑎𝐼𝐼𝑝𝑝ℎ𝑎𝑎 =  1; % Pheromone influence factor 
𝑏𝑏𝑒𝑒𝑡𝑡𝑎𝑎 =  2; % Heuristic influence factor 
𝑄𝑄 =  1; % Pheromone update constant 
𝑏𝑏𝑒𝑒𝑝𝑝𝑡𝑡𝑆𝑆𝑜𝑜𝐼𝐼𝑛𝑛𝑡𝑡𝐼𝐼𝑜𝑜𝑎𝑎 =  []; % Initialize the best solution 
𝑏𝑏𝑒𝑒𝑝𝑝𝑡𝑡𝑏𝑏𝐼𝐼𝑡𝑡𝑎𝑎𝑒𝑒𝑝𝑝𝑝𝑝 =  𝐼𝐼𝑎𝑎𝐼𝐼; % Initialize the best fitness value 
% 𝐼𝐼𝑎𝑎𝐼𝐼𝑡𝑡𝐼𝐼𝑎𝑎𝐼𝐼𝐼𝐼𝑧𝑧𝑒𝑒 𝑝𝑝ℎ𝑒𝑒𝑟𝑟𝑜𝑜𝑚𝑚𝑜𝑜𝑎𝑎𝑒𝑒 𝑚𝑚𝑎𝑎𝑡𝑡𝑟𝑟𝐼𝐼𝑚𝑚 𝑎𝑎𝑎𝑎𝑎𝑎 ℎ𝑒𝑒𝑛𝑛𝑟𝑟𝐼𝐼𝑝𝑝𝑡𝑡𝐼𝐼𝑒𝑒 𝐼𝐼𝑎𝑎𝐼𝐼𝑜𝑜𝑟𝑟𝑚𝑚𝑎𝑎𝑡𝑡𝐼𝐼𝑜𝑜𝑎𝑎 𝑚𝑚𝑎𝑎𝑡𝑡𝑟𝑟𝐼𝐼𝑚𝑚 
𝑝𝑝ℎ𝑒𝑒𝑟𝑟𝑜𝑜𝑚𝑚𝑜𝑜𝑎𝑎𝑒𝑒𝑝𝑝 =  𝑜𝑜𝑎𝑎𝑒𝑒𝑝𝑝(𝑎𝑎𝑉𝑉𝑎𝑎𝑟𝑟𝐼𝐼𝑎𝑎𝑏𝑏𝐼𝐼𝑒𝑒𝑝𝑝); % Pheromone 
matrix 
ℎ𝑒𝑒𝑛𝑛𝑟𝑟𝐼𝐼𝑝𝑝𝑡𝑡𝐼𝐼𝑒𝑒𝐼𝐼𝑎𝑎𝐼𝐼𝑜𝑜 =  𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑉𝑉𝑎𝑎𝑟𝑟𝐼𝐼𝑎𝑎𝑏𝑏𝐼𝐼𝑒𝑒𝑝𝑝); % Heuristic 
information matrix 

% 𝐼𝐼𝑎𝑎𝐼𝐼𝑡𝑡𝐼𝐼𝑎𝑎𝐼𝐼𝐼𝐼𝑧𝑧𝑒𝑒 𝑎𝑎𝑎𝑎𝑡𝑡 𝑝𝑝𝑜𝑜𝑝𝑝𝐼𝐼𝑡𝑡𝐼𝐼𝑜𝑜𝑎𝑎𝑝𝑝 𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑜𝑜𝑚𝑚𝐼𝐼𝑦𝑦 
𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎𝑜𝑜𝑝𝑝𝐼𝐼𝑡𝑡𝐼𝐼𝑜𝑜𝑎𝑎𝑝𝑝 =  𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑛𝑛𝑚𝑚𝐴𝐴𝑎𝑎𝑡𝑡𝑝𝑝,𝑎𝑎𝑉𝑉𝑎𝑎𝑟𝑟𝐼𝐼𝑎𝑎𝑏𝑏𝐼𝐼𝑒𝑒𝑝𝑝); 

% 𝑀𝑀𝑎𝑎𝐼𝐼𝑎𝑎 𝑜𝑜𝑝𝑝𝑡𝑡𝐼𝐼𝑚𝑚𝐼𝐼𝑧𝑧𝑎𝑎𝑡𝑡𝐼𝐼𝑜𝑜𝑎𝑎 𝐼𝐼𝑜𝑜𝑜𝑜𝑝𝑝 
𝐼𝐼𝑜𝑜𝑟𝑟 𝐼𝐼𝑡𝑡𝑒𝑒𝑟𝑟𝑎𝑎𝑡𝑡𝐼𝐼𝑜𝑜𝑎𝑎 =  1:𝑎𝑎𝑛𝑛𝑚𝑚𝐼𝐼𝑡𝑡𝑒𝑒𝑟𝑟𝑎𝑎𝑡𝑡𝐼𝐼𝑜𝑜𝑎𝑎𝑝𝑝 

    % 𝐸𝐸𝐸𝐸𝑎𝑎𝐼𝐼𝑛𝑛𝑎𝑎𝑡𝑡𝑒𝑒 𝐼𝐼𝐼𝐼𝑡𝑡𝑎𝑎𝑒𝑒𝑝𝑝𝑝𝑝 𝑜𝑜𝐼𝐼 𝑒𝑒𝑎𝑎𝑒𝑒ℎ 𝑎𝑎𝑎𝑎𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛𝑝𝑝𝑎𝑎𝑎𝑎𝑡𝑡𝑒𝑒 𝑏𝑏𝑒𝑒𝑝𝑝𝑡𝑡 𝑝𝑝𝑜𝑜𝐼𝐼𝑛𝑛𝑡𝑡𝐼𝐼𝑜𝑜𝑎𝑎 
 𝐼𝐼𝑜𝑜𝑟𝑟 𝑎𝑎𝑎𝑎𝑡𝑡 =  1:𝑎𝑎𝑛𝑛𝑚𝑚𝐴𝐴𝑎𝑎𝑡𝑡𝑝𝑝 

        𝐼𝐼𝐼𝐼𝑡𝑡𝑎𝑎𝑒𝑒𝑝𝑝𝑝𝑝 =
 𝑒𝑒𝐸𝐸𝑎𝑎𝐼𝐼𝑛𝑛𝑎𝑎𝑡𝑡𝑒𝑒𝑏𝑏𝐼𝐼𝑡𝑡𝑎𝑎𝑒𝑒𝑝𝑝𝑝𝑝(𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎𝑜𝑜𝑝𝑝𝐼𝐼𝑡𝑡𝐼𝐼𝑜𝑜𝑎𝑎𝑝𝑝(𝑎𝑎𝑎𝑎𝑡𝑡, : )); % Evaluate 
fitness of current ant 

        𝐼𝐼𝐼𝐼 𝐼𝐼𝐼𝐼𝑡𝑡𝑎𝑎𝑒𝑒𝑝𝑝𝑝𝑝 <  𝑏𝑏𝑒𝑒𝑝𝑝𝑡𝑡𝑏𝑏𝐼𝐼𝑡𝑡𝑎𝑎𝑒𝑒𝑝𝑝𝑝𝑝 
 𝑏𝑏𝑒𝑒𝑝𝑝𝑡𝑡𝑏𝑏𝐼𝐼𝑡𝑡𝑎𝑎𝑒𝑒𝑝𝑝𝑝𝑝 =  𝐼𝐼𝐼𝐼𝑡𝑡𝑎𝑎𝑒𝑒𝑝𝑝𝑝𝑝;  % 𝑈𝑈𝑝𝑝𝑎𝑎𝑎𝑎𝑡𝑡𝑒𝑒 𝑏𝑏𝑒𝑒𝑝𝑝𝑡𝑡 𝐼𝐼𝐼𝐼𝑡𝑡𝑎𝑎𝑒𝑒𝑝𝑝𝑝𝑝 

𝑏𝑏𝑒𝑒𝑝𝑝𝑡𝑡𝑆𝑆𝑜𝑜𝐼𝐼𝑛𝑛𝑡𝑡𝐼𝐼𝑜𝑜𝑎𝑎 =  𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎𝑜𝑜𝑝𝑝𝐼𝐼𝑡𝑡𝐼𝐼𝑜𝑜𝑎𝑎𝑝𝑝(𝑎𝑎𝑎𝑎𝑡𝑡, : ); % Update best 
solution 

        𝑒𝑒𝑎𝑎𝑎𝑎 
    𝑒𝑒𝑎𝑎𝑎𝑎 

  % 𝑛𝑛𝑝𝑝𝑎𝑎𝑎𝑎𝑡𝑡𝑒𝑒 𝑝𝑝ℎ𝑒𝑒𝑟𝑟𝑜𝑜𝑚𝑚𝑜𝑜𝑎𝑎𝑒𝑒 𝑚𝑚𝑎𝑎𝑡𝑡𝑟𝑟𝐼𝐼𝑚𝑚 
 𝑝𝑝ℎ𝑒𝑒𝑟𝑟𝑜𝑜𝑚𝑚𝑜𝑜𝑎𝑎𝑒𝑒𝑝𝑝 =  (1 −  𝑝𝑝ℎ𝑒𝑒𝑟𝑟𝑜𝑜𝑚𝑚𝑜𝑜𝑎𝑎𝑒𝑒𝐷𝐷𝑒𝑒𝑒𝑒𝑎𝑎𝑦𝑦)  ∗
 𝑝𝑝ℎ𝑒𝑒𝑟𝑟𝑜𝑜𝑚𝑚𝑜𝑜𝑎𝑎𝑒𝑒𝑝𝑝; % Decay pheromones 

    𝐼𝐼𝑜𝑜𝑟𝑟 𝑎𝑎𝑎𝑎𝑡𝑡 =  1:𝑎𝑎𝑛𝑛𝑚𝑚𝐴𝐴𝑎𝑎𝑡𝑡𝑝𝑝 
  𝑎𝑎𝑒𝑒𝐼𝐼𝑡𝑡𝑎𝑎𝑎𝑎ℎ𝑒𝑒𝑟𝑟𝑜𝑜𝑚𝑚𝑜𝑜𝑎𝑎𝑒𝑒𝑝𝑝 =  𝑄𝑄 /
 𝑒𝑒𝐸𝐸𝑎𝑎𝐼𝐼𝑛𝑛𝑎𝑎𝑡𝑡𝑒𝑒𝑏𝑏𝐼𝐼𝑡𝑡𝑎𝑎𝑒𝑒𝑝𝑝𝑝𝑝(𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎𝑜𝑜𝑝𝑝𝐼𝐼𝑡𝑡𝐼𝐼𝑜𝑜𝑎𝑎𝑝𝑝(𝑎𝑎𝑎𝑎𝑡𝑡, : )); % Pheromone 
update for current ant 
𝑝𝑝ℎ𝑒𝑒𝑟𝑟𝑜𝑜𝑚𝑚𝑜𝑜𝑎𝑎𝑒𝑒𝑝𝑝 =  𝑝𝑝ℎ𝑒𝑒𝑟𝑟𝑜𝑜𝑚𝑚𝑜𝑜𝑎𝑎𝑒𝑒𝑝𝑝 +  𝑎𝑎𝑒𝑒𝐼𝐼𝑡𝑡𝑎𝑎𝑎𝑎ℎ𝑒𝑒𝑟𝑟𝑜𝑜𝑚𝑚𝑜𝑜𝑎𝑎𝑒𝑒𝑝𝑝; 
% Update pheromones 

    𝑒𝑒𝑎𝑎𝑎𝑎 
    % 𝑈𝑈𝑝𝑝𝑎𝑎𝑎𝑎𝑡𝑡𝑒𝑒 𝑎𝑎𝑎𝑎𝑡𝑡 𝑝𝑝𝑜𝑜𝑝𝑝𝐼𝐼𝑡𝑡𝐼𝐼𝑜𝑜𝑎𝑎𝑝𝑝 𝑛𝑛𝑝𝑝𝐼𝐼𝑎𝑎𝑢𝑢 𝐴𝐴𝐶𝐶

− 𝐵𝐵𝐸𝐸𝑆𝑆𝑂𝑂 𝑎𝑎𝐼𝐼𝑢𝑢𝑜𝑜𝑟𝑟𝐼𝐼𝑡𝑡ℎ𝑚𝑚 
𝐼𝐼𝑜𝑜𝑟𝑟 𝑎𝑎𝑎𝑎𝑡𝑡 =  1:𝑎𝑎𝑛𝑛𝑚𝑚𝐴𝐴𝑎𝑎𝑡𝑡𝑝𝑝 

𝑝𝑝𝑟𝑟𝑜𝑜𝑏𝑏𝑎𝑎𝑏𝑏𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡𝐼𝐼𝑒𝑒𝑝𝑝 =  (𝑝𝑝ℎ𝑒𝑒𝑟𝑟𝑜𝑜𝑚𝑚𝑜𝑜𝑎𝑎𝑒𝑒𝑝𝑝. ^𝑎𝑎𝐼𝐼𝑝𝑝ℎ𝑎𝑎) .∗
 (ℎ𝑒𝑒𝑛𝑛𝑟𝑟𝐼𝐼𝑝𝑝𝑡𝑡𝐼𝐼𝑒𝑒𝐼𝐼𝑎𝑎𝐼𝐼𝑜𝑜. ^𝑏𝑏𝑒𝑒𝑡𝑡𝑎𝑎); % Compute probabilities 
𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎𝑜𝑜𝑝𝑝𝐼𝐼𝑡𝑡𝐼𝐼𝑜𝑜𝑎𝑎𝑝𝑝(𝑎𝑎𝑎𝑎𝑡𝑡, : )  =  𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎(1,𝑎𝑎𝑉𝑉𝑎𝑎𝑟𝑟𝐼𝐼𝑎𝑎𝑏𝑏𝐼𝐼𝑒𝑒𝑝𝑝)  <
 𝑝𝑝𝑟𝑟𝑜𝑜𝑏𝑏𝑎𝑎𝑏𝑏𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡𝐼𝐼𝑒𝑒𝑝𝑝; % Update ant positions 

𝑒𝑒𝑎𝑎𝑎𝑎 
𝑒𝑒𝑎𝑎𝑎𝑎 

% 𝑏𝑏𝐼𝐼𝑎𝑎𝑎𝑎𝐼𝐼 𝑏𝑏𝑒𝑒𝑝𝑝𝑡𝑡 𝑝𝑝𝑜𝑜𝐼𝐼𝑛𝑛𝑡𝑡𝐼𝐼𝑜𝑜𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 𝐼𝐼𝐼𝐼𝑡𝑡𝑎𝑎𝑒𝑒𝑝𝑝𝑝𝑝 
𝑎𝑎𝐼𝐼𝑝𝑝𝑝𝑝(′𝐵𝐵𝑒𝑒𝑝𝑝𝑡𝑡 𝑆𝑆𝑜𝑜𝐼𝐼𝑛𝑛𝑡𝑡𝐼𝐼𝑜𝑜𝑎𝑎: ′); 
𝑎𝑎𝐼𝐼𝑝𝑝𝑝𝑝(𝑏𝑏𝑒𝑒𝑝𝑝𝑡𝑡𝑆𝑆𝑜𝑜𝐼𝐼𝑛𝑛𝑡𝑡𝐼𝐼𝑜𝑜𝑎𝑎); 
𝑎𝑎𝐼𝐼𝑝𝑝𝑝𝑝(′𝐵𝐵𝑒𝑒𝑝𝑝𝑡𝑡 𝑏𝑏𝐼𝐼𝑡𝑡𝑎𝑎𝑒𝑒𝑝𝑝𝑝𝑝: ′); 
𝑎𝑎𝐼𝐼𝑝𝑝𝑝𝑝(𝑏𝑏𝑒𝑒𝑝𝑝𝑡𝑡𝑏𝑏𝐼𝐼𝑡𝑡𝑎𝑎𝑒𝑒𝑝𝑝𝑝𝑝); 

% 𝑏𝑏𝐼𝐼𝑡𝑡𝑎𝑎𝑒𝑒𝑝𝑝𝑝𝑝 𝑒𝑒𝐸𝐸𝑎𝑎𝐼𝐼𝑛𝑛𝑎𝑎𝑡𝑡𝐼𝐼𝑜𝑜𝑎𝑎 𝐼𝐼𝑛𝑛𝑎𝑎𝑒𝑒𝑡𝑡𝐼𝐼𝑜𝑜𝑎𝑎  
𝐼𝐼𝑛𝑛𝑎𝑎𝑒𝑒𝑡𝑡𝐼𝐼𝑜𝑜𝑎𝑎 𝐼𝐼𝐼𝐼𝑡𝑡𝑎𝑎𝑒𝑒𝑝𝑝𝑝𝑝 =  𝑒𝑒𝐸𝐸𝑎𝑎𝐼𝐼𝑛𝑛𝑎𝑎𝑡𝑡𝑒𝑒𝑏𝑏𝐼𝐼𝑡𝑡𝑎𝑎𝑒𝑒𝑝𝑝𝑝𝑝(𝑝𝑝𝑜𝑜𝐼𝐼𝑛𝑛𝑡𝑡𝐼𝐼𝑜𝑜𝑎𝑎) 

    % 𝐸𝐸𝑚𝑚𝑎𝑎𝑚𝑚𝑝𝑝𝐼𝐼𝑒𝑒 𝐼𝐼𝐼𝐼𝑡𝑡𝑎𝑎𝑒𝑒𝑝𝑝𝑝𝑝 𝐼𝐼𝑛𝑛𝑎𝑎𝑒𝑒𝑡𝑡𝐼𝐼𝑜𝑜𝑎𝑎  
    𝐼𝐼𝐼𝐼𝑡𝑡𝑎𝑎𝑒𝑒𝑝𝑝𝑝𝑝 =  𝑝𝑝𝑛𝑛𝑚𝑚(𝑝𝑝𝑜𝑜𝐼𝐼𝑛𝑛𝑡𝑡𝐼𝐼𝑜𝑜𝑎𝑎); % Fitness is the sum of 
solution elements 

𝑒𝑒𝑎𝑎𝑎𝑎 
 

4. Result 

In this section, we show the simulation model in detail and 
carry out a systematic examination. We have created a PV 
system in MATLAB to assess the efficacy of the AC-
BESO-based MPPT technique. Table 2 provides a 
comprehensive overview of the PV component attributes in 
the experiments. 
 

Table 2. Description of PV modules 
 

Parameter Value 
𝐴𝐴𝑚𝑚𝑜𝑜𝑛𝑛𝑎𝑎𝑡𝑡 𝑜𝑜𝐼𝐼 𝑎𝑎𝑉𝑉 𝑝𝑝𝑎𝑎𝑎𝑎𝑒𝑒𝐼𝐼𝑝𝑝 𝑒𝑒𝑜𝑜𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑡𝑡𝑒𝑒𝑎𝑎 𝐼𝐼𝑎𝑎 𝑝𝑝𝑒𝑒𝑟𝑟𝐼𝐼𝑒𝑒  3 

𝑆𝑆ℎ𝑜𝑜𝑟𝑟𝑡𝑡 − 𝑒𝑒𝐼𝐼𝑟𝑟𝑒𝑒𝑛𝑛𝐼𝐼𝑡𝑡 𝐶𝐶𝑛𝑛𝑟𝑟𝑟𝑟𝑒𝑒𝑎𝑎𝑡𝑡 (𝐼𝐼𝑠𝑠𝑠𝑠) 6.00 𝐴𝐴 

𝑎𝑎𝑉𝑉 𝑒𝑒𝑒𝑒𝐼𝐼𝐼𝐼𝑝𝑝 𝑝𝑝𝑒𝑒𝑟𝑟 𝑚𝑚𝑜𝑜𝑎𝑎𝑛𝑛𝐼𝐼𝑒𝑒 60 

𝑂𝑂𝑝𝑝𝑒𝑒𝑎𝑎 − 𝑒𝑒𝐼𝐼𝑟𝑟𝑒𝑒𝑛𝑛𝐼𝐼𝑡𝑡 𝑉𝑉𝑜𝑜𝐼𝐼𝑡𝑡𝑎𝑎𝑢𝑢𝑒𝑒 (𝑉𝑉𝑜𝑜𝑠𝑠) 22.50 𝑉𝑉 
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𝐶𝐶𝑛𝑛𝑟𝑟𝑟𝑟𝑒𝑒𝑎𝑎𝑡𝑡 𝑎𝑎𝑡𝑡 𝑀𝑀𝑎𝑎𝑎𝑎 (𝐼𝐼𝑀𝑀𝐵𝐵) 5.70 𝐴𝐴 
𝑉𝑉𝑜𝑜𝐼𝐼𝑡𝑡𝑎𝑎𝑢𝑢𝑒𝑒 𝑎𝑎𝑡𝑡 𝑀𝑀𝑎𝑎𝑎𝑎 (𝑉𝑉𝑀𝑀𝐵𝐵) 18.00 𝑉𝑉 
𝑀𝑀𝑎𝑎𝑚𝑚𝐼𝐼𝑚𝑚𝑛𝑛𝑚𝑚 𝑎𝑎𝑜𝑜𝑤𝑤𝑒𝑒𝑟𝑟 (𝑂𝑂𝑀𝑀𝐵𝐵) 102.60 𝑊𝑊 

𝑇𝑇𝑒𝑒𝑚𝑚𝑝𝑝𝑒𝑒𝑟𝑟𝑎𝑎𝑡𝑡𝑛𝑛𝑟𝑟𝑒𝑒 𝐶𝐶𝑜𝑜𝑒𝑒𝐼𝐼𝐼𝐼𝐼𝐼𝑒𝑒𝐼𝐼𝑒𝑒𝑎𝑎𝑡𝑡 𝑜𝑜𝐼𝐼 𝑈𝑈𝑜𝑜𝑠𝑠  (%/
◦ 𝐶𝐶) 

−0.33 

𝑇𝑇𝑒𝑒𝑚𝑚𝑝𝑝𝑒𝑒𝑟𝑟𝑎𝑎𝑡𝑡𝑛𝑛𝑟𝑟𝑒𝑒 𝐶𝐶𝑜𝑜𝑒𝑒𝐼𝐼𝐼𝐼𝐼𝐼𝑒𝑒𝐼𝐼𝑒𝑒𝑎𝑎𝑡𝑡 𝑜𝑜𝐼𝐼 𝐽𝐽𝑠𝑠𝑠𝑠  (%/
◦ 𝐶𝐶) 

0.04 

4.1. Circumstances for Constant PS 

Simulation tests employing varying degrees of solar 
Insolation (radiation) were conducted to compare the 
efficacy of the AC-BESO-based MPPT methodology with 
existing AC and AC- variable-coefficient (VC) systems. 

4.1.1. Circumstance 1: Full Insolation 
The PO and duty ratio graphs for a three-component PV 
array functioning through complete insolation 
circumstances are shown in the simulation outcomes that 
are provided in Figure 5a–c. For analysis, three distinct 
algorithms AC, AC-VC, and AC-BESO were used. Under 
these circumstances, a constant 1000 watts per square 
meter(W/m2) of irradiance was applied to each PV module. 
The results show that in contrast to the AC and AC-VC 
methods, AC-BESO performed better in regard to tracking 
time and less fluctuations. With a tracking effectiveness of 
99.96%, AC-BESO effectively monitored the MPP at 
88.21W, obtaining a convergence time of 0.36 seconds (s). 
Conversely, AC-VC, which had a settling time of only 1.3s, 
was able to follow the MPP more quickly than AC-BESO. 
AC-VC acquired a partially minimized MPP rate of 87.6W 
with an effectiveness of 99.28%. Conversely, the MPP at 
86.07 W is successfully tracked by the AC algorithm, 
which is renowned for its exploring and exploiting 
capabilities. However, it requires 1.36s to settle, which is 
longer than AC-BESO and AC-VC. Moreover, constant-
state oscillations because of power damages and a 97.59% 
decrease in the MPP's performance, however, AC still 
performs better even in these situations. Although AC-
BESO performs better in fully isolated environments, it is 
important to highlight that metaheuristic algorithms can 
also handle PS scenarios. Apart from demonstrating ideal 
performance, these algorithms must also be resilient and 
flexible enough to handle situations in which the PV array 
may be partially shaded. 

 
 

 

 
Figure 5. (a–c) Experimental outcomes of AC, AC-

VC, and AC-BESO algorithm at Circumstance 1 

4.1.2. Circumstance 2: Insufficient PS 
circumstance 
Comparing findings for AC, AC-VC, and AC-BESO 
during circumstance 2, where PV array components endure 
various insolation levels of 1000, 900, 600, 𝑎𝑎𝑎𝑎𝑎𝑎 400 𝑊𝑊/
𝑚𝑚2, are shown in Figures 6a, b, and c, accordingly. In this 
case, AC-BESO tracks the MPP at 42.27 W effectively in 
0.499s of settling duration, resulting in an effectiveness of 
about 99.98%. With a settling duration of 1.28s, AC-VC 
has an effectiveness of 99.78% and a lower MPP rating of 
42.16W. In contrast, AC monitors the MPP of 42.05W with 
achievement, but the effectiveness is only 99.51%, which 
is less than that of AC-BESO and AC-VC. Additionally, 
AC shows a longer settling duration of 1.341s. Particularly, 
AC-BESO performed significantly better in terms of 
settling duration than the other two techniques. The 
outcomes also reveal that the AC-BESO method performs 
significantly faster at convergent states than the AC and 
AC-VC algorithms, and more effective overall. 
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Figure 6. (a–c) Experimental outcomes of AC, AC-

VC, and AC-BESO algorithm at Circumstance 2 

4.1.3. Circumstance 3: significant PS 
circumstance 
Figure 7a–c is used to contrast the outcomes for 
circumstance 3, where the single panel is assigned 1000 
W/m2, while the other panels are assigned 800 W/m2, 750 
W/m2, and 500 W/m2, accordingly. With a settling 
duration of 0.6014s and an effectiveness of almost 99.94%, 
AC-BESO follows the MPP at 49.73W with efficiency 
under this significant PS situation. Conversely, AC-VC 
resolves at 49.39W with 99.33% effectiveness, a 
considerably lower figure, after a longer monitoring period 
of 2.159s. When contrasted with other techniques, AC 
monitors the MPP of 49.25W with a tracking duration of 
2.298s and a lesser effectiveness of 98.97%. When 
contrasted with AC-VC and AC, AC-BESO shows fewer 
variations throughout the MPP search, which results in a 
notable decrease in power losses. Figure 8 provides a 
concise comparative summary of all AC-BESO, AC-VC, 
and AC techniques, converging on their MPP tracking 
capabilities, efficiency, and tracking time. 

 

 

 
 

Figure 7. (a–c) Experimental outcomes of AC, AC-
VC, and AC-BESO algorithm at Circumstance 1 
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Figure 8. (a–c) Experimental outcomes of AC, AC-
VC, and AC-BESO algorithm for efficiency, MPP 
tracked, and tracking time of Circumstances 1, 2, 

and 3. 

4.2 Dynamic PS circumstance 

To enhance the supremacy, adaptability, dependability, and 
effectiveness of the AC-BESO-based MPPT technique, its 
efficacy is assessed in the situation of dynamic variations 
in insolation circumstances. Considering environmental 
variations lead PV arrays to suffer varying degrees of shade 
in real-world circumstances, testing under dynamic 
circumstances is crucial. Consequently, a progressive 
variation in insolation is included in this experiment. 
Figure 9 shows sudden variations in incidence insolation 
values on the PV array. After a second, the original uniform 
distribution from circumstance 1 is changed to a mild PS 
scenario with insolation levels of 1000 W/m2, 900 W/m2, 
600 W/m2, and 400 W/m2. After that, this is changed even 

more to a PS circumstance with an insolation value of 900 
W/m2, 800 W/m2, 500 W/m2, and 400 W/m2, much 
similar to circumstance 3. Finally, the fourth insolation 
level 1000W/m2, 800W/m2, 500W/m2, and 300W/m2 
after 1s takes the place of the third insolation stage. The 
insolation phase varies at intervals of one second. To track 
the MPP rapidly, the algorithm has to repeat itself in 
reaction to these variations in insolation AC-BESO 
intersections in 0.4s and generates a higher power of 86.1W 
at a constant insolation degree, resulting in an effectiveness 
of 99.69%. The insolation stages of the PV array quickly 
change from stage 1 to stage 2. With a productivity of 
99.93%, AC-BESO monitored an MPP of 39.32W in 1.33s 
at this insolation stage. It takes 2.182s to monitor the MPP 
of 39.52W at the third insolation stage. It took 3.27s to 
identify the MPP of 37.99W at the final insolation stage. 
The simulation results show that the proposed AC-BESO 
method is quite complicated due to variations in shaded 
configurations. The findings also suggest that the 
suggested AC-BESO might effectively imitate GMPP in 
the short term and show fewer oscillations in the 
fluctuations. 

 
 

Figure 9. AC-BESO-based MPPT experiment 
outcomes for dynamic insolation circumstances 

4.3. Impact of Load Variation 

The experimental findings in this part show how the 
suggested AC-BESO-based MPPT approach is resilient 
and reliable even under varying loads. This fluctuation is 
shown on the three PV array components in Figure 10 with 
constant irradiances of 1000, 900, 750, and 400 W/m2. A 
15° load is delivered initially, then after 1s, the load 
changes to a 10° load. The findings show that the greatest 
power monitored in 0.33s with a 15Ω load is 49.98W. The 
highest power measured reaches 49.94W during a 0.18s 
period after the load shifts to 10Ω. 
As a result, the maximum power tracked varies only 
slightly when the load is changed. These discrepancies are 
assigned to duration increases in monitoring as well as 
modifications in the magnitude and occurrence of energy 
oscillations through the initial repetitions. However, these 
differences are small and do not lead to large power losses. 
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For this reason, even when the load is changed, the 
suggested algorithm performs steadily.  
 

 
 

Figure 10. The results of an MPPT experiment using 
AC-BESO with varying loads between 10 and 15 Ω 

4.4. Impact of PV Module Variation 

The PV module, which is sold commercially, is used in this 
subsection to validate the suggested AC-BESO-based 
MPPT approach using the MATLAB R2020a software 
platform. The AC-BESO technique's MPP tracking 
capabilities are demonstrated in Figure 11, which displays 
the curves that match to the data. 
Figure 11 shows the PV output curve to thoroughly assess 
the practicality of the proposed method when the exposure 
circumstance transitions from circumstance 1 
(1000, 1000,1000,600 𝑊𝑊/𝑚𝑚2) to circumstance 2 
(1000,900,700,600 𝑊𝑊/𝑚𝑚2) during a 1-s time. In this 
case, the algorithm's reliability is highlighted by the fact 
that both monitoring duration and system performance are 
undisturbed. 
After thoroughly evaluating various module results, 
shading conditions, and varying irradiance, the proposed 
algorithm demonstrates exceptional protection and 
flexibility. circumstances although it is essential to 
acknowledge that there is no absolute promise of the 
highest efficiency of any method in all settings. Its 
reliability for industrial operations is reinforced by its 
constancy. Specifically, the algorithm's ability to function 
well with varying module configurations suggests that it 
can be useful for changing the array's score. For example, 
if an array's scoring is changed, the current MPP tracker 
that has the AC-BESO algorithm installed and kept, 
preventing expenditure on buying a new tracker. 
Furthermore, the robustness of the tracker after a change in 
module scoring implies that it will continue to provide 
reliable efficiency for years to come, negating the need for 
replacement when a modern PV array is deployed. 

 
 

Figure 11. when circumstances 1 and 2 are 
dynamically switched in terms of incidence. 

 
The proposed method is evaluated in terms of Average 
Efficiency (%), Tracking Time (sec), and Oscillations 
around the GMPP and compared with the existing 
approaches, which are Radial Basis Neural Network 
(RBNN), Perturb and Observe (P & O) and Incremental 
Conductance (InC) [26]. Table 2 shows the overall 
performance. 
Our suggested AC-BESO approach performed a Tracking 
Time (Sec) of 0.26s, Oscillations around the GMPP(zero), 
and Average Efficiency of 96.6 % in contrast to the 
traditional techniques such as RBNN, P & O, and InC. The 
outcomes demonstrate that the suggested strategy 
outperforms existing methods. 
 

Table 3. Overall performance 
 

MPPT 
approach 

Total 
Performance 

Indices 
PS Circumstance 

 RBNN 

Tracking Time 
(Sec) 

0.028 

Oscillations 
around the 

GMPP 
Zero 

Average 
Efficiency (%) 

95.6466 

P & O 

Tracking Time 
(Sec) 

0.25 

Oscillations 
around the 

GMPP 
Very High 

Average 
Efficiency (%) 

79.6566 

InC 

Tracking Time 
(Sec) 

0.308 

Oscillations 
around the 

GMPP 
Very High 
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Average 
Efficiency (%) 

81.006 

AC-BESO 
[proposed] 

Tracking Time 
(Sec) 

0.26 

Oscillations 
around the 

GMPP 
High 

Average 
Efficiency (%) 

96.6 

5. Conclusion 

This investigation developed a new MPPT technique that 
integrates AC-BESO to increase the performance of the PV 
method. The recommended technique was employed to 
solve more critical PSC challenges that tend to result in 
more slopes in the P-V curve and lower voltages. The AC-
BESO technique outperformed the traditional MPPT 
approaches in terms of effectiveness (96.6%) utilizing 
massive Matlab experiments for various solar energy 
stages. The outcomes indicate that the AC-BESO method 
could be applied to PV methods by efficiently conserving 
the optimal PO even in severe weather circumstances. 
Constraints include the ability of large-scale PV systems to 
scale, withstand environmental variations, adapt to varying 
energy demands, and accomplish effective assembly in a 
timely manner. Furthermore, the improvement of AI-
driven search and the use of predictive analytics can be 
redirected into a dependable and effective PV power 
generation system.  
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