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Abstract 
 
INTRODUCTION:  For the assessment of power system stability, a power system assessment method based on a deep 
convolutional neural network is studied.  
OBJECTIVES: Through the improvement of the integrated convolutional neural network (CNN) network model, the 
impact of insufficient transient stability assessment caused by sample misjudgment and sample omission is effectively 
reduced. 
METHODS: We adopt the hierarchical real-time prediction model to evaluate the stability and instability of the 
determined stable samples and unstable samples, thereby improving the timeliness and accuracy of transient evaluation.  
RESULTS: Through experimental comparison, the integrated CNN network model in this study has obvious advantages in 
accuracy compared with the single CNN network. Compared with other algorithm reference models, this model has a 
higher evaluation accuracy of 98.39%, far exceeding other comparison models.  
CONCLUSION: By further evaluating the model’s accuracy, it is proved that the model can provide an effective 
reference for the follow-up power system stability prevention and has important application value. 
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1. Introduction 

With the process of economic globalization, the importance 
of the power system is growing. Its stability will also 
seriously affect the basic industries of the country and 
society. How to maintain the security and stability of the 
power system and avoid the impact of large grid 
disturbances, signal failures, and power short circuits is of 
great significance to social and economic stability [1]. Due 
to the high complexity of modern power systems, the 
traditional time-domain simulation and direct method can no 
longer meet the requirements of real-time monitoring of the 
current power system [2]. How to analyze the causes of 
power grid accidents and accurately assess the stability of 
the power system through the relevant data of the power 

grid is an important problem that needs to be solved 
urgently [3]. 

With the rapid development of artificial intelligence 
technology, the stability assessment of power systems 
through the construction of stability assessment models and 
the use of artificial intelligence has received the attention of 
researchers and achieved good results. L P Zhu et al. [4] 
studied the problem of unbalanced power data samples, and 
developed a new unbalanced learning machine to effectively 
solve the problem that it is difficult to extract the short-term 
features of the power system. The improved model can be 
effectively used for short-term stability assessment of the 
power system. However, due to the insufficient feature 
extraction ability of the shallow network in this method, the 
training data is over-fitted, which will seriously affect its 
ability to judge the stability of the power system. Chen H et 
al. [5] used the deep convolutional neural network method 
and the closed-loop detection method to effectively solve 
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the short board problem of the neural network framework in 
the signal processing process. They improved the 
performance of the method in power system stability 
detection and proved its feasibility through actual 
measurement. Through the adoption of data mining 
technology, Zhu Qiaomu et al. [6] improved the mining 
ability of network deep data and proposed the power system 
stability assessment based on a deep confidence network. 
Through the adaptive ability training of the model, this 
method can effectively improve the stability assessment 
ability of the power system. Although the above methods 
can obtain the signal characteristics from a large amount of 
data, with the rapid growth of the amount of data and the 
continuous improvement of the complexity of the power 
system, the feature extraction ability of the above methods 
still needs to be strengthened. Besides, the evaluation 
efficiency of the power system’s stability still needs to be 
strengthened. 

To improve the assessment efficiency of power system 
operation stability, this study adopts the strategy of 
integrating CNN network and makes good use of the 
hierarchical real-time transient stability prediction 
assessment method based on sliding time window, which 
improves the real-time and accuracy of power system 
transient stability assessment. Through experimental 
comparison, the effect of this study model is proved. 

2. Power system stability assessment 
based on deep convolutional neural 
network 

2.1. Convolutional neural network 

Convolutional neural network (CNN) is a multi-layer 
perception feed-forward system with a neural perception 
mechanism, which can effectively complete the local 
connection work within the network, reduce the complexity 
and training amount of the network model, and improve the 
efficiency of the model [7]. 

 For the CNN network, it mainly includes the input layer, 
feature layer and output layer [8]. The feature layer includes 
a convolution layer and a pooling layer. For the convolution 
layer of the network, it mainly includes a variety of feature 
matrices, which are learned by the convolution kernel [9]. 
Through multiple alternations between the convolution layer 
and the pooling layer, the feature extraction and abstract 
learning of the input data are realized, so that the stability 
assessment of the complex power system can be completed 
according to the architecture. Because the CNN network has 
good fault-tolerant ability, it can classify the feature data to 
abstract the feature of complex data reporting. 

Multiple convolution kernels can obtain multiple data 
features. When the feature matrix obtained from the input 
layer is convoluted with the convolution kernel of the 
convolution layer, the final convolution feature matrix can 
be obtained through the correction processing of the bias 

function. The calculation method of the characteristic matrix 
can be expressed as: 

 
1, 1, 1,( * )h f x W bα α α= +               (1) 

 
In it, h1,α represents the feature weight matrix of the 

convolution layer H1 corresponding to the αth convolution 
surface; W1,α represents the feature weight matrix of the 
convolution layer corresponding to the αth convolution 
kernel; b1,α is the feature bias described above; f function is 
the activation function of the CNN network. The activation 
function used in this study is the sigmoid function. 

The pooling layer in the CNN network is the sampling 
layer corresponding to the convolution layer [10]. In 
general, the structure of the pooling layer is also in one-to-
one correspondence with the convolution layer, that is, it 
contains the characteristic matrix with the same structure, so 
the pooling layer is unique relative to the convolution layer. 
The pooling layer mainly includes multiple pooling 
matrices, and the commonly used pooling methods include 
maximum, mean and random. Considering the specific 
situation of power system data, the mean pooling method is 
mainly used in this study. The pooling layer can complete 
the down-sampling of the feature matrix of the previous 
layer and then extract the secondary features of the input 
data. 

The output layer of the CNN network is mainly adopted 
to classify the data features learned by the network, which is 
generally represented by Softmax, and its expression is: 
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For the corresponding classification problem, the 
Softmax function calculates the result of P (i) to make it in 
the range of 0~1, and realizes its classification work 
according to the setting of the threshold situation. θ is the 
model parameter used to maximize the P (i) result. 

For the multi-class case, the function expression of 
Softmax is: 
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Where, P is the probability of the training sample, wn
T 

is the output of the corresponding model input full 
connection, and n is the number of model sample categories.
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2.2 Power system transient assessment 
model integrated with CNN 

Considering the complex power system, a single input 
characteristic cannot accurately reflect the fault operation 
state of the whole system [11]. The existing evaluation 
methods are mostly aimed at some classification accuracy 
indicators and pay less attention to the stability of the 
sample. However, the unstable samples have a serious 
impact on the power grid state assessment. To assess the 
accuracy of the model, it is necessary to minimize the 
occurrence of sample omission and misjudgement in the 
model [12]. 

Similarly, it is impossible to achieve 100% accuracy by 
using a single assessment method to assess the stability of 
the power system. For high-dimensional power nonlinear 
systems, a single CNN cannot completely eliminate the 
overlap between samples. Moreover, it is difficult to achieve 
100% accurate classification. In most cases, CNN with 
different parameters can obtain higher assessment accuracy. 
Therefore, this study combines multiple groups of CNN 
with the same structure and different parameters to realize 
the different selection of learning sub-classifiers and form a 
comprehensive transient stability assessment model, as 
shown in Figure 1.
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Figure 1. Transient stability assessment model

In Figure 1, for the multi-parameter CNN power 
system evaluation model, and for a variety of input features, 
each feature is trained with m groups of CNN with different 
parameters. Its feature set can be obtained. The stable 
classification probability and unstable classification 
probability of the sample can be obtained by inputting the 
feature sets into the CNN network and outputting the results. 
Then, the output probability of the whole model can be 
obtained. 

The learning strategy of the entire integrated CNN 
network uses the average probability to describe the results, 
which is expressed by the output probability y formula as 
follows: 

[ ]1 0( | ), ( | )E Ey P C x P C x=    (4) 

In it, C1 and C0 represent the states of the model stable 
and unstable classes, respectively. We can get: 

1 1
1

1( | ) ( | )
M

E i
i

P C x P C x
M =

= ∑   (5) 

0 0
1

1( | ) ( | )
M

E i
i

P C x P C x
M =

= ∑               

(6) 

The output result can be defined by using the binary 
classification threshold δ, and the result of the integrated 
model can be transformed as follows: 
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In general, δ is equal to 0.5 by default. When the result 
of Ypre(x) is 1, it means that the power system is in a stable 
state, and when the result is 0, it means that the system is in 
an unstable state. 

2.3 Evaluation method of layered real-time 
transient stability prediction based on sliding 
time window 

In order to realize the continuous evaluation of the system, 
this study mainly uses the form of sliding time window to 
sort out the input characteristics of the prediction model and 
make it become a sliding time window. Therefore, the 
prediction model of different response time is formed with 
the movement of the time window. 

To make the whole model still have a high prediction 
effect in the case of a sample missing, we should define the 
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credibility index R of the whole model, which is expressed 
by the formula: 

{ }1 0max ( | ), ( | )E ER P C x P C x=
          (8) 

 
The reliability index R ranges from 0.5 to 1. It is 

mainly used to evaluate the accuracy and certainty of the 
prediction results. In order to improve the prediction effect 
of the model, the reliability thresholds of stable samples and 
unstable samples are set respectively, which are represented 

by R1 and R0 respectively. When the value of the credibility 
index R is greater than the corresponding credibility 
threshold, the prediction result of the model is regarded as a 
credible result. Further, the corresponding sample output is 
performed. 

The whole credibility prediction model adopts a 
hierarchical real-time prediction method, and the specific 
structure is shown in Figure 2.
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Figure 2. Flow chart of layered real-time prediction model

In Figure 2, for different time t, it is input into the 
temporary stability prediction process. Besides, the 
sample stability is evaluated to determine whether it is in 
a stable state. The input features with different response 
times are trained to obtain different integrated CNN 
network models, which constitute different levels of 
results of time-sharing prediction. For each layer of the 
model, after inputting the features, the credibility index of 
the prediction results can be obtained. Only the samples 
that meet the requirements are identified as stable. Then, 
they are output as stable samples. Samples with 
insufficient credibility need to be further judged to 
determine whether they are unstable samples. For 
uncertain samples, further judgment is needed. 

This time-sharing prediction method can respond to 
the credibility index of the sample in a short time to 
ensure the rapidity of the prediction results. For uncertain 

samples, more input features are needed to make accurate 
judgments to ensure the certainty of the prediction results 
[13]. 

3 Experimental results and data analysis 

3.1 Experimental parameter settings 

In order to verify the reliability of the evaluation method 
in this study, we choose the Matlab toolbox to simulate 
the stability of the system. We also choose the New 
England 10-machine 39-point system as the research 
object to verify the validity of the model. Then, the 
steady-state/instability analysis is carried out. The system 
load is set to 75% ~ 120%. The step length is set to 5%, 
and the three-phase short circuit fault evaluation under 
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these 10 load conditions is considered. The fault location 
is set at 10% ~ 90% of the AC line, and the location 
points are evenly distributed. Therefore, it is more 
difficult to set 10 kinds of faults. The duration of the fault 
is the duration of various faults from 1 cycle to 11 cycles. 

The total number of simulation samples is 37400, 
which are divided into stable samples and unstable 
samples. The specific results are shown in Table 1. The 
samples are divided into training sets, validation sets and 
test sets according to the ratio of 3:1:1 to evaluate the 
performance of the system model. 

 
Table 1. Sample composition of the test system 
 

Test 
system 

Data set Total 
number 

of 
samples 

Number 
of stable 
samples 

Number 
of 

instability 
samples 

New 
England 

10 
39-node 
system 

Training 
set 

22440 14973 7467 

Validation 
set 

7480 4962 2518 

Test set 7480 4927 2553 

 
The parameters of the CNN network model are 

shown in Table 2. 

 
 

Network layer Convolution kernel 
size/step 

Number of 
filters 

Network layer 1 (1) 3×3/1×1 (2) 
5×5/1×1 

32 

Pool layer 1 (3) 5×5/1×1 2×2/2×2 32 
Network layer 2 (1) 3×3/1×1  
 (2) 3×3/1×1 (3) 

5×5/1×1 
64 

Pool layer 2 2×2/2×2 64 
Fully connected 
layer 

120  

Classification 
layer 

2 - 

3.2 Results of the experiment 

(1) Contrast with single CNN model 
The results of the integrated CNN evaluation model 

in this study are compared with those of the single CNN 
network model in the system stability test under the same 
conditions. The results are shown in Table 3. 
Table 3. Test results of single optimal CNN model 
and integrated CNN model

 
Table 2. CNN network model parameters 

 
Comparison of 

different models 
Number of missed 

judgments 
Number of 

misjudgments 
Missed judgment 

rate  (%) 
Misjudgment rate 

(%) 
Accuracy rate 

(%) 
Single optimum CNN 88 76 3.38 1.57 97.79 

Integration CNN 61 56 2.35 1.15 98.38 

It can be verified that from the results in Table 3, for 
the integrated CNN network model, the accuracy of its 
evaluation is significantly improved compared with the 
single CNN network model with the accuracy improved by 
0.59%. The rate of misjudgement decreased by 0.42% and 
the rate of missed judgment decreased by 1.03%. It also has 
great advantages in the number of missed and misjudged 
tests. 

The integrated CNN network, because it integrates 
multiple CNN networks with different parameters, it can 
effectively eliminate the impact of the overlapping part of 

the samples in a single network on the evaluation 
performance. Thus, it can obtain a higher evaluation effect, 
which further proves that the integrated CNN model can 
improve the performance of the prediction model compared 
with the single CNN network. 

(2) Performance comparison between this model and 
other machine-learning models 

The basic CNN network model adopted in this study is 
compared with other models under the same conditions. 
The comparison results are shown in Table 4. 

 
Table 4. Comparison of prediction results of different prediction models 

 
Different models Number of missed 

judgments 
 Number of 

misjudgments 
Missed judgment 

rate (%) 
Misjudgment rate 

(%) 
Accuracy rate 

(%) 
DBN 76  100 2.95 2.12 97.62 
SVM 108  91 4.21 1.85 97.28 
MLP 95  231 3.73 4.68 95.49 

DT 155  147 6.35 2.97 95.89 

KNN 158  293 6.12 5.94 93.94 
Integrating CNN 

models 
60  58 2.36 1.17 98.39 

 
 

 
 

EAI Endorsed Transactions 
on Energy Web 

| Volume 12 | 2025 |



J. Luo et al. 

  6      

 
From the comparison results in Table 4, it is clear that 

compared with all the reference models, the model in this 
study has a higher evaluation accuracy of 98.39%, which is 
far higher than other comparison models. Among the 
comparison models, the DBN model has the highest 
evaluation accuracy of 97.62%. Besides, the KNN model 
has the lowest evaluation accuracy of 93.94%. In terms of 
misjudgement rate and missed judgment rate, the model of 
this study still has obvious advantages. The missed 
judgment rate of this study is 2.36%, and the misjudgement 
rate is 1.17%. It is still the lowest among all the 
comparative models, which further proves the advantages of 
the model in this study. It also verifies that there is a way to 
integrate the CNN network model in reducing the 
phenomenon of missed judgment and misjudgement in 
system stability evaluation. 

(3) Missed/misjudged comparisons at different 
response times 

For the power system after a fault, the real-time 
assessment of its transient stability can be evaluated and 
measured by the response time. The shorter the response 
time is, the longer the response time is left for operators 
before the system is unstable, so that emergency control can 
be implemented earlier to ensure the stability of the system 
[14]. 

In this study, different response time series are 
considered to evaluate the transient stability of the system 
input characteristics, and the response time is set as 0.1 s ~ 
1s. In that case, evaluating the accuracy of the system 
evaluation is achieved. The evaluation results are shown in 
Figure 3 and Figure 4. 
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Figure 3. Accuracy of the model under different 
response times 
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Figure 4. The rate of misjudgement and missed 
judgment of the model under different response times 

 
It can be concluded from the results in Figure 3 and 

Figure 4 that as the response time gradually increases from 
0.1s to 1s, the evaluation accuracy of the deep 
convolutional neural network model in this study also 
gradually increases. Besides, the accuracy gradually 
increases from 98.38% to 99.72%. The rate of 
misjudgement and the rate of missed judgment decrease 
gradually with a similar decreasing trend. When the 
response time increases from 0.1s to 0.3s, the rate of 
misjudgement and the rate of missed judgment both 
decrease rapidly. When the response time increases from 
0.3s to 1s, the rate of misjudgement and the rate of missed 
judgment also decrease, but the decreasing rate slows down 
gradually. When the response time is 1s, the false positive 
rate and the false negative rate of the system decrease to 
0.252% and 0.253%, respectively. 

(4) Hierarchical dynamic prediction effect 
To prove the effect of hierarchical prediction in this 

study, the number of samples and the prediction distribution 
under different layers are considered. The results are shown 
in Table 5. In Table 5, CS(Ti) represents the number of 
stable samples obtained by the prediction model in the 
current layer. M (Ti) respectively represent the number of 
unstable samples judged as stable samples by the current 
layer. M(T) represents the sum of the number of 
misjudgements that all corresponding unstable samples in 
the current layer are judged as stable samples. Similarly, 
CU(Ti) is the number of credible unstable samples 
corresponding to the output; F(Ti) and F(T) are the 
corresponding numbers of stable samples judged as 
unstable samples; A(Ti) and A(T) are the corresponding 
prediction accuracy; U(T) and Ur(T) are the corresponding 
numbers of uncertain samples and uncertain sample rate. 
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Table 5. Layered dynamic prediction results 

Judged to be stable Judged to be unstable 
Number of layers CS(Ti) M(Ti) M(T) CU(Ti) F(Ti) F(T) A(Ti)(%) A(T)(%) U(T) Ur(T)(%) 

1 3389 0 0 2578 104 104 98.27 98.27 1509 20.18 
2 978 1 1 54 10 114 98.89 98.36 501 6.65 
3 244 1 2 21 3 117 98.15 98.35 235 3.08 
4 95 1 3 16 5 122 95.54 98.32 124 1.59 

5 38 0 3 6 2 124 97.77 98.32 78 1.04 
6 17 0 3 1 0 124 100 98.32 58 0.80 

From the results in Table 5, we can see that the 
misjudgement rate of the model gradually decreases with 
the number of levels, and the final proportion of uncertain 
samples is only 0.8%. In the first layer, most of the samples 
were judged accurately, and the number of missed 
judgments and misjudgements was 0. With the increase in 
the number of layers, more and more samples are judged to 
be stable. Finally, a reliable prediction result is obtained 
after many times of judgments. As the response time 
gradually increases, the confidence of the prediction sample 
gradually reaches the threshold. As a result, the number of 
certain samples increases, and the number of uncertain 
samples decreases. With the further movement of the 
sliding time window, the model of this study gradually 
obtains the credible prediction results of the system data. 

Figure 5 shows the statistics of the number of 
instability cases for different samples. 
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Figure 5. Statistics of the number of unstable 
conditions of different samples 

In Figure 5, the occurrence time of the instability 
sample is mostly concentrated in the range of 0.5s~1.5s. As 
time goes on, the number of unstable samples gradually 
decreases, and the unstable samples are close to 
disappearing when the time is close to 5s. 

To further prove the effect of the model in this study, 
the occurrence time and judgment time of the instability 
samples are counted respectively. The results are shown in 
Table 6. 

Table 6. Statistics of instability occurrence time under different response time 

Response 
time /s 

Correctly identified 
instability sample 
instability occurrence 
time/s 

Correctly judge the time 
when the leading 
instability occurs/s 

Instability in an 
uncertain sample The 
time at which the 
sample instability 
occurred /s 

Shortest Longest Shortest 
lead 

Longest 
lead 

Shortest Longest 

0.0167 0.4168 4.9855 0.4016 4.9634 1.6205 4.9855 
0.1 1.6188 4.9855 1.5172 4.8867 2.2387 4.9855 
0.2 2.2217 4.9855 2.0298 4.7867 2.4298 4.9476 
0.3 2.4230 4.8587 2.1196 4.5623 2.6438 4.9132 
0.4 2.6487 4.9855 2.2486 4.5826 4.0498 4.9132 
0.5 4.0572 4.9375 3.5476 4.4532 4.3603 4.9132 
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In Table 6, we can conclude that the hierarchical real-
time prediction method in this study can effectively make 
an accurate prediction before the system sample becomes 
unstable. It can also make an accurate judgment result as 
soon as about 0.5s before the system becomes unstable. The 
slowest pre-judgment time is 0.4016s before instability, 
which can effectively meet the requirements of transient 
stability of the power system for time and speed, and make 
a time guarantee for subsequent processing. 

(5) Evaluation accuracy of the model in this study
To evaluate the evaluation accuracy of the model, the

interference degree S of the sample is calculated and 
normalized to obtain the stability degree index Ms of the 
system, which is expressed by the formula: 

max

max min
s

S SM
S S

−
=

−
   (9) 

Where, Smax and Smin are the maximum and minimum 
values of the degree of interference for the stable epoxy 
boards in the sample set. It can be inferred that the larger S 

is, the smaller the stability index Ms is, and the lower the 
system stability is. On the contrary, the more stable the 
system is. 

Similarly, in order to measure the instability degree of 
the model, the number T of all instability samples is 
calculated and normalized to obtain the instability degree 
index Mus, which is expressed by the formula: 

max

max min
us

T T
M

T T
−

=
−

  (10) 

Where, Tmax and Tmin are the maximum and minimum 
values of the destabilized sample, respectively. It can also 
be inferred that the larger T is, the smaller the degree of 
instability is, and the greater the degree of developing 
instability is. 

Table 7 shows the RMS error of the degree of system 
stability and instability with different response times. 

Table 7. Root mean square error of stability and instability for different response time 

Response time (s) Stability 
assessment 
model MSE 

Instability degree 
evaluation model MSE 

0.0167 0.0059 0.0169 
0.1 0.0048 0.0135 
0.2 0.0042 0.0078 
0.3 0.0030 0.0045 
0.4 0.0026 0.0043 
0.5 0.0024 0.0039 
0.6 0.0022 0.0025 
0.7 0.0020 0.0020 
0.8 0.0018 0.0017 
0.9 0.0016 0.0014 
1 0.0014 0.0013 

From the results in Table 7, it can be obtained that with 
the increase of the system response time, the root mean 
square error of the evaluation of the stability of the whole 
model team gradually decreases, from 0.0059 at 0.0167s to 
0.0014 at 1s. The root mean square error of the instability 
degree evaluation model is similar to the stability degree, 
which gradually decreases from 0.0169 at 0.0167s to 0.0013 
at 1s. It is verified that the evaluation accuracy of the model 
in this study will gradually improve over time. 

For the actual operation of the power system, it is 
necessary to implement the corresponding measures 
according to the evaluation of the stability [15]. In case of 
serious instability, we should take emergency measures to 
correct it in time to avoid instability of the power system. In 
the case of low stability, there is also a need to take relevant 
measures to improve the system’s stability. This model can 
predict the state of the power system, which is of great 
significance to improve the stability of the power system. 

(6) Comparison of sensitivity under different fault
types 

The trained model is applied to power system faults 
such as harmonic fault, grounding fault, abnormal arc, 
voltage offset fault and other faults, and the actual judgment 
sensitivity results are shown in Table 8. 

Table 8. Comparison of judgment sensitivity of 
different fault types 

Different fault 
types 

Single optimal 
CNN 

Optimized 
model 

Harmonic fault 94.5% 99.3% 
Ground fault 95.3% 99.4% 
Abnormal arc 92.1% 97.3% 

Voltage offset fault 90.4% 98.2% 
Other fault 89.8% 98.5% 
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Table 8 indicates that the improved system in this 
paper shows certain advantages in the judgment sensitivity 
of the above fault types, especially improving the judgment 
sensitivity of other faults with unknown fault causes, which 
is 8.7% higher than previous system. 

4. Conclusion

In this study, in order to accurately evaluate the operation 
stability of a power system, especially the transient stability 
after fault, we study a power system operation stability 
assessment method based on the deep convolutional neural 
network. We assess the stability of the power system by 
integrating the CNN network model, especially in the case 
of considering the missed and misjudged samples.  

Through the way of layered real-time prediction, the 
instability samples are judged in multiple steps to improve 
the accuracy of sample instability. Through the comparison 
of experimental data, it is proved that this model has a good 
advantage over a single CNN network and other networks 
and is far more sensitive to the judgment of different faults 
in the power system than initial model. As a result, the 
misjudgment of the data sample is reduced, and the 
influence of the misjudgment on the transient stability 
prediction of the system is also effectively reduced. 
Compared with all the reference models, the model of this 
study has a higher evaluation accuracy of 98.39%, far more 
than other comparison models. The prediction of the 
transient stability degree of the model samples under 
different response times is evaluated. Through the 
experimental results, we conclude that the evaluation 
accuracy of the model is significantly improved with the 
gradual increase of the response time, which suggests that 
the model can be used in evaluating the stability of the 
power system. 
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