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Abstract 

INTRODUCTION: Demand response (DR) has been proposed as a mechanism to induce electricity cost reductions and is 

typically assumed to require the adoption of time-differentiated electricity prices. Making the most of these requires using 

automated energy management systems to produce optimised DR plans. Mixed-integer linear programming (MILP) has been 

used for this purpose, including by modelling dynamic systems (DS). 

OBJECTIVES: In this paper, we compare the computational performance of MILP approaches for modelling state spaces 

and multi-level discrete control (MLDC) in DR problems involving DSs. 

METHODS: A state-of-the-art MILP solver was used to compute solutions and compare approaches. 

RESULTS: Modelling state spaces using decision variables proved to be the most efficient option in over 80% of cases. In 

turn, the new MLDC approaches outperformed the standard one in about 60% of cases despite performing in the same range. 

CONCLUSION: We conclude that using state variables is generally the better option and that all MLDC variants perform 

similarly. 
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1. Introduction

1.1. Context and motivation 

Demand response (DR) programs have been advanced as a 

way to ensure the existing power system infrastructure is used 

rationally and efficiently, and also to integrate increasing 

shares of variable renewable energy resources into power 

grids [1,2]. This potential implies the dissemination of 

intelligible information about the power system for a given 

period, most often in the form of time-differentiated 

electricity prices and ad-hoc demand reduction requests, so as 

to indirectly influence end-users' aggregate electricity 

consumption. Once in possession of this information, end-

*Corresponding author. Email: pmlpm@deec.uc.pt

users are expected to decide when and how to adjust their 

actions to meet their objectives. For residential end-users, this 

implies scheduling and configuring domestic appliances as 

well as managing local energy resources, particularly storage 

units, if there are any. However, for end-users to minimise 

their electricity bill under these circumstances without 

neglecting their needs and comfort arguably requires a level 

of effort most, if not all, will want to avoid without computer 

assistance and control. This reluctance is predicated on the 

task's participative, repetitive, schedule-constraining and 

computationally-demanding nature [3,4]. Automated home 

energy management systems have been proposed to not only 

carry out part of these actions but also to support the decision-

making process by providing users with optimised plans [5]. 

Generating these plans requires optimisation tools and 

mathematical models of the underlying DR problem. The 

combination should be sufficiently time-effective to avoid 
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protracted interactions with end-users. One common 

approach is to model DR problems using mixed-integer linear 

programming (MILP) and produce optimised solutions via 

MILP solvers. A wide range of DR problems have been 

modelled using MILP including those involving dynamic 

systems (DS), such as domestic hot water (DHW) vessels and 

air-conditioned spaces, whose DR potential stems from their 

ability to defer loads to an extent that allows for significant 

flexibility and possibly lower costs. It is thus important to 

model DSs using MILP as accurately and efficiently as 

possible. This paper describes a study comparing the 

computational performance of different MILP formulations 

of the same DR problems involving dynamic systems. 

1.2. Literature review 

The MILP models for dynamic systems found in the literature 

primarily cover thermal loads such as hot water vessels, air-

conditioned spaces, radiators and refrigerated compartments, 

and are mostly physical phenomena-inspired as opposed to 

physics-agnostic models. Most commonly, these dynamic 

systems are modelled as single-node temperature models that 

can be derived from first order ordinary linear differential 

equations, and often rely on continuous decision variables to 

store state (e.g., temperature) values [3,6-12]. One-

dimensional multi-node models can also be found in the 

literature, particularly to model thermal stratification in 

storage vessels [13,14] and heat transfer across building 

envelopes [15,16]. In a few cases, thermal loads have also 

been modelled as time-shiftable or interruptible loads [17,18]. 

The models reviewed rely on combinations of temperature, 

power, and control constraints. Temperature constraints have 

generally been used to ensure safety and comfort standards 

[3,8,12], either constant or changing over time due to 

occupancy or demand, rather than the model's own accuracy 

(e.g., due to phase changes). Power constraints have been 

used to comply with individual equipment's power ratings 

[8,9,11,19] or those defined by fuses or the utility grid 

[3,17,20]. Control constraints have been used to reproduce 

full- and part-load operation using multi-level discrete 

(MLD) control, on-off control with hysteresis, minimum 

operation and inactivity periods [20,21], and to ensure some 

modes are mutually exclusive [8,22]. Accommodating some 

of these features may be a necessity but these also increase 

the computational burden, particularly for short time steps, 

due to the additional binary variables needed. Ultimately, 

models of a strongly-combinatorial nature (due to a high 

number of binary variables) may prove impossible to solve 

within an acceptable time-frame (i.e., close to real-time) 

using affordable and low power computational resources 

[6,8,12,18-22]. In those cases, the attractiveness of MILP 

models for in-house DR planning is limited. It is, therefore, 

desirable to find ways of improving their performance. 

Multi-level discrete control can require a large number of 

binary variables to reproduce in MILP models, depending on 

the number of levels. The conventional approach requires one 

binary variable per time interval and level [18,21]. Recently, 

two alternative approaches have been proposed that enable 

reducing the number of binary variables needed [23]. These 

are suitable for those cases in which all levels can be 

reproduced using combinations of a subset of those levels. 

This encompasses typical situations where reproducing full- 

and part-load operation of systems is needed, namely if the 

levels are between nought and one at regular steps. The two 

new approaches resulted in less computational effort in most 

comparisons undertaken (>60%). These consisted of DR 

problems and focused only on one set of levels [23]. 

The same study also evaluated the effect of DS state 

variables (SV) on the computational performance of MILP 

models. It found that removing SVs concerning a single DS 

through finite linear operations increased the computational 

effort in most cases (>90%) and significantly (~1,000%, on 

average) [23]. This suggests state variables should be used in 

MILP models to keep the computational effort down. 

1.3. Objectives and approach 

The study described here set out to complement previous 

efforts on the computational performance of alternative MILP 

approaches to model state spaces and MLD control in DR 

problems. We did so by considering an additional approach 

for MLD control, a revised methodology, and additional 

problem diversity in relation to [23]. The additional diversity 

concerns aspects that directly influence the modelling 

approaches as well as general problem data. The problems 

selected for testing the approaches were day-ahead DR 

planning exercises involving DSs. Two sets of problems were 

considered: one for evaluating the effect of state variables and 

another to compare MLD control modelling approaches. 

Each unique problem in a given set was reproduced using 

each of the respective modelling approaches. A state-of-the-

art solver was used to compute optimised solutions to these 

problems. The computation times required to obtain these 

solutions were then compared and analysed.  

The endeavours presented in this paper provide a fuller 

understanding of the trade-offs between the different 

approaches investigated. These contributions result from: 

 Comparing four MLD control modelling

approaches, including one based on the standard

one using special ordered sets of type 1 (SOS1);

 Comparing MLD control modelling approaches

using four distinct sets of levels and not just one;

 Evaluating the effect of modelling state spaces

with or without continuous decision variables in

multiple dynamic systems instead of just one;

 Considering more base load, DHW consumption

and indoor heat gain profiles (64 vs. 27 in [23]).

This effort is presented over 5 additional sections: Section 

2 outlines the type of DR problem we have focused on to 

assess the different modelling approaches, and describes the 

mathematical models used to reproduce those problems in 

accordance with each approach; Section 3 details the 

methodology employed including the problems selected and 

optimisation settings; Section 4 presents the optimisation 

results and Section 5 discusses their implications; finally, 

Section 6 summarises our main findings and future work. 
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2. Mathematical models

The different modelling approaches compared were applied 

to a set of single-household DR problems formulated using 

MILP. The approaches developed differ among themselves 

only with regard to the subject of our inquiry: the ways to 

model state spaces and multi-level discrete (MLD) control. 

They are presented in the next sections by highlighting their 

differences in relation to the standard (STD) formulation. 

2.1. Problem description 

The DR problem addressed in this study is centred around a 

grid-connected single-family dwelling. The household’s 

electricity consumption during a 36-hour period is charged in 

accordance with time-differentiated energy prices and a fixed 

demand rate dependent on the maximum power needs for the 

entire period under analysis. The automated home energy 

management system is tasked with preparing optimised plans 

and managing the operation of domestic appliances and 

energy resources to ensure the goals are met. This requires 

adjusting the electricity consumption profile, which can be 

partially influenced through a set of controllable appliances 

and systems. A small behind-the-meter electricity generation 

system may also be installed in the premises. If so, energy 

surpluses are fed to the grid and financially compensated.  

2.2. Standard formulation 

The objective for this model is to maximise the cash flow 

(revenue minus expenditure) during the planning period. This 

is achieved by simultaneously minimising energy and power 

costs and maximising revenue while meeting safety and 

comfort standards. Revenue is obtained by selling locally-

generated excess electricity to the utility whereas costs are 

due to a demand rate and static and dynamic electricity 

consumption components, with the latter being determined by 

|STSAC| time shiftable appliance cycles (TSACs) and |SDS| 

dynamic systems (DSs). STSAC is the set identifying each 

TSAC and SDS is the set identifying each DS. The resulting 

electricity consumption limits the range of acceptable 

demand rate options, which simultaneously imply limits for 

electricity supply and demand. Penalties are induced by DSs 

only, namely by violations of states’ high (H) and low (L) 

thresholds or by states’ increases (H) and decreases (L) 

relative to the initial conditions by the end of the planning 

period. SPEN,∆t,H and SPEN,∆t,L are the sets identifying the DSs 

subject to penalties for high and low state threshold 

violations, respectively. SPEN,PP,H and SPEN,PP,L are the sets 

identifying the DSs subject to penalties for state increases and 

decreases relative to the initial conditions, respectively. 

The objective function is thus given by (1), where: Pk
IMP 

and Pk
EXP stand for the mean power drawn from and fed to the 

utility grid, respectively, during time interval k of the 

planning period (out of |SK| ∆t-long intervals, with  SK being 

the set of planning period time intervals); yp,p+1
U indicates 

whether the power level Pp
U corresponding to the demand rate 

level p (out of P options) was exceeded during the planning 

period; ∆xs
PP,L and ∆xs

PP,H represent the state decrease and 

increase, if any, relative to the initial conditions for the 

dynamic system s; and, ∆xs,k
∆t,H and ∆xs,k

∆t,L respectively 

represent the violations of high and low state thresholds set 

for system s and time interval k, if any. With regard to the 

objective function coefficients: pk
IMP and pk

EXP are 

respectively the prices charged and offered to the household 

for electricity consumed from and delivered to the grid during 

the time interval k; cp,p+1
U is the additional cost of exceeding 

the power level p; cs
PP,H and cs

PP,L are the penalties for 

increasing and decreasing the state of system s by one unit by 

the end of the planning period; and, cs,k
∆t,H and cs,k

∆t,L are the 

penalties prompted by violations of the high and low state 

thresholds by one unit for system s during time interval k. As 

such, the objective function includes penalties and a cash flow 

component with costs and revenue. 

Revenue is obtained by injecting electricity into the utility 

grid, which can only take place if there is a local surplus 

(electricity production exceeds the local demand) and no 

electricity is simultaneously needed from the grid. The 

electricity production profile is predetermined and is used in 

conjunction with the static electricity consumption to arrive 

at Pk
STATIC, which is the static net electricity consumption 

(consumption minus production) during time interval k. The 

option to import or export electricity also depends on the 

dynamic consumption and production components, which 

can ideally be influenced by both types of systems, though 

TSACs are not expected to generate electricity. SIMP and SEXP 

are the sets identifying the systems capable of importing and 

exporting electricity dynamically; Ps,k
EXP and Ps,k

IMP represent 

the mean power supply and demand from system s during 

time interval k; STSAC ∩ SEXP = ∅. 

Costs are incurred due to the electrical energy imported 

and due to the power needs for exporting and importing 

electrical energy during the planning period, (2)-(17). 

Increasing power needs translate into higher demand rates, as 

the demand rate selected (p) has to correspond to power levels 

(Pp
U and Pp

Uλp
U) that are higher than or equal to the maximum 

mean power needs (PIMP,MAX and PEXP,MAX) during the 

planning period, and the demand rate is a monotonically-

increasing function of the power needs. λp
U is the factor 

relating the import and export power levels permitted by the 

demand rate p. The electrical energy consumption costs arise 

due to the various loads presented by the TSACs and DSs.  

TSACs are modelled as non-interruptible cycles defined 

by ordered sequences of power demand stages whose 

scheduling must respect predefined comfort periods [21,24]. 

In the model, (18)-(24), Ts
K,i and Ts

K,f represent the initial and 

final comfort period time slots for system s, respectively. In 

turn, fs,r is the power demand stage r for system s, ds is the 

number of stages for system s, and ws,r,k indicates whether the 

stage r for system s is to be scheduled for time interval k. 

DSs are modelled using continuous-time solutions to the 

respective differential equations. In particular, the solution 

for a given time interval is used as the initial condition for the 

next time interval. The systems are also subject to the 

influence of controllable input signals, which are modelled as 

a set of modes (Ss
M is the set identifying the modes for the DS 

s). These are primarily used to implement different controls 
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and can be associated with electricity imports or exports to 

define their contribution to a given DS’s power supply and 

demand: Ss
M,IMP and Ss

M,EXP are mutually exclusive sets 

identifying the modes that contribute to electrical energy 

imports and exports, respectively; Ps,m,k is the mean power 

associated with system s, mode m and time interval k. In the 

model, (25)-(47), xs is the state vector for the DS s, 

comprising one state variable for each time interval (xs,k, 

corresponding to the state by the end of the time interval k; 

xs,0 is the initial condition). The state equations, (25), are 

presented using matrices and a vector to encode the solutions 

to the differential equations for each time interval: bs
DS is the 

right-hand side coefficient vector for system s; As
DS concerns 

the role of state variables for system s; Bs,m
DS concerns the 

role of input signal variables for system s and mode m. In turn, 

us,m is the vector corresponding to the input signal mode  m 

for the DS s, which is made up of one nonnegative variable 

(us,m,k) per time interval (k). These correspond to the zero-

order hold input signal component variables for each time 

interval, which define how the systems can be controlled to 

reach feasible solutions and the most desirable outcome. 

Feasibility requires that state variables be kept within 

upper (xs,k
MAX) and lower (xs,k

MIN) bounds, (32)-(33). In turn, 

the most desirable outcome implies minimal penalties, (34)-

(41). Penalties may be incurred when the state variable for a 

given DS s and time interval k exceeds xs,k
∆t,H or falls below 

xs,k
∆t,L. Similarly, should the final state of the planning period 

(xs,k, with k=|SK|) exceed or fall below the initial conditions 

(xs,0), penalties may also be incurred. Due to the existence of 

upper and lower state bounds, upper and lower bounds can 

also be defined for the state violation and difference variables, 

(36)-(37) and (40)-(41). Moreover, the ability to obtain 

feasible solutions and the most desirable outcomes depends 

on the type of controls used, which we describe next. 

The dynamic systems considered are controlled using 

input signals that must abide by a set of control constraints, 

(42)-(47). Three types of control have been considered for 

DSs: on/off control, continuous control and multi-level 

discrete control. On/off control is self-explanatory and uses 

one binary variable per time interval. Continuous control uses 

one binary variable and one continuous variable per time 

interval to allow for a variable input signal above a fixed 

minimum, when on. Finally, multi-level discrete control is 

meant to reproduce multiple operation setpoints, namely to 

reproduce full- and part-load operation. The standard 

formulation for this type of control uses one binary variable 

per time interval and level. SDS,OO is the set identifying the 

systems controlled by way of on/off control, SDS,MLD is the set 

identifying the systems using multi-level discrete control and 

SDS,CC is the set identifying the systems using continuous 

control, all of which are mutually-exclusive subsets of SDS. 

max ∆𝑡 ∑ (𝑝𝑘
𝐸𝑋𝑃𝑃𝑘

𝐸𝑋𝑃 − 𝑝𝑘
𝐼𝑀𝑃𝑃𝑘

𝐼𝑀𝑃) −𝑘∈𝑆𝐾 ∑ 𝑐𝑝,𝑝+1
𝑈 𝑦𝑝,𝑝+1

𝑈𝑃−1
𝑝=0

− ∑ (∑ 𝑐𝑠,𝑘
∆𝑡,𝐻∆𝑥𝑠,𝑘

∆𝑡,𝐻
𝑠∈𝑆𝑃𝐸𝑁,∆𝑡,𝐻 + ∑ 𝑐𝑠,𝑘

∆𝑡,𝐿∆𝑥𝑠,𝑘
∆𝑡,𝐿

𝑠∈𝑆𝑃𝐸𝑁,∆𝑡,𝐿 )𝑘∈𝑆𝐾  

− ∑ 𝑐𝑠
𝑃𝑃,𝐻∆𝑥𝑠

𝑃𝑃,𝐻
𝑠∈𝑆𝑃𝐸𝑁,𝑃𝑃,𝐻 − ∑ 𝑐𝑠

𝑃𝑃,𝐿∆𝑥𝑠
𝑃𝑃,𝐿

𝑠∈𝑆𝑃𝐸𝑁,𝑃𝑃,𝐿 .    (1) 

𝑃𝑘
𝐼𝑀𝑃 ≥ 0, ∀𝑘 ∈ 𝑆𝐾.  (2) 

𝑃𝑘
𝐸𝑋𝑃 ≥ 0, ∀𝑘 ∈ 𝑆𝐾.  (3) 

𝑦𝑝,𝑝+1
𝑈 ∈ {0,1}, 𝑝 = 0, … , 𝑃 − 1.    (4) 

𝑃𝑘
𝐼𝑀𝑃 ≤ ( max

𝑝𝜖{0,…,𝑃}
𝑃𝑝

𝑈) (1 − 𝛿𝑘
𝐸𝑋𝑃,𝑂𝑁),   ∀𝑘 ∈ 𝑆𝐾.   (5) 

𝑃𝑘
𝐸𝑋𝑃 ≤ ( max

𝑝𝜖{0,…,𝑃}
𝑃𝑝

𝑈𝜆𝑝
𝑈) 𝛿𝑘

𝐸𝑋𝑃,𝑂𝑁 , ∀𝑘 ∈ 𝑆𝐾.   (6) 

𝛿𝑘
𝐸𝑋𝑃,𝑂𝑁 ∈ {0,1}, ∀𝑘 ∈ 𝑆𝐾.  (7) 

𝑃𝑘
𝐼𝑀𝑃 ≤ 𝑃𝐼𝑀𝑃,𝑀𝐴𝑋 , ∀𝑘 ∈ 𝑆𝐾.  (8) 

𝑃𝑘
𝐸𝑋𝑃 ≤ 𝑃𝐸𝑋𝑃,𝑀𝐴𝑋 , ∀𝑘 ∈ 𝑆𝐾.   (9) 

𝑃𝐼𝑀𝑃,𝑀𝐴𝑋 ≥ 0.  (10) 

𝑃𝐸𝑋𝑃,𝑀𝐴𝑋 ≥ 0.    (11) 

𝑃𝐼𝑀𝑃,𝑀𝐴𝑋 ≤ ∑ (𝑃𝑝+1
𝑈 − 𝑃𝑝

𝑈)𝑦𝑝,𝑝+1
𝑈𝑃−1

𝑝=0 .    (12) 

𝑃𝐸𝑋𝑃,𝑀𝐴𝑋 ≤ ∑ (𝑃𝑝+1
𝑈 𝜆𝑝+1

𝑈 − 𝑃𝑝
𝑈𝜆𝑝

𝑈)𝑦𝑝,𝑝+1
𝑈𝑃−1

𝑝=0 .   (13) 

𝑦𝑝,𝑝+1
𝑈 ≤ 𝑦𝑝−1,𝑝

𝑈 , 𝑝 = 0, … , 𝑃 − 1.    (14) 

∑ 𝑃𝑠,𝑘
𝐸𝑋𝑃

𝑠∈𝑆𝐸𝑋𝑃 − ∑ 𝑃𝑠,𝑘
𝐼𝑀𝑃

𝑠∈𝑆𝐼𝑀𝑃 + 𝑃𝑘
𝑆𝑇𝐴𝑇𝐼𝐶 = 𝑃𝑘

𝐸𝑋𝑃 −

𝑃𝑘
𝐼𝑀𝑃 , ∀𝑘 ∈ 𝑆𝐾.    (15) 

𝑃𝑠,𝑘
𝐼𝑀𝑃 ≥ 0, ∀𝑠 ∈ 𝑆𝐼𝑀𝑃, ∀𝑘 ∈ 𝑆𝐾.   (16) 

𝑃𝑠,𝑘
𝐸𝑋𝑃 ≥ 0, ∀𝑠 ∈ 𝑆𝐸𝑋𝑃 , ∀𝑘 ∈ 𝑆𝐾.   (17) 

𝑃𝑠,𝑘
𝐼𝑀𝑃 = ∑ 𝑓𝑠,𝑟𝑤𝑠,𝑟,𝑘

𝑑𝑠
𝑟=1 , ∀𝑠 ∈ 𝑆𝑇𝑆𝐴𝐶 , 𝑘 = 𝑇𝑠

𝐾,𝑖 , … , 𝑇𝑠
𝐾,𝑓

.   (18)

𝑃𝑠,𝑘
𝐼𝑀𝑃 = 0, ∀𝑠 ∈ 𝑆𝑇𝑆𝐴𝐶 , ∀𝑘 ∈ 𝑆𝐾\{𝑇𝑠

𝐾,𝑖 , … , 𝑇𝑠
𝐾,𝑓

}.  (19) 

𝑤𝑠,𝑟,𝑘 ∈ {0,1}, ∀𝑠 ∈ 𝑆𝑇𝑆𝐴𝐶 , 𝑟 = 1, … , 𝑑𝑠 , 𝑘 = 𝑇𝑠
𝐾,𝑖 , … , 𝑇𝑠

𝐾,𝑓
.

 (20) 

∑ 𝑤𝑠,𝑟,𝑘
𝑑𝑠
𝑟=1 ≤ 1, ∀𝑠 ∈ 𝑆𝑇𝑆𝐴𝐶 , 𝑘 = 𝑇𝑠

𝐾,𝑖 , … , 𝑇𝑠
𝐾,𝑓

.               (21)

𝑤𝑠,𝑟+1,𝑘+1 ≥ 𝑤𝑠,𝑟,𝑘 , ∀𝑠 ∈ 𝑆𝑇𝑆𝐴𝐶 , 𝑘 = 𝑇𝑠
𝐾,𝑖 , … , 𝑇𝑠

𝐾,𝑓
− 𝑑𝑠 +

1, 𝑟 = 1, … , 𝑑𝑠 − 1.  (22) 

∑ 𝑤𝑠,𝑟,𝑘
𝑇𝑠

𝐾,𝑓

𝑘=𝑇𝑠
𝐾,𝑖 = 1, ∀𝑠 ∈ 𝑆𝑇𝑆𝐴𝐶 , 𝑟 = 1, … , 𝑑𝑠.  (23) 

∑ 𝑤𝑠,1,𝑘
𝑇𝑠

𝐾,𝑓
−𝑑𝑠+1

𝑘=𝑇𝑠
𝐾,𝑖 ≥ 1, ∀𝑠 ∈ 𝑆𝑇𝑆𝐴𝐶.  (24) 

𝐴𝑠
𝐷𝑆𝑥𝑠

𝑇 + ∑ 𝐵𝑠,𝑚
𝐷𝑆 𝑢𝑠,𝑚

𝑇
𝑚∈𝑆𝑠

𝑀 = 𝑏𝑠
𝐷𝑆, ∀𝑠 ∈ 𝑆𝐷𝑆.    (25) 

𝑥𝑠 = [𝑥𝑠,1, … , 𝑥𝑠,|𝑆𝐾|] , ∀𝑠 ∈ 𝑆𝐷𝑆.    (26) 

𝑥𝑠,𝑘 ∈ ℝ, ∀𝑠 ∈ 𝑆𝐷𝑆, ∀𝑘 ∈ 𝑆𝐾.  (27) 

𝑢𝑠,𝑚 = [𝑢𝑠,𝑚,1, … , 𝑢𝑠,𝑚,|𝑆𝐾|] , ∀𝑠 ∈ 𝑆𝐷𝑆, ∀𝑚 ∈ 𝑆𝑠
𝑀.  (28) 

𝑢𝑠,𝑚,𝑘 ≥ 0, ∀𝑠 ∈ 𝑆𝐷𝑆, ∀𝑚 ∈ 𝑆𝑠
𝑀, ∀𝑘 ∈ 𝑆𝐾.  (29) 

𝑃𝑠,𝑘
𝐼𝑀𝑃 = ∑ 𝑃𝑠,𝑚,𝑘𝑢𝑠,𝑚,𝑘𝑚∈𝑆𝑠

𝑀,𝐼𝑀𝑃 , ∀𝑠 ∈ 𝑆𝐷𝑆, ∀𝑘 ∈ 𝑆𝐾.  (30) 

𝑃𝑠,𝑘
𝐸𝑋𝑃 = ∑ 𝑃𝑠,𝑚,𝑘𝑢𝑠,𝑚,𝑘𝑚∈𝑆𝑠

𝑀,𝐸𝑋𝑃 , ∀𝑠 ∈ 𝑆𝐷𝑆, ∀𝑘 ∈ 𝑆𝐾.  (31) 

𝑥𝑠,𝑘 ≤ 𝑥𝑠,𝑘
𝑀𝐴𝑋 , ∀𝑠 ∈ 𝑆𝐷𝑆, ∀𝑘 ∈ 𝑆𝐾.   (32) 

𝑥𝑠,𝑘 ≥ 𝑥𝑠,𝑘
𝑀𝐼𝑁 , ∀𝑠 ∈ 𝑆𝐷𝑆, ∀𝑘 ∈ 𝑆𝐾.   (33) 

𝑥𝑠,|𝑆𝐾| − 𝑥𝑠,0 ≤ ∆𝑥𝑠
𝑃𝑃,𝐻 , ∀𝑠 ∈ 𝑆𝑃𝐸𝑁,𝑃𝑃,𝐻.   (34) 

𝑥𝑠,|𝑆𝐾| − 𝑥𝑠,0 ≥ −∆𝑥𝑠
𝑃𝑃,𝐿 , ∀𝑠 ∈ 𝑆𝑃𝐸𝑁,𝑃𝑃,𝐿.   (35) 

∆𝑥𝑠
𝑃𝑃,𝐻 ∈ [0, 𝑥

𝑠,|𝑆𝐾|
𝑀𝐴𝑋 − 𝑥𝑠,0] , ∀𝑠 ∈ 𝑆𝑃𝐸𝑁,𝑃𝑃,𝐻.  (36) 

∆𝑥𝑠
𝑃𝑃,𝐿 ∈ [0, 𝑥𝑠,0 − 𝑥

𝑠,|𝑆𝐾|
𝑀𝐼𝑁 ] , ∀𝑠 ∈ 𝑆𝑃𝐸𝑁,𝑃𝑃,𝐿.     (37) 

𝑥𝑠,𝑘 − 𝑥𝑠,𝑘
∆𝑡,𝐻 ≤ ∆𝑥𝑠,𝑘

∆𝑡,𝐻 , ∀𝑠 ∈ 𝑆𝑃𝐸𝑁,∆𝑡,𝐻 , ∀𝑘 ∈ 𝑆𝐾.  (38) 

𝑥𝑠,𝑘 − 𝑥𝑠,𝑘
∆𝑡,𝐿 ≥ −∆𝑥𝑠,𝑘

∆𝑡,𝐿 , ∀𝑠 ∈ 𝑆𝑃𝐸𝑁,∆𝑡,𝐿 , ∀𝑘 ∈ 𝑆𝐾      (39) 

∆𝑥𝑠,𝑘
∆𝑡,𝐻 ∈ [0, 𝑥

𝑠,|𝑆𝐾|
𝑀𝐴𝑋 − 𝑥𝑠,𝑘

∆𝑡,𝐻] , ∀𝑠 ∈ 𝑆𝑃𝐸𝑁,∆𝑡,𝐻 , ∀𝑘 ∈ 𝑆𝐾.   (40)

∆𝑥𝑠,𝑘
∆𝑡,𝐿 ∈ [0, 𝑥𝑠,𝑘

∆𝑡,𝐿 − 𝑥
𝑠,|𝑆𝐾|
𝑀𝐼𝑁 ] , ∀𝑠 ∈ 𝑆𝑃𝐸𝑁,∆𝑡,𝐿 , ∀𝑘 ∈ 𝑆𝐾.  (41) 

𝑢𝑠,𝑚,𝑘 ∈ {0,1}, ∀𝑠 ∈ 𝑆𝐷𝑆,𝑂𝑂 , ∀𝑚 ∈ 𝑆𝑠
𝑀, ∀𝑘 ∈ 𝑆𝐾.   (42) 

𝑢𝑠,𝑚,𝑘 ∈ {0,1}, ∀𝑠 ∈ 𝑆𝐷𝑆,𝑀𝐿𝐷 , ∀𝑚 ∈ 𝑆𝑠
𝑀, ∀𝑘 ∈ 𝑆𝐾.  (43) 

∑ 𝑢𝑠,𝑚,𝑘 ≤ 1𝑚∈𝑆𝑠
𝑀 , ∀𝑠 ∈ 𝑆𝐷𝑆,𝑀𝐿𝐷 , ∀𝑘 ∈ 𝑆𝐾.    (44) 

𝑢𝑠,1,𝑘 ∈ {0,1}, ∀𝑠 ∈ 𝑆𝐷𝑆,𝐶𝐶 , ∀𝑘 ∈ 𝑆𝐾.    (45) 

𝑢𝑠,2,𝑘 ∈ [0,1], ∀𝑠 ∈ 𝑆𝐷𝑆,𝐶𝐶 , ∀𝑘 ∈ 𝑆𝐾.     (46) 

𝑢𝑠,1,𝑘 ≥ 𝑢𝑠,2,𝑘, ∀𝑠 ∈ 𝑆𝐷𝑆,𝐶𝐶 , ∀𝑘 ∈ 𝑆𝐾.  (47) 
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2.3. Multi-level discrete control 

The standard formulation requires a binary variable per 

system, level and time interval in addition to a constraint per 

system and time interval to implement multi-level discrete 

control, (43)-(44). Depending on the number of levels one 

seeks to reproduce, this formulation may prove to be strongly 

combinatorial. It is therefore desirable to reduce the number 

of binary variables required or, more generally, the time 

needed to obtain optimised solutions. The three alternative 

approaches considered are described next. 

Special ordered sets of type 1 
One of the approaches considered relied on the use of special 

ordered sets of type 1 (SOS1) [25,26]. These sets provide 

additional information to solvers to enable more efficient tree 

searches with branch and bound algorithms, particularly for 

multiple choice programming problems. In this case, the 

standard formulation was kept and the input variables (us,m,k) 

for the same system (s) and interval (k) were defined as SOS1. 

Non-exclusive levels 
The two other approaches considered rely on the possibility 

of reproducing the outcome enabled by a given level using 

combinations of levels rather than the original one. If this 

possibility exists, then under certain additional conditions, it 

is possible to reduce the number of binary variables without 

changing the problem. The reduction in the number of binary 

variables needed depends on whether a given set of levels can 

be reproduced using only a subset of those levels. If this is the 

case and the mutual-exclusiveness constraint (44) is removed, 

the variables associated with the redundant levels can be pre-

solved in accordance with (48), where Ss
M,RED ⊂ Ss

M is the set 

of redundant levels in a system s ∊ SDS,MLD. 

In removing the mutual-exclusiveness constraint, one may 

be allowing for previously inexistent levels to be considered. 

If that is the case, then additional constraints are necessary. 

In general terms, this requires ruling out all the combinations 

that can lead to those levels, which is possible using linearised 

0-1 polynomial constraints, (49)-(50), where Ss,v
M,1 and Ss,v

M,0 

are the sets of levels that equal one and nought, respectively, 

in the combination v out of a total of Vs combinations to 

exclude [27]. Should this require ruling out too many 

combinations, it may make sense to allow some levels to 

remain mutually exclusive among themselves and in relation 

to those that can be combined as in (51), where Ss
M,FREE and 

Ss
M,MEX are the sets of free and mutually-exclusive (i.e., 

noncombinatorial) levels, respectively. Note that (50) 

generalises (44) and becomes redundant, for different 

reasons, if Ss
M,FREE or Ss

M,MEX are null sets. Hence, a reduction 

in the number of constraints is possible only if the previously 

excluded combinations do not give rise to new levels. 

𝑢𝑠,𝑚,𝑘 ≤ 0, ∀𝑠 ∈ 𝑆𝐷𝑆,𝑀𝐿𝐷 , ∀𝑚 ∈ 𝑆𝑠
𝑀,𝑅𝐸𝐷 , ∀𝑘 ∈ 𝑆𝐾.     (48) 

∑ 𝑢𝑠,𝑜,𝑘𝑜∈𝑆𝑠,𝑣
𝑀,1 − ∑ 𝑢𝑠,𝑧,𝑘 ≤ |𝑆𝑠,𝑣

𝑀,1| − 1
𝑧∈𝑆𝑠,𝑣

𝑀,0 , ∀𝑠 ∈

𝑆𝐷𝑆,𝑀𝐿𝐷 , 𝑣 = 1, … , 𝑉𝑠 , ∀𝑘 ∈ 𝑆𝐾.  (49) 

-∑ 𝑢𝑠,𝑜,𝑘𝑜∈𝑆𝑠,𝑣
𝑀,1 + ∑ 𝑢𝑠,𝑧,𝑘 ≤ |𝑆𝑠,𝑣

𝑀,0|
𝑧∈𝑆𝑠,𝑣

𝑀,0 , ∀𝑠 ∈ 𝑆𝐷𝑆,𝑀𝐿𝐷 , 𝑣 =

1, … , 𝑉𝑠, ∀𝑘 ∈ 𝑆𝐾.  (50) 

∑ 𝑢𝑠,𝑚,𝑘𝑚∈𝑆𝑠
𝑀,𝐹𝑅𝐸𝐸 + 𝑢𝑠,𝑚∗,𝑘 ≤ 1, ∀𝑠 ∈ 𝑆𝐷𝑆,𝑀𝐿𝐷 , ∀𝑚∗ ∈

𝑆𝑠
𝑀,𝑀𝐸𝑋 , ∀𝑘 ∈ 𝑆𝐾.      (51) 

Preliminary results show this general approach can 

improve performances in relation to the standard one but not 

consistently or significantly [23]. These results refer to cases 

in which the number of binary variables could be reduced but 

not the number of constraints. It may thus be that this 

approach is only interesting if a substantial reduction in the 

number of binary variables is possible without requiring (too 

many) additional constraints. This can be ensured if all levels 

are equally spaced (constant step) between nought and one 

(or 100%), since considerable reductions of binary variables 

are possible depending on the number of levels (see Appendix 

A) and intermediate levels are implicitly excluded, limiting

the number of additional constraints needed. These

assumptions arguably encompass the majority of situations in

which full- and part-load operation of systems may be needed

in practice. With those conditions and depending on the

choice of free levels, the constraints required, if any, may

only have to prevent the maximum value (1 or 100%, if there

are no mutually-exclusive levels at all) from being exceeded.

This can be achieved with (49)-(50), which is the general

approach (NEX-G), or with (52), which is specific to certain

cases as described previously (NEX-S).

∑ 𝑃𝑠,𝑚,𝑘𝑢𝑠,𝑚,𝑘𝑚∈𝑆𝑠
𝑀,𝐹𝑅𝐸𝐸 ≤ max

𝑚∗∈𝑆𝑠
𝑀,𝐹𝑅𝐸𝐸

𝑃𝑠,𝑚∗,𝑘 , ∀𝑠 ∈

𝑆𝐷𝑆,𝑀𝐿𝐷 , ∀𝑚 ∈ 𝑆𝑠
𝑀,𝐷𝐼𝑆𝑃, ∀𝑘 ∈ 𝑆𝐾.      (52) 

2.4. Formulations without state variables 

State variables are not strictly necessary in the model 

presented, as these can be defined by functions of the input 

variables as given by (53). By using (53), the part of the 

objective function and any constraints depending on those 

variables can be made independent of state variables. Without 

loss of generality, consider a generic DS s and Gs equalities 

that depend on that system’s state variables, (54). Those 

equalities can be shown to be independent of state variables 

as in (55) if the coefficients (d and e) are defined in 

accordance with (56) and (57). Replicating this approach for 

all other types of constraints (i.e., using the same formulas) 

and applying it to the model makes state variables redundant. 

𝑥𝑠,𝑘 = ∑ 𝑎𝑠,𝑘,𝑚𝑢𝑠,𝑚
𝑇

𝑚∈𝑆𝑠
𝑀 + 𝑏𝑠,𝑘, ∀𝑘 ∈ 𝑆𝐾 , ∀𝑠 ∈ 𝑆𝐷𝑆.  (53) 

𝑐𝑔,𝑠𝑥𝑠
𝑇 + ∑ 𝑑𝑔,𝑠,𝑚𝑢𝑠,𝑚

𝑇
𝑚∈𝑆𝑠

𝑀 = 𝑒𝑔,𝑠 , ∀𝑔 = 1, … , 𝐺𝑠, ∀𝑠 ∈

𝑆𝐷𝑆.  (54) 

∑ 𝑑′𝑔,𝑠,𝑚𝑢𝑠,𝑚
𝑇

𝑚∈𝑆𝑠
𝑀 = 𝑒′𝑔,𝑠, ∀𝑔 = 1, … , 𝐺𝑠, ∀𝑠 ∈ 𝑆𝐷𝑆. (55) 

𝑒′𝑔,𝑠 = 𝑒𝑔,𝑠 − ∑ 𝑐𝑔,𝑠,𝑘𝑏𝑠,𝑘𝑘∈𝑆𝐾 , ∀𝑔 = 1, … , 𝐺𝑠 , ∀𝑠 ∈ 𝑆𝐷𝑆. (56)

𝑑′𝑔,𝑠,𝑚,𝑘 = 𝑑𝑔,𝑠,𝑚,𝑘 + ∑ 𝑐𝑔,𝑠,𝑘𝑎𝑠,𝑘∗,𝑚,𝑘𝑘∗∈𝑆𝐾 , ∀𝑔 =

1, … , 𝐺𝑠, ∀𝑚 ∈ 𝑆𝑠
𝑀, ∀𝑠 ∈ 𝑆𝐷𝑆, ∀𝑘 ∈ 𝑆𝐾.                           (57)
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3. Methodology

The study focused on the computational performance of 

alternative modelling approaches for MILP-formulated DR 

problems. Two groups of problems were prepared: one to 

compare different MLD control modelling approaches, and 

another to evaluate the effect of state variables. In each group, 

a given problem was recreated using each of the respective 

alternative modelling approaches. In the first group, the same 

problem was reproduced once for each of the multi-level 

discrete control approach (STD, SOS1, NEX-G and NEX-S). 

In the second group, each problem was recreated with and 

without state variables for select DSs. We considered three 

DSs in these problems, all of which were used individually. 

This required four scenarios per problem: one per DS plus 

one for the standard case, which used variables for all DSs. 

The problems were then solved and the solutions compared. 

3.1. Problems 

The problems created require scheduling six loads: three 

TSACs and three DSs. The TSACs selected sought to 

reproduce the operation cycles of a dishwasher (DW), a 

laundry machine (LM) and a tumble dryer (TD), whereas the 

DSs modelled correspond to an electric water heater (EWH), 

a refrigerator (REF) and an air-conditioned room (ACR). 

Each of the DSs modelled was assigned a different type of 

control: the EWH was set to use on-off control (s ∊ SDS,OO); 

the REF was set to use continuous control (s ∊ SDS,CC), as a 

way to represent on/off operation during less than one full 

time step; and, the heat pump (HP) that controls the ACR 

temperature was set to use MLD control (s ∊ SDS,MLD). 

Four sets of multi-level discrete control levels were 

considered for this study, each of which used individually. In 

addition to the five levels used in [23], which correspond to 

20%, 40%, 60%, 80% and 100%, we also considered: three 

levels, corresponding to 33%, 67% and 100%; four levels, 

corresponding to 25%, 50%, 75% and 100%; and ten levels, 

spread in 10% steps between 10% and 100%. With the NEX-

G and NEX-S approaches, we relied on the subsets of levels 

indicated in Table 1, which were determined with the method 

described in Appendix A. Note that the sets of three and ten 

levels do not require additional constraints to avoid additional 

levels, whereas the sets of four and five levels do. The latter 

was the only one used in the group of problems designed to 

study the effect of state variables. For the SOS1 approach, we 

defined the weights for each SOS1 as the power associated 

with each level divided by the maximum among them. 

Table 1. Sets of MLD control levels considered 

The problems included in each group were selected to test 

each modelling approach under different conditions. For the 

state space group, four test scenarios were considered: one 

where all DSs have state variables; and three others where the 

REF, ACR and EWH are respectively without them. For the 

MLD control group, sixteen scenarios were considered: four 

sets of levels times four approaches. For each test scenario, 

we considered four time step durations (5, 10, 15 and 30 

minutes), to consider the effect of problem size, and sixty four 

problem data combinations. These refer to multiple indoor 

heat gain, static electricity consumption and DHW mass flow 

rate profiles, shown in Figures 1-3. In total, 5120 problems 

were created, 1024 in the first group and 4096 in the second. 

3.2. Problem data 

The problems were defined using data collected from various 

sources. The primary source was [28], from which the data 

sourced included: the TSAC operation data and comfort 

periods; the demand rates and respective power levels; the 

electricity prices; the electricity generation profile; the static 

electricity consumption profile; the indoor heat gain profile, 

the outdoor temperature profile (for the ACR system); the 

indoor temperature profile (for the EWH and REF systems); 

and the mains water temperature profile. The exceptions 

concerned: the air-conditioned room's lumped capacity, 

which increased ten-fold relative to that of [28]; the heat 

pump performance data, obtained from [29]; the COP 

temperature dependence for the refrigerator, taken from [30]; 

the daily DHW volume (120 litres) and EWH temperature 

thresholds (xs,k
∆t,L = 55ºC, and  xs,k

∆t,H = 70ºC); the EWH heat 

loss coefficient (U = 1.08 W/m2K); the DHW profile, instead 

based on the RAND profile [31]; and, the objective function 

coefficients corresponding to the various penalties. For a 

clearer exposition, we describe these separately in Appendix 

B. Finally, the indoor heat gain, DHW mass flow rate and

electricity consumption profiles cited above were resampled

according to the time step duration and used without changes

and to generate the additional profiles, shown in Figures 1-3.

Figure 1. Normalised DHW mass flow rate profiles. 

|Ss
M| Original sets (Ss

M) Subsets (Ss
FREE) 

3 {33%,67%,100%} {33%,67%} 

4 {25%,50%,75%,100%} {25%,50%,75%} 

5 {20%,40%,60%,80%,100%} {20%,40%,60%} 

10 {10%,20%,30%,…,100%} {10%,20%,30%,40%} 

EAI Endorsed Transactions on 
Energy Web 

05 2021 - 07 2021 | Volume 8 | Issue 34 | e4



Modelling state spaces and discrete control using MILP: computational cost considerations for demand response 

7 

Figure 2. Static power demand profiles. 

Figure 3. Indoor heat gain profiles. 

3.3. Computational resources and settings 

Optimised solutions were produced using IBM's CPLEX 

12.8.0.0, which ran on a shared machine featuring an Intel 

Xeon Gold 6138 CPU and 320 GB of RAM. The solver was 

invoked from MATLAB using the official CPLEX class 

methods. The same solver settings were adopted for all 

problems and corresponded to the standard solver settings 

except the termination criteria which included optimality, a 

1% relative gap and a 2-hour computational budget. 

3.4. Figures of merit 

The analysis relied on the objective function (OF) and 

computation time results for each problem. In particular, we 

used the incumbent (IS) and best bound solutions (BBS) to 

each problem, in addition to the deterministic computation 

time (DCT) returned by CPLEX (in ticks), rather than the 

actual computation time (measured in seconds). The former 

is deemed a repeatable measure of optimisation effort, and 

less susceptible to external influences than the latter [32]. 

Additional metrics were computed using the main results, 

namely those defined in (58)-(59). In the equations, OFX
W 

refers to the objective function value obtained for approach X 

using the solution of type W (i.e., either IS or BBS), while 

∆OFX,Y
W refers to the absolute value of the difference between 

OFX
W and OFY

W. In turn, DCTX is the DCT for approach X, 

and ∆DCTX,Y is the difference between DCTX and DCTY. If 

∆DCTX,Y
ABS is positive, it means approach X performed worse 

than approach Y, which is counted as a DCT increase for 

approach X. If it is negative, it is counted as a decrease. 

∆𝑂𝐹𝑋,𝑌
𝑊 = |𝑂𝐹𝑋

𝑊 − 𝑂𝐹𝑌
𝑊|   (58) 

∆𝐷𝐶𝑇𝑋,𝑌
𝐴𝐵𝑆 = 𝐷𝐶𝑇𝑋 − 𝐷𝐶𝑇𝑌   (59) 

The DCT comparisons should ideally involve solutions 

that produce the same OF result. In practice, we cannot 

guarantee this except in very simple cases (i.e., by reaching 

optimality) due to the process of solving MILP problems. 

Consider two independent problems that reflect the same 

basic problem through different modelling approaches. The 

optimal OF result is the same but the MIP gap can be met 

without the ISs producing the same OF result, as illustrated in 

Figure 4. In the case shown, the MIP gap is met in problem 1 

with a more accurate BBS than in problem 2, which means a 

worse IS is tolerated in problem 1. Hence, reaching the same 

OF result implies optimality or chance. At the same time, OF 

differences will be lower than the MIP gap, provided it is met. 

Figure 4. OF results for independent optimisations of 
equivalent problems (z: OF axis; OPT: optimal OF value). 

The method this study relies on rests on a low MIP gap and 

a sufficiently large computational budget to narrow OF 

differences. On the other hand, one does not need to rely on 

these approximations for every comparison, namely if the 

best IS also produces the lowest DCT. In that case, the OF 

differences can only reinforce the original outcome, not alter 

it. We document the prevalence of each type of case and the 

maximum OF approximations needed, which should be under 

the target MIP gap provided it is met (see Figure 4). Finally, 

our analysis also takes the magnitude of DCT differences into 

account, as patterns of large DCT differences offer greater 

confidence than those of small DCT differences. 
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4. Results and Analysis

4.1. Overview 

The optimised solutions produced by CPLEX were analysed, 

though given the high number of problems, only a limited 

selection was inspected visually. One of these solutions 

(reference problem: STD formulation; reference profiles; 15-

minute time steps; 5 levels) can be seen in Figures 5-8, 

specifically its respective power demand and system states. 

Figure 5 shows a large share of the dynamic demand being 

scheduled for the low electricity price periods (between 2 and 

6 am of the first and second days). One can also observe in 

Figures 6-8 that the states are kept well within their upper and 

lower bounds and that minimal penalties were induced. It is 

therefore a sensible solution to the underlying DR problem. 

Figure 5. Electrical energy price and power demand vs 
planning period time, according to the optimised 
solution to the reference problem (STD formulation; 
reference profiles; 15-minute time steps; 5 levels). 

The analysis was primarily numerical in nature. It revealed 

that feasible solutions were obtained for all 5120 problems 

considered and that no optimal solutions were computed. 

Less than 1% of problems (113, to be exact) required more 

than 1 minute to be solved and the solutions to all but one 

problem met the relative MIP gap. The exception belongs to 

the MLD control problem set, for which the solution ensured 

a relative MIP gap of 1.08%. Otherwise, the relative MIP gap 

range was between 0.44% and 1%. In practical terms, the 

solutions obtained to equivalent problems were virtually 

identical as we will show in the next section. 

A total of 3840 DCT comparisons between a given 

approach and the STD one were enabled. This includes 768 

(256 per DS affected) to evaluate the effect of state variables 

and 3072 (1024 per non-STD approach) to compare MLD 

control modelling approaches. Out of these, 465 (61%) and 

1506 (49%) imply neglecting OF differences but the 

approximations are negligible (<0.021€) and consistent with 

the MIP gap. Table 2 summarises the optimisation results. 

Figure 6. Refrigerator temperature vs. planning period 
time, as per the solution to the reference problem.  

Figure 7. Air-conditioned room temperature vs. time, as 
per the optimised solution to the reference problem.  

Figure 8. EWH temperature vs. planning period time, 
as per the optimised solution to the reference problem. 
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Table 2. Summary of results per problem group (PG1: 
state spaces; PG2: MLD control approaches) 

4.2. Formulation equivalence 

The optimised solutions obtained were used to check for 

anything that might indicate the different approaches are not 

equivalent. We did not find evidence suggesting they are not, 

though we are aware that the approaches cannot be positively 

determined to be equivalent by comparing the solutions 

except if all proved to be optimal. Despite this, the BBS 

indicate the problems are at least very similar: the BBS OF 

differences between alternative approaches did not exceed 

0.02 €, for objective function values between -3.9 € and -4.4 

€ (see Table 2). The IS OF differences also proved to be in 

the same range and did not exceed 0.022€. Additionally, none 

of the incumbent solutions corresponding to alternative 

approaches led to better OF results than the least favourable 

OF result possible with the best bound solutions for the same 

problem, which means they do not contradict each other. 

These results strongly suggest the different approaches can be 

regarded as equivalent in reproducing a given problem. 

4.3. Effect of removing state variables 

Removing DS state variables from the models increased the 

computational cost of producing optimised solutions in most 

problems examined. Out of 768 comparisons, only 125 (16%) 

revealed improved computational performances by removing 

SVs. That figure breaks down into 33 (13%), 3 (1%) and 89 

(35%) occurrences for scenarios involving the removal of 

state variables from the refrigerator (REF), air-conditioned 

room (ACR) and electric water heater (EWH) models, 

respectively. It is also possible to discern that, in general, the 

time step duration correlates with an increased number of 

computation time decreases (inverse correlation with the 

number of intervals). At the same time, this effect did not 

exceed 23% of cases (out of 64 cases) for any two time step 

durations, even we increased the time step duration six-fold. 

We provide the absolute frequency of the computation time 

decreases, in total and by time step duration, in Table 3. 

Table 3. Share of problems in which the removal of 
state variables in select DSs improved computational 
performances, in total and by time step duration. 

Table 4. Average, minimum (dark shade) and maximum 
(light shade) DCT differences due to the removal of SVs 
for select DSs, by DS and time step duration, as a share 
(%) of the average DCT for the cases with all SVs. 

Figure 9. DCT (y-axis) for each scenario (z-axis) on the 
use of SVs, for each basic problem (x-axis) [problems # 
1-64, 65-128, 129-192, 193-256 are those for time step
durations of 5, 10, 15 and 30 minutes, respectively].

Beyond the outcome of the comparisons, DCT differences 

were also evaluated quantitatively. In particular, we found 

DCT differences to vary by several orders of magnitude, for 

both DCT increases and decreases, as indicated in Table 4. At 

the same time, the maxima for any given time step duration 

are higher than the minima in absolute value. Indeed, average 

DCT differences for a given DS and time step duration were 

generally positive and highest if the comparison concerned 

the ACR system (average variations between 263-1,551%). 

The results for this system were the only ones to indicate an 

inverse correlation between the average DCT differences and 

PG1 PG2 

Number of problems 1024 4096 

- computation budget exceeded 0 1 

- computation time > 1 minute 64 49 

Minimum OF result -4.37 -4.37

Maximum OF result -3.89 -3.87

Minimum relative MIP gap 0.46% 0.44% 

Maximum relative MIP gap 1% 1.08% 

Number of comparisons enabled 
768 3072 

against the standard approach 

Maximum ∆OFX,Y
BBS 0.015 0.020 

Maximum ∆OFX,Y
IS 0.022 0.021 

Number of approx. required 465 1506 

Maximum approx. (∆OFX,Y
IS) 0.018 0.021 

DS 
affected 

Time step duration [min] 
Total 

5 10 15 30 

REF 0% 11% 23% 17% 13% (33/256) 

ACR 0% 0% 2% 3% 1% (3/256) 

EWH 30% 39% 36% 34% 35% (89/256) 

DS 
Time step duration [min] 

all 5 10 15 30 all 

all - -110 -223 -4,609 -136 - 

REF -3,995 338 78 -40 62 1,059 

ACR -4,577 1,551 550 358 263 15,839 

EWH -4,609 47 31 254 25 19,871 

all - 3,866 931 19,871 2,914 - 
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the time step duration. This correlation was also found in the 

results for other systems though only if one time step duration 

is excluded (15 min.). Figure 9 illustrates this general trend. 

4.4. MLD control modelling approaches 

The comparisons undertaken showed that the STD approach 

was outperformed by every other one in at least 47% of cases. 

Overall, the NEX-G and NEX-S approaches performed best, 

reaching shorter DCTs than the STD one in 59% and 58% of 

cases, whereas the SOS1 approach only did so in 47%. The 

results proved to be similar for individual time step durations 

and sets of levels: the NEX-G, NEX-S and SOS1 approaches 

outperformed the STD one in 50-63%, 51-64% and 44-52% 

of cases. Notwithstanding this general trend, the NEX-G and 

NEX-S approaches performed best with the sets of 3 and 10 

levels and with a time step duration of 15 minutes. Tables 5 

and 6 summarise these results by approach. 

Table 5. Share of problems for which the SOS1, NEX-
G and NEX-S approaches outperformed the standard 
approach, in total and by time step duration. 

Table 6. Share of problems for which the SOS1, NEX-
G and NEX-S approaches outperformed the standard 
approach, in total and by number of levels. 

The analysis also considered every possible comparison, 

which we summarise in Figure 10. These comparisons show 

each approach was able to outperform all others in at least 

14% of cases. Among the various approaches, the NEX-G 

approach outperformed the others (1st place) in more cases 

than any other (38% of cases) and placed last (4th) in fewer 

cases than any other too (9%). It also placed first and second 

in more cases than any other approach (67%). The NEX-S 

approach was second-best in this regard (51%). Moreover, 

while these two approaches generally performed about the 

same, their advantage was more pronounced with a time step 

of 15 minutes and also with the sets of 3 and 10 levels. With 

these sets, the NEX-G approach performed best in 49-53% of 

cases and did not finish last, whereas the NEX-S one never 

finished first but performed comparably. We illustrate the 

differences for sets of 5 and 10 levels in Figures 11-12. 

Figure 10. DCT ranking (1st, 2nd, 3rd and 4th places) of 
the MLD control approaches, for all problems 

Figure 11. DCT ranking of the MLD control modelling 
approaches, for problems defined by sets of 5 levels 

Figure 12. DCT ranking of the MLD control modelling 
approaches, for problems defined by sets of 10 levels 

Approach 
Time step duration [min] 

Total 
5 10 15 30 

SOS1 48% 48% 46% 46% 47% (483/1024) 

NEX-G 51% 61% 64% 59% 59% (600/1024) 

NEX-S 50% 61% 63% 57% 58% (592/1024) 

Approach 
Number of levels 

Total 
3 4 5 10 

SOS1 45% 52% 47% 44% 47% (483/1024) 

NEX-G 63% 55% 54% 63% 59% (600/1024) 

NEX-S 63% 55% 51% 63% 58% (592/1024) 
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On the other hand, the computational effort required by 

each approach was generally in the same range, as can be 

sensed from Figure 13. In comparison, the DCT differences 

induced by the use of SVs were more pronounced (Figure 9). 

Figure 13 also makes clear that the time step duration had an 

impact on the computational effort required with any of the 

approaches, despite a few outliers with one specific time step 

duration (15 minutes). As a result, the average DCT increases 

among the cases for the same time step duration were between 

37% and 478% of the respective average DCT for the STD 

approach. The average DCT decreases were between 37% 

and 99%. The most significant average decreases (89-99%) 

concerned the aforementioned time step duration, whose 

exclusion would place the limit at 54%, that is, a reduction of 

slightly more than half of the average DCT. Given the share 

of DCT increases and decreases, the average DCT differences 

(which account for both types of occurrences) were generally 

much lower in absolute value, as indicated in Table 8.  

Table 8. Average, minimum (dark shade) and maximum 
(light shade) DCT differences for comparisons between 
non-STD and STD approaches, by approach and time 
step duration, as a share (%) of the average STD DCT. 

Figure 13. DCT (y-axis) for each MLD control approach 
(z-axis), for each basic problem (x-axis) [problems # 1-
256, 257-512, 513-768, 769-1024 correspond to time 
step durations of 5, 10, 15 and 30 minutes]. 

† Note that the REF system has one additional input signal mode over the 

EWH system, but removing the associated SVs resulted in both having the 

Table 7. Summary of comparisons by outcome: share 
of problems (%) and average DCT difference in relation 
to the average DCT for the same time step duration (%). 

5. Discussion

5.1. Modelling state spaces 

Upon using the latest results to compare the two approaches 

to model state spaces, we confirmed previous findings, 

identified new trends and obtained the necessary variation to 

attempt to explain causality [23]. Whereas previous results 

chiefly indicated large and nearly consistent DCT decreases 

by removing SVs, the new results also indicate that the 

absolute frequency and magnitude of the DCT decreases vary 

significantly with the DS affected. Case in point, the ACR 

system had the same number of SVs removed as the REF and 

EWH systems, yet only 3 DCT decreases were observed, as 

opposed to 33 and 89, respectively, and the normalised 

average DCT differences were between 6-8 times higher. 

A possible cause for these results concerns the number of 

input signal variables whose respective problem matrix 

coefficients change due to the removal of SVs. According to 

(53)-(57), removing SVs causes an increase in the number of 

nonzero problem matrix coefficients associated with the input 

signal variables. This led to an increase in the number of 

nonzero problem matrix coefficients in the problems used, 

which we quantify in Table 9. That is, more coefficients 

associated with input signal variables were added than those 

removed for being linked to SVs. This increase implies more 

algebraic operations are needed (for each row in which SVs 

were previously used other than in state equations, if the 

corresponding input signal variables were not already being 

used), and could justify the trend toward DCT increases. The 

number of additional nonzero coefficients also provides a 

plausible explanation for the discrepancy between the results 

for the removal of the ACR’s SVs and those of the EWH and 

REF DSs: the number of input signal modes (|Ss
M|) is the only 

factor differentiating the number of input signal variables 

between DSs, and is higher for the ACR (5 modes) than for 

the REF (2 modes) and EWH (1 mode). Accordingly, the 

increase in the number of nonzero coefficients in relation to 

the standard approach caused by removing the ACR’s SVs 

was higher than those of other DSs (400-1,312% vs 76-

262%), for any and all time step durations†. Hence, the 

number of input signal modes is an important factor. 

same number of (additional) nonzero coefficients. This is so because the 

first REF mode was set up not to have a direct effect on the respective SVs. 

MLD Time step duration [min] 

appro. all 5 10 15 30 all 

All - -199 -279 -5,754 -446 - 

SOS1 -5,754 6 -2 211 16 22,056 

NEX-G -5,220 5 -16 -19 -5 4,359 

NEX-S -5,220 8 -17 5 -2 3,251 

All - 368 245 22,056 1,077 - 

Approach 
DCT increase DCT decrease 

Average Share Average Share 

SOS1 45-478% 53% 37-99% 47% 

NEX-G 37-124% 41% 37-99% 59% 

NEX-S 40-163% 42% 39-89% 58% 
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Table 9. Relative variation of the number of nonzero 
problem matrix coefficients caused by the removal of 
state variables for select DSs, by time step duration 
[variation relative to the same time step duration]. 

We can conclude that removing SVs implies a trade-off 

between having smaller problem matrices and having more 

nonzero problem matrix coefficients. The former aspect can 

contribute to improved computational performances whereas 

the latter can require more effort per iteration. According to 

the results obtained, the latter effect tends to dominate, since 

more computational effort was required in the majority of 

cases, even in those with only one input signal mode (i.e., the 

lowest number of additional nonzero coefficients per SV 

removed). The conclusion to draw from these results seems 

to be that, though inessential, state variables can generally 

contribute to keep computational burden down.  

Among the cases we did not examine is that of multi-node 

dynamic systems, which require more SVs (|SK| times the 

number of nodes). Hence, there might be a number of nodes 

beyond which the removal of SVs improves performances. 

5.2. Selecting an MLD control approach 

The comparisons involving the different MLD control 

approaches did not produce a clear frontrunner. Overall, the 

NEX-G approach appears to be the best option for the entire 

set of problems considered but each the three other 

approaches was able to outperform it in at least 14% of the 

cases. It was also observed that the NEX-G and NEX-S 

approaches were generally unable to achieve DCT reductions 

equivalent to more than half of the average DCT for the STD 

approach. Those approaches also led to average increases 

equivalent to at least 37% relative to the same reference. 

Accordingly, none of the approaches appears to be able to 

provide consistent and significant performance advantages. 

The results also demonstrate that the NEX-G and NEX-S 

approaches tended to perform best with specific sets of levels, 

namely with the sets of 3 and 10 levels. These sets not only 

enable reducing the number of binary variables in relation to 

the STD approach but also dispense additional constraints. 

The latter is not with case with the sets of 4 and 5 levels. At 

the same time, the sets of 3 and 10 levels do not appear to 

have led to significantly different results (see Table 6) despite 

their differences. We refer to the different impacts on the 

number of binary variables (-33% vs. -60%, respectively) and 

on the number of redundant levels (none vs. multiple, 

respectively). Hence, the need for additional constraints 

appears to be the factor with the most impact on the NEX-G 

and NEX-S approaches. Future work should consider 

exploring these approaches with more sets of levels, different 

solvers, and by examining their formulation strength [33]. 

6. Conclusions

This study sought to compare the computational performance 

of different MILP modelling approaches for demand response 

problems involving dynamic systems. We compared the 

effect of modelling state spaces with and without continuous 

state decision variables. We also compared four different 

approaches to model full- and part-load operation of dynamic 

systems using multi-level discrete (MLD) control: one 

relying on the standard MILP formulation using individual 

binary variables for each level and time interval, only one of 

which can be positive per time interval; an identical one 

coupled with special ordered sets of type 1 (SOS1); and two 

new approaches (NEX-G and NEX-S) relying on the 

possibility of representing a given set of levels using 

combinations of a subset of those levels. Two groups of 

problems were created to study the two components of this 

study. Optimised solutions were computed using a state-of-

the-art MILP solver and their computation times compared. 

We found that each MLD control approach was able to 

outperform all others in at least 14% of the problems. Overall, 

the NEX-G approach performed best, having secured the best 

and the worst performances in respectively more and fewer 

problems than any other. Along with the NEX-S approach, it 

also outperformed the standard approach in about 60% of 

cases. This advantage was more significant with the problems 

that enable these approaches to use fewer binary variables 

without additional constraints. Therefore, these approaches 

appear to be better options if those conditions are met. At the 

same time, the computational effort required with any of the 

approaches was generally in the same range. 

Our study also found that removing the state variables 

associated with a given dynamic system generally led to 

computational cost increases. In particular, about 84% of 

cases evaluated required more computational effort to solve 

without those variables. The increase itself was found to 

correlate with the number of input signal variables that define 

system states. We attribute this outcome to an increase in the 

number of nonzero problem matrix coefficients. We conclude 

that, in general, the best approach is to use state variables. 

Future work could consider evaluating the effect of state 

variables on multi-node dynamic system models. It might 

also prove interesting to compare the different MLD control 

approaches using more sets of levels and other solvers. 

Nomenclature 

Acronyms 

ACR Air-conditioned room 

BBS Best bound solution 

DCT Deterministic computation time 

DR Demand response 

DHW Domestic hot water  

DS Dynamic system 

DW Dishwasher 

EWH Electric water heater 

DS 
Time step duration [min] 

5 10 15 30 

REF 262% 181% 134% 76% 

ACR 1,321% 919% 683% 400% 

EWH 262% 181% 134% 76% 
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HP Heat pump 

IS Incumbent solution 

MI(L)P Mixed-integer (linear) programming 

MLD Multi-level discrete 

LM Laundry machine 

OF Objective function 

PP Planning period 

REF Refrigerator 

SOS1 Special ordered set of type 1 

STD Standard 

TD Tumble dryer 

TSAC Time-shiftable appliance cycle 

Sets 

SK the set of planning period time interval indexes 

STSAC the set of system indexes corresponding to time-

shiftable appliance cycles 

SDS the set of system indexes corresponding to DSs 

SPEN,∆t,H the set of system indexes corresponding to DSs 

capable of inducing penalties due to high states 

SPEN,∆t,L the set of system indexes corresponding to DSs 

capable of inducing penalties due to low states 

SPEN,PP,H the set of system indexes corresponding to DSs 

capable of inducing penalties due to state increases 

relative to the initial condition by the end of the PP 

SPEN,PP,L the set of system indexes corresponding to DSs 

capable of inducing penalties due to state decreases 

relative to the initial condition by the end of the PP 

SDS,OO the set of system indexes corresponding to DSs 

using on/off control 

SDS,MLD the set of system indexes corresponding to DSs 

using multi-level discrete control 

SDS,CC the set of system indexes corresponding to DSs 

using continuous control 

SIMP the set of system indexes corresponding to those 

capable of importing electricity from the grid 

SEXP the set of system indexes corresponding to those 

capable of exporting electricity to the grid 

Ss
M the set of mode indexes corresponding to the modes 

of the DS identified by the system index s 

Ss
M,IMP the set of mode indexes corresponding to the modes 

of system s with impact on electricity imports 

Ss
M,EXP the set of mode indexes corresponding to the modes 

of system s with impact on electricity exports 

Ss
M,RED  the set of redundant mode indexes for the system s 

Ss,v
M,1 the set of mode indexes for system s that equal one 

in the binary combination v 

Ss,v
M,0 the set of mode indexes for system s that equal 

nought in the binary combination v 

Ss
M,FREE the set of mode indexes for system s that can be 

combined with one another 

Ss
M,MEX the set of mode indexes for system s that are 

mutually exclusive 

Variables 

Pk
IMP mean power drawn from the grid during interval k 

Pk
EXP mean power fed to the grid during interval k 

yp,p+1
U Boolean flag indicating if the peak power demand 

for the demand rate p was exceeded during the PP 

Ps,k
EXP mean power exported by system s during interval k 

Ps,k
IMP mean power imported by system s during interval k 

PIMP,MAX  maximum mean power drawn from the grid during 

the PP 

PEXP,MAX maximum mean power fed to the grid during the PP 

ws,r,k Boolean flag indicating if stage r of the system s is 

to be scheduled for time interval k 

xs state vector for system s 

xs,k state variable for system s at the end of interval k 

∆xs
PP,L  state decrease by the end of the PP relative to the 

initial condition, if any, for system s 

∆xs
PP,H state increase by the end of the PP relative to the 

initial condition, if any, for system s 

∆xs,k
∆t,H state increase relative to the upper state threshold 

(xs,k
∆t,H) for system s during interval k 

∆xs,k
∆t,L  state decrease relative to the lower state threshold 

(xs,k
∆t,L) for system s during interval k 

us,m input signal vector for mode m and system s 

us,m,k input signal variable for mode m, system s and time 

interval k 
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Problem data 

Pk
STATIC static net power flow to/from the grid during interval 

k (positive if power is drawn from the grid) 

pk
IMP unit price of electrical energy drawn from the grid 

during interval k 

pk
EXP unit price of electrical energy fed to the grid during 

interval k 

Pp
U maximum power limit for imports permitted by the 

demand rate level p 

λp
U ratio between maximum power limits for exports 

and imports permitted by the demand rate p 

cp,p+1
U cost of exceeding the power limit for demand rate p 

cs
PP,H penalty for exceeding the initial condition of system 

s by one unit by the end of the planning period 

cs
PP,L penalty for falling short of the initial condition of 

system s by one unit by the end of the PP 

cs,k
∆t,H penalty for violating the upper state threshold 

(xs,k
∆t,H) for system s by one unit during interval k 

cs,k
∆t,L penalty for violating the lower state threshold 

(xs,k
∆t,L) for system s by one unit during interval k 

xs,k
MAX upper state bound for system s during interval k 

xs,k
MIN lower state bound for system s during interval k 

xs,k
∆t,H upper state threshold for system s during interval k 

xs,k
∆t,L lower state threshold for system s during interval k 

Ts
K,i initial interval for the comfort period of system s 

Ts
K,f final interval for the comfort period of system s 

 fs,r mean power demand for the stage r of system s 

ds number of stages for system s 

xs,0 initial state for system s 

Ps,m,k mean power associated with mode m of system s 

during time interval k   

∆t time step duration 

Vs number of binary combinations of MLD control 

levels (modes) for system s that are to be excluded 

As
DS coefficient matrix defining the contributions of state 

variables within the state equations for the DS s  

Bs,m
DS coefficient matrix defining the contributions of us,m 

within the state equations for the DS s 

bs
DS (right-hand side) coefficient vector within the state 

equations for DS s  

as,k,m row vector defining the contribution of mode m for 

the state of system s during the time interval k 

bs,k independent term for the state of system s during the 

time interval k 

cg,s row vector associated with the effect of state 

variables for system s on the generic constraint g  

dg,s,m row vector associated with the effect of input signals 

for mode m and system s within generic constraint g 

dependent on the state variables for system s 

eg,s (right-hand side) coefficient of generic constraint g 

dependent on state variables for the system s 

d’g,s,m modified dg,s,m row vector accounting for the effect 

of state variables on the constraint g 

d’g,s,m,k coefficient at column k of the vector d’g,s,m 

e’g,s modified eg,s coefficient accounting for the effect of 

state variables on the constraint g 

Gs number of generic constraints dependent on the state 

variables for system s 

Figures of merit 

OFX
W OF value obtained for modelling approach X using 

the solution of type W (i.e., either IS or BBS). 

∆𝑂𝐹𝑋,𝑌
𝑊   absolute value of the difference between OFX

W and

OFY
W 

DCTX  DCT for approach X 

∆𝐷𝐶𝑇𝑋,𝑌
𝐴𝐵𝑆  absolute difference between DCTX and DCTY

Appendix A. Minimising the number of 
levels needed to reproduce a superset 

Two of the multi-level discrete control approaches considered 

(NEX-G and NEX-S) take advantage of the possibility to 

reproduce a given set of otherwise exclusive levels through 

combinations of a subset of those levels. To minimise the 

number of elements in the subset, consider the following 

MILP model, (A.1)-(A.7), where M is the set identifying the 

levels in the original set. In turn, am is the positive level 

associated with index m (∀m∊M), um indicates whether the 
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level m (∀m∊M) needs to exist in the subset, ymn indicates 

whether the level m (∀m∊M) is needed to reproduce the level 

n (∀n∊M), and wm indicates the same as um but is used to force 

the solver to favour low levels, should there be options (since 

favouring low levels tends to minimise the number of 

constraints needed to avoid combinations producing levels 

not found in the original set). To ensure this aspect of the 

model works as intended, the coefficients cm (∀m∊M) should 

be selected in accordance with (A.8), so as not to interfere 

with the main goal of minimising the number of levels 

needed. Similarly, the MIP gap termination criteria should 

take this into account, namely by being safely set below the 

minimum cm. Table A.1 summarises the model’s results for a 

selection of supersets of equally-spaced levels between 

nought and one, which are of special interest for this study.  

min ∑ (𝑢𝑚 + 𝑐𝑚𝑤𝑚)𝑚∈𝑀 .  (A.1) 

𝑢𝑚 ≥ 𝑦𝑚𝑛 , ∀𝑚, 𝑛 ∈ 𝑀.  (A.2) 

∑ 𝑎𝑚𝑦𝑚𝑛𝑚∈𝑀 = 𝑎𝑛 , ∀𝑛 ∈ 𝑀.  (A.3) 

𝑢𝑚 ≤ 𝑤𝑚, ∀𝑚 ∈ 𝑀.        (A.4) 

𝑢𝑚 ∈ {0,1}, ∀𝑚 ∈ 𝑀.       (A.5) 

𝑦𝑚𝑛 ∈ {0,1}, ∀𝑚, 𝑛 ∈ 𝑀.  (A.6) 

𝑤𝑚 ∈ {0,1}, ∀𝑚 ∈ 𝑀.     (A.7) 

𝑐𝑚 = 𝑎𝑚(∑ 𝑎𝑛𝑛∈𝑀 )−1, ∀𝑚 ∈ 𝑀.  (A.8) 

Table A.1. Minimum number of levels needed to 
reproduce sets of equally spaced levels from 0 to 1 

Appendix B. Functions used to define 
objective function penalties  

The mathematical model used in this study is prepared to 

penalise two types of occurrences. One concerns violations of 

state thresholds, and the other, state variations relative to 

initial conditions. To define the respective objective function 

coefficients, we relied on a specific set of functions, (B.1)-

(B.8), which we describe in this section. 

Penalties caused by state variations relative to initial 

conditions were defined using the coefficients given by (B.1)-

(B.4). These were defined using the following rationale: the 

penalty for a given state variation must be not be lower than 

the cost of avoiding it using the available means. Otherwise, 

those costs would be transferred to the next PP. This means 

the coefficient for a given variation depends on the existence 

of actuators capable of opposing that variation. If there is no 

such actuator (e.g., an exceedingly hot EWH), the coefficient 

is nought: (B.1) and (B.4). If there is (e.g., an underheated 

EWH), the coefficient is greater than or equal to cost of 

correcting a variation equivalent to one state unit (e.g., a 1ºC 

temperature difference) by the end of the PP, which we ensure 

using (B.2) and (B.3). These functions presuppose there is 

only one type of actuator per system and all of them imply 

energy consumption. Therefore, SDS,UW and SDS,DW are 

mutually-exclusive subsets of SDS identifying the systems 

with actuators capable of influencing states in an upward and 

downward sense, respectively. Additionally: xs
PP,SS is the DS 

state for system s under steady-state conditions while using 

its actuator at rated capacity; Ps
R is the rated power of the 

actuator for system s; τs is the time constant for system s. 

𝑐𝑠
𝑃𝑃.𝐻 = 0, ∀𝑠 ∈ 𝑆𝐷𝑆,𝑈𝑊.   (B.1) 

𝑐𝑠
𝑃𝑃.𝐿 = −2 (max

𝑘∈𝑆𝐾
𝑝𝑘

𝐼𝑀𝑃) (𝑥𝑠
𝑃𝑃,𝑆𝑆 − 𝑥𝑠,0)

−1
𝑃𝑠

𝑅𝜏𝑠, ∀𝑠 ∈

𝑆𝐷𝑆,𝑈𝑊.   (B.2) 

𝑐𝑠
𝑃𝑃.𝐻 = −2 (max

𝑘∈𝑆𝐾
𝑝𝑘

𝐼𝑀𝑃) (𝑥𝑠,0 − 𝑥𝑠
𝑃𝑃,𝑆𝑆)

−1
𝑃𝑠

𝑅𝜏𝑠, ∀𝑠 ∈

𝑆𝐷𝑆,𝐷𝑊.   (B.3) 

𝑐𝑠
𝑃𝑃.𝐿 = 0, ∀𝑠 ∈ 𝑆𝐷𝑆,𝐷𝑊.  (B.4) 

As for the penalties for violations of state thresholds, the 

respective coefficients were defined using (B.5)-(B.8). The 

coefficients were also defined in accordance with the type of 

actuator available and the type of penalty. For violations 

caused by excessive use of the actuator during interval k, the 

functions (B.5) and (B.8) ensure that the maximum penalty 

exceeds the maximum savings enabled by price differences if 

the actuator had to be used during one time interval. This 

requires using the maximum price difference. For violations 

caused by insufficient actuator use during interval k, the 

functions (B.6) and (B.7) ensure that the maximum penalty is 

greater than or equal to the cost of correcting the violation 

using the actuator during that time interval. In the functions, 

xs,k
∆t,SS is the DS state for system s under steady-state 

conditions while using its actuator at rated capacity in 

accordance with conditions available during interval k. 

𝑐𝑠,𝑘
∆𝑡,𝐻 = − (max

𝑘∈𝑆𝐾
𝑝𝑘

𝐼𝑀𝑃 − min
𝑘∈𝑆𝐾

𝑝𝑘
𝐼𝑀𝑃) (𝑥𝑠,𝑘

𝑀𝐴𝑋 − 𝑥𝑠,𝑘
∆𝑡,𝐻)

−1
∙

𝑃𝑠
𝑅∆𝑡, ∀𝑠 ∈ 𝑆𝐷𝑆,𝑈𝑊.  (B.5) 

𝑐𝑠,𝑘
∆𝑡,𝐿 = −𝑝𝑘

𝐼𝑀𝑃 ∙ (𝑥𝑠,𝑘
∆𝑡,𝑆𝑆 − 𝑥𝑠,𝑘

∆𝑡,𝐿)
−1

𝑃𝑠
𝑅𝜏𝑠, ∀𝑠 ∈ 𝑆𝐷𝑆,𝑈𝑊.   (B.6)

𝑐𝑠,𝑘
∆𝑡,𝐻 = −𝑝𝑘

𝐼𝑀𝑃 ∙ (𝑥𝑠,𝑘
∆𝑡,𝐻 − 𝑥𝑠,𝑘

∆𝑡,𝑆𝑆)
−1

𝑃𝑠
𝑅𝜏𝑠, ∀𝑠 ∈ 𝑆𝐷𝑆,𝐷𝑊.  (B.7)

𝑐𝑠,𝑘
∆𝑡,𝐿 = − (max

𝑘∈𝑆𝐾
𝑝𝑘

𝐼𝑀𝑃 − min
𝑘∈𝑆𝐾

𝑝𝑘
𝐼𝑀𝑃) (𝑥𝑠,𝑘

∆𝑡,𝐿 − 𝑥𝑠,𝑘
𝑀𝐼𝑁)

−1
∙

𝑃𝑠
𝑅∆𝑡, ∀𝑠 ∈ 𝑆𝐷𝑆,𝐷𝑊.  (B.8) 

Number of 

elements 
Number of 

combinations 

to exclude 

Relative 

reduction 

[%] Superset Subset 

2 2 1 0% 

3 2 0 33% 

4 3 2 25% 

5 3 1 40% 

6 3 0 50% 

7 3 0 57% 

8 4 2 50% 

9 4 0 56% 

10 4 0 60% 

20 5 0 75% 
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