Smart Technology Based Empirical Mode Decomposition (EMD) Approach for Autonomous Transmission Line Fault Detection Protection

Nasser Ali Hasson Al-Zubaydi*

1Department of Electrical Techniques, AL-Musaib Technical Institute, Al-Furat Al-Awsat Technical University, Babil, Iraq

Abstract

Many novel technologies of property energy and cell, solar power, batteries, and high-efficient combustion are widely investigated to conserve energy and reduce emissions. Transmission lines (TLs) play a serious role in transmitting generated electricity to different distribution units in facility engineering. The transmission lines function as a link between shoppers and a Power Station. Faults usually occur within the transmission when positioned in an open field. Quick identification and sick line faults square measures required for the conventional operation of the plant. A way like distinct moving ridge rework (DWT) and (EMD) is used to locate and identify faults to resolve this disruption. DWT is used to break down fault transients, as a result of which the info can be collected at the same time in each time and frequency domain. EMD decomposes the TLs voltage into Intrinsic Mode operation (IMFs). Four varieties of fault signals are square measurements produced by the grid-connected facility. Line faults square measure induced MATLAB/Simulink treatment.

Keywords: Smart House, Malfunction, Transmission Line, DWT, EMD, and Autonomous System.

Received on 29 January 2022, accepted on 02 May 2022, published on 03 May 2022

Copyright © 2022 Nasser Ali Hasson Al-Zubaydi et al., licensed to EAI. This is an open access article distributed under the terms of the Creative Commons Attribution license, which permits unlimited use, distribution and reproduction in any medium so long as the original work is properly cited.

doi: 10.4108/ew.v9i38.733

*Corresponding author. Email: nasseralzubaidy192@gmail.com

1. Introduction

The transmission lines are very critical in the plant. The critical motivation behind transmission lines is to give satisfactory and steady capacity to customers. An individual's being doesn't control a few deformities to catastrophic events. Various sorts of disappointment signals are the column line shortcoming signals (stage), line ground flaws (stage base), line dropouts (3 stages), and line ground issues (3 stages), which are totally various strategies for identifying deficiencies that are utilized consistently [23]. A variety of wavelet packet replenishment forms (WPT), phasor measuring unit (PMU), REWORK Fourier-Fourier-Refreatieve (ETF), call trees (DTS), neural network statistics (DTS) Ann), Support vector machines (SVM), WT (wavelet Transformation) of Ann’s logic and mathematics. Revisions of WTVET packets (WPT) are used in the atomic number of two terminals 81. It plays four activities. Observe faults, fault designation, the differentiation between a transient and permanent fault and the immediate arc detection [1] [2]. The change in voltage is observed within the Phasor Measurement Unit (PMU) device. There are 2 phases of error identification. The mistake space is perceived in the underlying stage when the happenstance record is utilized to find the blunder region. The right line and distance are world renowned inside the subsequent level. This approach is particularly valid for the enormous number 81. This recursive regulation says that the protection from disappointment is too high [3]. ANN innovation (Artificial Neural Network) for situating and arranging blunders. ANN utilizes the back-proliferation subject. It is utilized in the trademark amount conspiracy [23]. This TL fault analysis includes the energy drop and the coefficients, the majority, and the minimum price of the fault currents. This is also reliable, but this method requires a lot of process experience and produces an output accuracy of 90% [8] [13] [15] [20]. The Wavelet Transform (WT) is used to get the number of signatures. In particular, WT is not required to detect an error within the transition signal. The WT
challenge selects the optimum nut wavelet, and when the multi-nut wavelet is falsified into the identical signal, it generates a radically different output. The imaging strategy ought to involve procedure for recognizing voltage and current signs in recurrence and time ranges. WT defeats the impediment of Fourier work, as the foot is utilized uniquely for the recurrence range [23]. And high frequency, the filters cannot disassemble the signals to accumulate the coefficients. These signals are used for error detection [4][9][6][25][32]. The AK Commodative network-based fuzzy logic system (starting) refers to detective work and errors in earth and overhead cables. There are ten starts out there. An expert is used to classify errors. The multi-release analysis with ARFI is used to overcome fault problems with normal current and voltage [5][33].

With a system of logic mixtures, WT is incredibly interested in the outline of fault and fault position in number eighty-one. WT is used for troubleshooting through the Multi-Resolution process, and numerical methods can be used for WT extraction. [10-12],[18-19][23-24]. Specifically, ANN combined with WT is used to solve power sources such as Workload Prognostication, Fault Analysis, Defect Recognition, and Location. The Wavelet technique determines defects due to the breakdown of currents and voltage signals. ANN identifies the defects assisted by the Wavelet sign [30][31]; [44-49]. Support Vector Machines (SVM) are a learning aid that is critical for classification and regression problems. SVM is analysed in 2 varieties, in particular linear and non-linear classifiers. The primary move is to use SVM as a classifier; it is eligible and valid for application [50-55]. The sample of expertise obtained from the PSCAD simulation, the data used for coaching tasks, the seventeenth of the details, and the half-hour info checking [40-43]. For the most part, SVM is used for the fault designation of transmission lines that are serially salaried. This approach has many propensities over other approaches, such as swiftness, process capacity, and sensible performance [16-17], [21-22], [25-34]. Supported at the top of the pros and cons approaches, EMD and DWT support a new theme for error detection. Empirical Mode Decomposition (EMD) enables WINNOW processes to convert non-linear and non-stationary signals into basic elements and star elements. It breaks down the signal to its Intrinsic Mode Functions (IMFs)[7][14][35-39] portion.

1.1 Including of Contribution Proposed Method

• Empirical Mode Decomposition (EMD), The EMD is chosen when it is used to interpret natural signals. The EMD divides the signal to the IFW collection without simple functions [23].
• Discrete Wavelet Transform (DWT): DWT technology provides higher efficiency when detecting faults and faults when many phases of square measurements are provided in faults. It is normal for each in the time and frequency domain.

2. Proposed System

A blend of discrete wavelet transformation (DWT) and empiric mode decay (EMD) is utilized within the proposed strategy to test blame location in transmission lines [56-61]. Big Data (BD), with its capability to determine esteemed experiences for an upgraded dynamic cycle, has as of late drawn in significant interest from scholastics and specialists [62]. Large Data Analytics (BDA) is progressively turning into a moving practice that numerous associations are embracing to develop important data from BD. EMD is utilized to recognize the inner modes of the unit of measurement known as IMFs. Hilbert Change (HT) is engaging the primary four IMFs. The DWT was then added to the IMF, which has a higher amplitude, and again the fault frequencies were collected. Simulate the model and then get the current signals for each step [63-67]. Then decompose this signal by DWT. Figure 1 shows the normalized worth of DWT. Calculate the normalized worth [68]. The brink worth selected is zero.35 if the normalized worth is smaller than the brink worth, fault can occur [69-72].

2.1 Block Diagram of Proposed System

![Figure 1. Block diagram of the proposed system using EMD and DWT](image)

2.2 Decomposition of Empirical Mode (EMD)

The EMD approach is the related accommodative methodology of time-space analysis that is non-stationary and non-linear to a view of the signal [73-76]. When Empirical Mode Decomposition is applied to Hilbert’s spectral analysis, it is referred to as the remodeling of David Hilbert Huang (HHT) [77]. It breaks down each non-stationary statistic into a group of modulated elements of the
International Monetary Fund, representing zero mean amplitude and frequency. Statistics consists of several simple, inherent, periodic modes [78]. This method aims to distinguish, by trial and error, the knowledge of the intrinsic periodic following the consistent time scales and then decompose it. This strategy is called separation, which would strip out much of the riding waves and motions with no zero crosses between the shafts [23]. SUBSEQUENTLY, the EMD equation considers flag swaying at each organization, so the information is isolated into a related covering timeline component. EMD can cause the breaking of a sign but not miss the time-domain investigation. This may be compared with computational strategies like a foot (Fourier Changes) and moving edge deterioration. The current and voltage signal in the transmission line for three phases, A, B, C, is given in the following equation:

\[P_A(t) = V_A(t) \times I_A(t) \]
\[P_B(t) = V_B(t) \times I_B(t) \]
\[P_C(t) = V_C(t) \times I_C(t) \]

In equation 1 \(P_A(t) , P_B(t) , P_C(t) \) are the power of phases A, B, C. Ground voltage and current are given [23] in the following equation:

\[I_0(t) = \frac{1}{3} [I_A(t) + I_B(t) + I_C(t)] \]
\[V_0(t) = \frac{1}{3} [V_A(t) + V_B(t) + V_C(t)] \]

After finding \(I_0(t) \) and \(V_0(t) \), ground power \(P_0 \) is given by

\[P_0 = I_0(t) \times V_0(t) \]

\(P_A(t) , P_B(t) , P_C(t) \) and \(P_0 \) are used for detection of a fault in half cycle. EMD is then operated to extract the options, and therefore the signals are forced an enter single element signals, and then the United Nations agency is performed. Feature choice is created by the IMF’s transient energy, calculated for numerous faults, and fault classification is finally done (figure 2).

Figure 2. Fault detection using EMD

Let the sign empower the wave to be handled and deteriorated. Let indicate the typical worth of all over envelopes [23]. The 1st component \(imf_1 \) is calculated as:

\[imf_1 = f(t) - m_1 \]

\(imf_1 \) is known as the data and mean of \(imf_1 \) is \(m_1 \) in the next sifting process,

\[imf_2 = imf_1 - m_1 \]

This sifting method continues until all the \(imf_s \) residues have been eliminated or the residue has become a monotonous process.

\[f(t) = \sum_{j=1}^{N} imf_j(t) + rN_c(t) \]

The last residues are \(j^{th} imf \) and \(N_c(t) \) next to EMD.

2.3 Discrete Wavelet Transform (DWT)

DWT is a brief wave of scaled and converted functions. When transforming waveforms, the signal is shown on several scales. The most effective DWT is that the time and frequency data are modified without changes during the transient analysis. The wave is lazy at any time, and the wavelet frequency is called the Wavelet nut [23]. This remodeling makes it easier to gauge choices such as suppression and reinforcement on various scales. It has been shown that the most significant scale denotes Wavelet extended deer. The front amplified wavelet is compared to the long flag, and the Wavelet coefficients are calculated. Scales and parts are hand-picked. In this way, we have an affinity for constructing DWT. A distinct Wavelet may be a...
wave of the chosen quantity at which the usual price of zero, the scale of the denotes b, denotes the transformation time of the equation (8). The DWT can be a short, uneven job that scales and changes. The change in waveforms is where the flag offers itself on multiple scales. The most successful DWT is keeping the time and repetition information unchanged amid transient research. At any time, the recurrence of wavelet is called the mother wavelet. This remodeling makes it easier to gauge choices such as suppression and reinforcement on various scales. It has been shown that the most significant scale denotes Wavelet extended deer. The widespread front ondet is compared with the longest signal, and the coefficients of the indicator are calculated. The goals and roles are planted by hand. We have a propensity to accumulate DWT. A distinct Wavelet may be a wave of the chosen quantity at which the usual price of zero, the scale of the denotes b, denotes the transformation time in the equation (8) [23].

\[W[f(a,b)] = (f, \phi_{a,b}) = \]

\[\int_{-\infty}^{\infty} f(t) \frac{1}{\sqrt{a}} \phi \left(\frac{t-b}{a} \right) dt \] (8)

\[W[f(a,b)] = b \]

(f, \phi_{a,b}) = Time-series Wave

\[\frac{1}{\sqrt{a}} \phi^* = Normalisation \]

\[\left(\frac{t-b}{a} \right) dt = Shift \ in \ time \]

DWT is the prudent worth of the size and interpretation of the boundary in the nonstop change of the wavelet. The DWT may likewise be explained as follows:

\[DWT_x(r,c) = \frac{1}{\sqrt{2^c}} \int x(t) \phi \left(\frac{t-c2^r}{2^r} \right) dt \] (9)

The wave is evaluated, and the real HPF and LPF are measured \(2^r \)=scale parameter, \(C2^r \)=shift parameter . DWT can approximate the data with different scales. The sign is spoiled, so each progression prompts a specific goal. In figure 3, a couple shows the two-level DWD routinely. At each scaling methodology for a specific condition, the relationship between the wave and the moving edge is known as the moving edge coefficients. Coefficients of the HPF region unit as definite coefficients (D1, D2...) and coefficients of the LPF region unit as assessed coefficients (A1, A2...) [23]. Whenever the evidence some portion of the decay is available, the principal sign will be recreated at each progression.

DWT Fault Detection

DWT is useful in studying the transient situations that the area unit has formed with atomic number 81 faults. During this projected procedure, DWT is used to detect a fault, as a result of which a simple, smooth, real fault analysis is possible. Implementation is easy; the system time and resources provided by the area unit are less than the CWT. The three-phase power line signal is chosen as the input and alternative area unit obtained from the DWT decomposition. Then the Options Field Unit is extracted at five levels of maximum and minimal constant detail (d1, d2, d3, d4, d5). The foremost point by point steady is at level four, and thus the most reduced consistent is at level five. If the greatest and least consistent cost is higher than the customary state, there’s a mistake.

Figure 3. Discrete wavelet tree

Transmission line error detection algorithm using DWT

Step 1.
Initialise input parameters of scaling functions with set of waveform represents low frequency components or approximate parts.

Step 2.
Initialise the other set of parameters of wavelet functions which represents high frequency components.

Step 3:
Horizontal data samples are filtered at each level of signal decomposition.

Step 4:
Information of horizontal

Step 5:
Multiplication of the scaling fn \((\phi(x, y))\)
3. Performance Measures

Detail coefficient norms are calculated from the below equation.

\[
\| D1 \| = \left[\sum_{k=1}^{n_d} D1(k) \right]^{1/2}
\]

(10)

Where \(n_d \) shows the complete number of coefficients of detail. Normalized value = \(\text{absolute value} \times \frac{(cd 5)}{\text{norm}} \) (11). The threshold value is 0.350. The discrete wavelet equation is given below:

\[
x(t) = \sum_{k=1}^{n_d} a_j(k)(t - k) + \sum_{k} d_j(k)\phi(2 - j t - k)
\]

(12)

\(a_j \) = Coefficient of Approximation

\(d_j \) = Detail coefficient

\(t \) = Scaling function

\(\phi(t) \) = Wavelet function

4. Results and Discussion

The simulation model proposed for EMD and DWT is given below (figure 4).

The 30 km guide working with a 25-kV, 100MVA framework is associated by a voltage supply and a 21 km feeder. Three-stage load region unit joined to three burdens. The generator is attached to two buses. With a distinct fault, the resulting current and voltage waveform conditions of the area unit are produced and reported by the device. MATLAB/Simulink reveals faults at many positions on Tl. Signals of each part of the area unit are registered in MATLAB. Then, EMD and DWT with MRA area unit applied to the signals to find and diagnose the fault for every step, normalized values area unit determined from the quality of data coefficients up to 5 stages. These normalized current signal values area units were compared to the device thresholds for fault detection and diagnoses. Figures 5 -10 Indicates the simulation result for single-phase fault signal, phase-ground fault, three-phase fault, three-phase -ground fault. Figures 11-15 show the simulated wave shape of gravity fault signal, single-phase fault signal, phase-ground fault, three-phase fault, three-phase -ground fault figure 16 -18 shows the wave shape of IMF -1, IMF -2, IMF -3, and amplitude of phase A, B, C.
Figure 5. Simulation: line-line fault signal

Figure 6. Simulation: line-ground fault

Figure 7. Simulation: line-line fault

Figure 8. Simulation: line-line-line fault

Figure 9. Simulation: wavelet Transform for normal signal

Figure 10. Simulation: wavelet Transform for line-line fault

Figure 11. Simulation: wavelet Transform for phase-ground fault signal

Figure [7-10] indicates the four types of fault states in which the resulting current signal of the fault happens every 0.5sec. The error is 0.2 seconds, and the faults are evident from 0.3.
Figure 12. Simulation: wavelet Transform for phase-ground fault signal

Figure 13. Simulated: wavelet Transform for three phase-ground fault signals

Figure 14. Simulated: wavelet Transform for three phase-ground signals

Figure 15. Waveforms of IMF 1 and instantaneous amplitude of phase A

Figure 16. Waveforms of IMF 2 and instantaneous amplitude of phase B

Figure 17. Waveforms of IMF 3 and instantaneous amplitude of phase C
Rather than wavelet, the EMD framework needs to mean greatest and least SD values [23]. Thus, the EMD is the suitable methodology for this part of the review (tables 1 to 2).

<table>
<thead>
<tr>
<th>Signals/ Fault (F)</th>
<th>Method of EMD</th>
<th>Method of Wavelet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
</tr>
<tr>
<td>Normal</td>
<td>4.50</td>
<td>35.31</td>
</tr>
<tr>
<td>L-L</td>
<td>3.43e+02</td>
<td>7.65e+03</td>
</tr>
<tr>
<td>L-G-F</td>
<td>2.25e+03</td>
<td>2.81e+03</td>
</tr>
<tr>
<td>3L-F</td>
<td>1.78e+03</td>
<td>2.62e+03</td>
</tr>
<tr>
<td>3L-G-F</td>
<td>2.19e+02</td>
<td>2.68e+02</td>
</tr>
</tbody>
</table>

Figure 18. Waveforms of Three phase-ground signal

This planned technique presents a brand-new method for police investigation and metal fault-supported EMD and DWT designation. Associate degree interconnected framework is developed and implemented victimization code SIMULINK. The current signals are square measurements obtained from each part during this procedure. EMD and DWT then decompose these signals in order to facilitate approximation and detail coefficients of up to 5 degrees. Values square measure calculated by normalized price and compared with a threshold price. During this mean and variance, threshold values square measure found. It’s been found that once the device is working below traditional conditions, the normalized prices square measure smaller than the edge value. Normalized values square measure over threshold values in abnormal things. This approach provides a production exactitude of 98.9 percent. This procedure has been tested at completely different positions of the TLs to spot differing kinds of faults.

References

5. Conclusion

Table 2. Approximation and Detail Coefficient of Dwt

<table>
<thead>
<tr>
<th>LPI(A)-Approximation coefficient</th>
<th>HPFI(D)-Detail coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>a0 = 0.0010773011</td>
<td>d0 = 0.1115406734</td>
</tr>
<tr>
<td>a1 = 0.0047772575</td>
<td>d1 = 0.4946230904</td>
</tr>
<tr>
<td>a2 = 0.0005538422</td>
<td>d2 = 0.7511339060</td>
</tr>
<tr>
<td>a3 = -0.0315820933</td>
<td>d3 = 0.3152503547</td>
</tr>
<tr>
<td>a4 = 0.0275228655</td>
<td>d4 = 0.2262645940</td>
</tr>
<tr>
<td>a5 = 0.0975016056</td>
<td>d5 = -0.1297686076</td>
</tr>
<tr>
<td>a6 = -0.1297668726</td>
<td>d6 = -0.0975016056</td>
</tr>
<tr>
<td>a7 = -0.2262645940</td>
<td>d7 = 0.3152503547</td>
</tr>
<tr>
<td>a8 = 0.3152503517</td>
<td>d8 = 0.0315020393</td>
</tr>
<tr>
<td>a9 = 0.7511339080</td>
<td>d9 = 0.0665388422</td>
</tr>
<tr>
<td>a10 = 0.4946230904</td>
<td>d10 = 0.0004772575</td>
</tr>
<tr>
<td>a11 = 0.1115407343</td>
<td>d11 = 0.0010773011</td>
</tr>
</tbody>
</table>
Smart Technology Based Empirical Mode Decomposition (EMD) Approach for Autonomous Transmission Line Fault Detection Protection

EAI Endorsed Transactions on Energy Web 11 2021 - 05 2022 | Volume 9 | Issue 38 | e5

