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Abstract 
Internet-based applications predominantly use the existing method of acquiring the computing resources remotely from the 
cloud data centers. This method of computation is not applicable in future since it is expected that the latencies in 
communication tend to expand largely due to the internet connectivity among billions of devices. This enormous 
expansion in latencies induces an adverse impact in the Quality of Service (QoS) and Quality of Experience (QoE) 
parameters.  Edge computing is an imminent computing methodology that deploys the decentralized resources present at 
the edge of the network to make data processing within the proximity of user devices like smartphones, sensors or 
wearables. This approach is contrary to the conventional methods of utilizing centralized and distant cloud data centers. 
Managing the resources becomes a major challenge to be approached due to the diverse and rapidly evolving resources in 
comparison with the cloud. The lucrative role of Internet of Things (IoT) and Edge, and the challenges posed by the 
dynamic technologies are presented. This paper presents a survey of the research publications from edge computing from 
2013 to 2020, covering the various architectures, frameworks, and the fundamental algorithms involved in resource 
management in edge computing. 
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1. Introduction

An appropriate medium for information exchange is 
facilitated by the growth of Internet-based wireless 
communication methodologies that has brought more 
convenience in people’s regular life. The worldwide range 
of mobile terminals is expanding to about 2.8 billion since 
2019. With recent advancements in the field of data science 
and artificial intelligence, the usage of lightweight, smart 
devices has attained a massive growth. The interconnectivity 
among devices, known as things, has paved the way for the 
evolution of Internet-based wireless communication 
networks [1]. It also indicates the arrival of the Internet of 
Things (IoT) era bundled with huge sensing components, 
mobile devices and actuators utilized at the network edge. 

For every second, these interconnected devices generate a 
substantial volume of data. 

The traditional methods for storage and computing of 
data are not suitable for the IoT scenario. So, a decentralized 
big data computation model is required. Cloud computing 
enables numerous services for examining and storing of data 
so that the end users can avail the maximum benefit of an 
IoT infrastructure. Furthermore, cloud computing is facing 
several challenges in real-time applications.  A recent write-
up from Cisco states that by 2021 the worldwide monthly 
mobile data traffic will reach up to approximate 49 exabytes 
and the consolidated yearly growth rate would be 47% from 
2016 to 2021 [2]. There are certain computing tasks in need 
of timely and context-specific computing like augmented 
reality, virtual reality and industrial control in which data is 
generated in enormous amounts by the devices. It results in 
the computation of huge data traffic that has a key role in the 
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upcoming Internet-based wireless communication systems. 
The two performance indices, viz increased data rates and 
decreased delivery latency are the important deciding factors 
in wireless communication networks based on the Internet. 
It indicates that high powered processing devices requires 
the execution of heavy traffic in data, and shifting of data 
traffic with transmission links having high data rate for the 
wireless communication networks that rely on the Internet. 
With a view from wireless networking systems, ultra-dense 
networks, heavy multiple-input multiple-output (MIMO), 
high-frequency communications is considered as hopeful 
means in satisfying the expanding needs of upcoming 
wireless networking including 5G wireless systems. 
However, several computing architectures and standards are 
innovated to enhance the robustness of traffic handing in 
data from the Internet’s perspective. There arises essentiality 
for dramatic modifications in computer networking, 
computation, application and storage modes to satisfy the 
growing needs of the information society. Edge computing 
for IoT applications requires decentralised cloud and low 
latency computing, surmounting resource limitations of 
front-end devices, smart computation techniques, dealing 
with data explosion and network traffic and sustainable 
energy consumption for enhance the quality of services in 
terms of computing and communication specifically for real 
time application. 

1.1. Merits and demerits of edge computing 

To mitigate the commonly encountered problems in cloud 
computing, such as high latencies with poor bandwidth 
utilization, an auxiliary computing model is devised that 
connects the sensors and user devices with computing 
resources for data computation [3, 4]. The setup decreases 
the volume of data transferred to the cloud, thereby 
lessening the latencies in communication. The present 
research trend is towards localizing few processing 
resources present in huge data centers by sharing the 
network edge nearer to end-users and sensors. These 
resources are in either of these two forms: (i) exclusive 
“micro” data centers situated within public/private 
infrastructure conveniently and safely or (ii) Internet nodes 
having intensified computing power in routers, switches and 
gateways. A computing model utilizing the resources 
present in the network’s edge is denoted as “Edge 
computing” [5, 6].  The architecture of edge computing is 
depicted in Figure 1. 

When the edge resources and the cloud are utilized 
altogether, it is mentioned as “fog computing” [7, 8, 9]. 
Resources at the edge differ from cloud resources in the 
following ways: (i) Because of constrained resources and a 
restricted power budget in edge devices. (ii) Heterogeneity 
among the processors with varying architectures, and (iii) 
dynamic workload balancing tends to change often and in 
applications battling for the restricted resources. 
Accomplishment of IoT use cases like smart city and smart 
agriculture is challengeable, specifically in managing the 

resources of fog and edge computing. The salient features of 
edge and cloud computing are depicted in Figure 2. 

Figure 1. Architecture of Edge computing 

The objective of this work is to present a survey that is 
focused on the fundamental architectures, underlying 
infrastructure and the algorithms supporting management of 
resources in fog/edge computing. This article is arranged as 
follows: Resource management is discussed in Section 2. 
Architectures, namely the architectures of data flow, control, 
and tenancy. The infrastructure used for resource 
management, such as the hardware, device software, and 
middle ware used, is presented in Section 3. The underlying 
algorithms, such as discovery, bench marking, load, are 
illustrated in section 4. Placement, and balancing. Section 5 
proposes and ends the article with possible directions. 

2. Computational standards

Several computational standards were put forth to deliver 
resource-effective services on a timely basis to approach the 
massive data computation in recent years. This section deals 
with the various computational standards developed in the 
past few years, such as Manifest Computing (MC), fog 
computing, Edge Computing, and cloudlet.   

Figure 2. Salient Features of Edge and Cloud 
Computing 

These are confronted with certain common problems with 
regard to handling and managing a large number of 
computations, networking and storing tasks caused by 
heterogeneous devices. They also possess multiple features 
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because of indigenous driving forces, like persuasive 
computation for MC and IoT applications in fog computing. 
To alleviate the issues relating to resource management, 
several computational standards are required to conceal the 
heterogeneous nature of various devices. 

2.1. Manifest Computing 

It was developed to split the operating systems and software, 
from the diversified hardware in IoT devices [10]. It 
explicitly assists the users by hiding the details of service 
provisioning [11]. MC qualifies the devices to select on-
demand services through networks, without concerning the 
service provisioning details of promoting and managing the 
software. MC has the following characteristics:  

(1) In a client-server model, MC combines the distributed
devices across the network as a single system based on some 
logic. The system works smartly by delivering services 
following device capability and network constraints. The 
server side is entirely dedicated to managing the resources in 
a centralized manner to provide robust services to users 
within the network.  

(2) MC facilitates the logical separation of software from
the hardware by loading and executing of on-demand 
service in diversified client devices. With the help of high-
speed networks, dynamic execution of cross-platform 
services from servers in remote locations is qualified in 
client devices. 

(3) For utilizing the entire computational resources present
in the client devices, MC capacitates the client devices in 
acquiring on-demand remote services from the server-side. 
Block-streaming way is used to run them locally. Block-
streaming execution is the process of loading and executing 
the required part of codes alone that is related to the user-
specified service instead of loading the entire software on 
client devices.  As a result, energy efficiency and service 
provisioning delay can be upgraded to a considerable extent. 

Recent acknowledgement of MC benefits in the field of 
IoT enforced a progressive solution to control a large 
volume of software for highly diversified hardware 
infrastructure, extending from huge expensive servers, 
laptops, and smartphones to low-end sensors. 

2.2. Fog Computing 

In 2012, Fog computing [12] was conceptualized by Cisco 
that resembles the mobile edge computing concept in some 
features. Fog is an unique network processing framework 
that imparts computing capabilities in the network edge 
[13]. Initially, Fog computing was developed to meet the 
demands like instant feedback and location awareness in 
addition to portability support and wireless access for IoT 
environment. Furthermore, flexibility in services is ensured 
by fog computing with the help of n-tier architecture. This 
feature spotlights the entire network devices through the 
data routing path are capable of providing functionalities 

like data computation and storage of services for end 
devices. Physical placement of fog tier amidst the cloud and 
the IoT devices improves computation, storage and 
networking resources pooling. This fog tier comprises of a 
huge range of several nano servers, extending from 
exclusive components like setup boxes, edge routers to 
changeable devices like smartphones, high-end sensors, and 
vehicles [14].  

Real-time management and analysis of long-term batch 
data are needed to implement fog computing in normal 
application areas. It is mainly performed to enhance the 
immediate system performance and to acquire awareness 
about business procedures adjustment that makes the fog 
servers and the cloud server to interact. Concurrent control 
challenges the closely packed decentralized fog servers to 
decrease latency in services, and the batch data analytics 
comes under the mastery of cloud servers with enormous 
processing and storage resources. The Openfog Consortium 
deals with upgrading the evolution of fog computing by the 
topmost IT firms such as Intel, Microsoft, Cisco, ARM, 
Dell, and Princeton University. Several options for using fog 
computing are indicated in [14], extending from intelligent 
traffic lightweight systems to smart grid and wind farms 
[13,15]. The enhanced futuristic growth of fog computation 
is covered in Vaquero and Rodero-Merino‘s work [15]. [16] 
defines fog computing and some application areas and also 
focuses on the constraints in designing and implementing 
fog computing system. [17] declares that fog computing is 
presumed to be a general platform for demanding IoT 
applications. [18] explains the benefits of fog computing for 
IoT and outlines several applicable areas appropriate for fog 
computing. [19] postulated 10 questions and delivered the 
essential answers to exhibit the benefits of fog computing in 
contrasting with other conventional computing platforms. In 
recent times, a brief set of assessment criteria for fog 
computing is presented in [13]. 

2.3. Edge Computing 

It is a distributed computing standard to compute and store 
data nearer to the location where it is required. It enhances 
response times and saves bandwidth. Content generating 
networks were formed in the late 1990s, which serve as the 
origination of edge computing to help in web and video 
content from edge servers that were utilized nearer to users. 
The newly emerged edge computing methodologies 
considerably scale this approach by the usage of 
virtualization technology that makes it effortless to execute 
a broader range of applications on the edge servers. The 
growth of IoT devices at the edge of the network is 
generating a huge volume of data to be processed at data 
centers, forcing network bandwidth needs within the range 
[20]. Even though there are certain improvements in 
network technology, data centers are unable to assure 
allowable transferring rates and responding times, which is a 
crucial need for most applications [21]. In addition to this, 
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edge devices continuously take incoming data from the 
cloud, pushing the firms to distribute data and service 
provisioning by creating content delivery networks and 
thereby accelerating the physical accessibility to the end-
user. Edge computation involves the utilization of mobile 
phones, intelligent objects or network gateways to carry out 
tasks and provide services on account of the cloud by 
shifting the computation away from data centers and near 
the edge of the network [22]. It becomes possible to provide 
service delivery, content caching, storage, and IoT 
management by shifting the services to the edge, leading to 
finer transfer rates and response times.  But decentralizing 
the logic among different network nodes brings out new 
crisis and demands.  

Extensibility 
Extensibility in a decentralized network is confronted with 
various issues. The foremost is it should consider the 
diverseness of the devices, having varying performance and 
energy restraints, the ever-changing conditions, and the 
dependability of the connections, compared to the more 
dominant framework of cloud data centers. Moreover, 
security needs may bring more latency in the node 
communication and resulting in slowing down the scaling 
process. 

Dependability 
Restoring a service alive by managing the failovers is a 
significant task.  The users should be able to access a service 
without interruptions even if a single node gets down and 
becomes not reachable. In addition to this, edge computing 
systems must perform certain actions to recover from a 
failure and intimating the occurrence to the user. To fulfil 
this aim, every device should sustain the network 
topology of the whole decentralized system that makes the 
finding of errors and recovery to be easily applicable. Other 
features that may impact this aspect are the current 
technology in use, creating several levels of dependability, 
and the correctness of the data generated at the edge that 
could be undependable because of specific environmental 
conditions. Table 1 shows the advancement of Edge 
computing in data store technology. 

Speed 
Edge computing introduces analytical, processing resources 
nearer to the end-users and thereby aids in leveraging the 
speed in communication. A well-framed edge platform 
would exceed a conventional cloud-based system. 

Efficiency 
Due to the nearness of the logical resources to the end-users, 
modern analytical and artificial intelligence tools can 

execute on the edge of the system. This setup at the edge 
assists in increasing operational effectiveness and becomes 
more advantageous. 

Application 
Edge application services reduce the size of shifted data, the 
resulting traffic, and the distance travelled by the data. It 
lessens the latency and transmission costs. Computation 
offloading for current applications, like face recognition 
algorithms, showed improvements in response times to a 
greater extent, as depicted in early studies. Detailed research 
proved that utilizing resource-rich machines called cloudlets 
near mobile users to provide services generally present in 
the cloud, created progress in running time when few tasks 
are offloaded to the edge node. On the other hand, because 
of transfer times between devices and nodes, offloading 
each task causes a slowdown. Therefore, an optimal 
configuration can be framed depending on the workload. A 
doctorate researcher and data scientist at the University of 
Oulu in Finland describes that when comparing centralized 
computing and data storage, moving intelligence to the edge 
could also fundamentally reduce the cost. In edge 
computing, specialized chips and cloudlets, primarily micro-
clouds or ad hoc clouds that would operate in a home, 
company, or vehicle, could monitor design complexity [13]. 
Table 1 summarizes the advancements in edge computing 
solutions reported in research papers. 

2.4. Cloudlet 

A research team from Carnegie Mellon University (CMU) 
first developed the cloudlet concept in 2009 [38]. The term 
“cloudlet” denotes the proximal placement of micro data 
centers to mobile users, for instance inside a classroom or a 
restaurant. One of the motivating factors in forming the 
cloudlet is for enhancing the interactional performance of 
mobile apps, with special attention to the ones with firm 
needs on consecutive latency and jitter which insist on 
having a responding delay in the range of milliseconds, that 
raises network complexity in Internet. The proximal 
placement of cloudlets allows the servers to deliver the 
mobile users with extremely responsive cloud 
functionalities.  

To provide prompt service, this ordering imposes the 
owners’ privacy by modifying the private data before issuing 
to the cloud [39]. The CMU research group released a 
sequence of works after the innovation of cloudlet that 
concentrates in two concerns such as finding the most suited 
cloudlet applications [40] and enhancing user portability by 
developing virtual machines [41]. [40] proposes cognitive 
assistance based on real-time. i. e “killer app” like speech 
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and face recognition for the cloudlet, that insists prompt 
feedback to assist users’ attentiveness unnoticeably.[41] 
states the overlay functioning in discovering the cloudlets 
and hand-off in the mobile environment based on open-
source ecosystem for cloud computing. The interchange of 
data among the cloudlets is also decreased. 

The open edge computing initiative is created by CMU 
and various topmost industrial firms, involving Intel, Nokia, 
Deutsche Telekom, Crown Castle and Vodafone due to the 
potentiality imposed by cloudlets and availability of inherent 
business opportunities [42], for developing major 
methodologies encircling cloudlets and managing user 
acceptance testing. Accessing distant computing services 
from cloud data centers is the existing framework for several 
Internet applications. User-generated data like wearables 
and smartphones, or sensors in a smart city or company, is 
generally transmitted to geographically far away clouds for 
processing and storage. This method of computation is not 
applicable in future since it is expected that the latencies in 
communication tend to expand largely due to the internet 
connectivity among billions of devices [43]. This enormous 
expansion in latencies induces an adverse impact in the 
Quality-of-Experience and Service parameters [44]. To 
overcome the problem, an alternative computing model is 
used to acquire processing resources nearer to sensors and 
user devices and utilize those [45,46] partially for data 
computing. It helps in decreasing the volume of data 
transferred to the cloud, thereby decreasing communication 
latencies. The present direction in research to realize this 
computing model is to distribute few processing resources 
present in enormous data centers by issuing them closely to 
end-users and sensors in the edge of the network.  The 
dimensions in edge computing resource management is 
depicted in figure 3. 

Figure 3. Edge computing resource management 

The resources are manifested as (i) exclusive “micro” 
data centers which are comfortably and securely situated 
inside public/private framework or (ii) Nodes on the 
Internet, like gateways, switches, routers increased with 
potentials to compute. A computation model utilizing the 
resources present at the network edge is denoted as “edge 

computing” [47, 48]. A paradigm utilizing the edge 
resources as well as the cloud is called “fog computing” [49, 
50, 51]. In contrast to the resources in the cloud, resources 
in edge are: (i) resource-restrained - restricted computing 
resources, as edge devices possess smaller processors and 
restricted power assignment, (ii) processors are diverse 
natured - with varying architectures (iii) rapidity in 
corresponding workloads changes, and resources need to be 
used by the applications in a restricted manner. Therefore, 
resource management is the most important issue in both fog 
and edge computing. According to the time varying demand, 
the resources are dynamically allocated by the cloud and 
edge sources. These distributions include networking, 
workload and the analytical resource distribution with the 
combination wireless network communication and edge 
computing in time varying mechanism. The Quality of 
Service (QoS) metrics in resource allocation has to be met 
with service differentiation and context awareness to have a 
better resource utilization in edge and cloud. The elasticity 
in network resource utilization have a feasible solution 
named Linear parameter varying modelling of cloud 
applications combined with set-theoretic controller [50]. The 
objective of this paper is to analyse and present the 
architectures, frameworks, and algorithmic methodologies in 
support of managing the fog/edge computing resources.    

3. Architecture classification in Edge
computing

The three factors, namely, data flow, control, and tenancy, 
serve as the basis of classifying the architectures for 
management of resources in fog/edge computing.  

 Data flow architectures: It is directed towards the
workload’s movement and data inside the
processing ecosystem. For instance, workloads are
portable to the edge nodes from the user devices or
cloud servers to the edge nodes.

 Control architectures: It is dependent on the way
of controlling resources in the processing
ecosystem. For instance, various edge nodes are
managed by a principal algorithm or a central
controller. The distributed approach is another
option that can be used.

 Tenancy architecture: It relies on the reinforcement
given for providing numerous entities in the
computing ecosystem. An edge node can host a
solo application or a group of applications.

3.1. Data flow in edge computing architecture 

The data flow architectures work on the principle of finding 
the way of transferring the data or workloads inside a 
fog/edge computing environment. The types of data flow 
architectures reported in literature are: aggregation, sharing, 
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and offloading. Figure 4 depicts the edge computing data 
flow model.  

Aggregation 
It works based on having an edge node acquiring data 
produced from several end devices. The acquired data is 
partly processed for filtering or pruning. The objective of 

aggregation is to minimize the overheads in communication, 
including the prevention of needless traffic transmitted far 
away from the edge of the corresponding network. In 
general, research work on this model can be differentiated 
based on the following :(i) Modelling and aggregation 
implementation techniques, (ii) Aggregation improvement 
techniques. 

Table 1. Advancements in edge computing solutions

Description of the Edge Computing 
Solution 

USE CASE 
DOMAIN 

Advantages Drawbacks Reference 

The hardware components needed to 
devise wearable devices and integrating 
in Internet of Medical Things (IoMT), 
Textile industry in edge computing are 
been discussed here. 

 IoMT , Textile 
industry 

Execution of light 
weight tasks, data 
quality, transmission 
bandwidth, 
data offloading, data 
storage, data 
processing, and IoT 
management 

Technological issues: 
interoperability, 
standard, protocol and 
different manufacturer.  
security issues: patient 
privacy, bluetooth does 
not support encryption  

[23] 

The design of edge computing framework 
here is developed to fulfil demanding 
requirements of IoT-enabled time and 
mission-critical application namely, early 
fire detection. Three-level Cyber-Physical 
Social System (CPSS) is designed in 
which the middle layer is integrated with 
dynamic resource scaling mechanism for 
early fire detection. 

Fire 
identification & 
detection 

Fire detection using 
computer vison edge, 
dynamic resource 
allocation, offloaded 
requests, QoS 
performance, 
energy consumption, 
and Transmission 
latency

Deployed in 
homogeneous servers, 
not applied in real-time 
scenario. 

[24] 

The Multi-Agent System (MAS) MAS-
based framework is been developed and 
proposed to enhance the functioning of 
the manufacturing domain, whereas edge 
computing is concerned with load 
balancing in computing. The proposed 
model with MAS architecture is been 
evaluated with throughput in simulation 
environment proving to be better than 
cloud architecture.  

Manufacturing, 
Industries 

Collaborative 
operation, 
low latency 
communication 
channel, reduction of 
service delay, and data 
congestion is avoided 

Distribution of task, 
computing resources 
allocation, and low 
bandwidth allocation  

[25] 

An affordable, fast early warning system 
(AFEWS) is proposed with utilizing edge 
devices. The edge computing device is 
been installed near the data source to 
identify and analyse the normal and 
abnormal functioning using hybrid fault 
model to predict the working process. 
Edge computing has been adopted in 
manufacturing scenario for monitoring the 
well-being of machine, enhancement of 
productivity in assembly line and 
intensifying quality and quantity. 

Automobile, 
Manufacturing 

Response time, exact 
fault identification, 
CPU usage and lower 
network delay  

Power consumption 
and task allocation 
parameter is missing 

[26] 

Edge computing layer is created not only 
to analyze the data stream set evolving 
from a car data stream and also to make a 
real infrastructure using Raspberry Pi and 
Node-RED server. Data pre-processing is 
done in the edge device by detecting an 
event and filtering through anomaly 
detection.   

Automobile 

Processing & 
aggregating large data 
volumes, low latency 
and security protocols 

Not able to handle the 
high streaming of data 
per millisecond and 
heating up of raspberry 
pi 

[27] 

The architecture is oriented towards Open 
Source big data technologies to carry out IoMT Anomaly detection in Better detection is 

dependent on the [28] 
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real-time analysis of wearable sensor data 
streams. The proposed architecture is 
comprised of 4 differnt layers: a sensing 
layer, a pre-processing layer (Raspberry 
Pi), a cluster processing layer (Kafka’s 
broker and Flink’s mini-cluster) and a 
persistence layer (Cassandra database). 

real-time, technology 
independent 
communication, 
replacing framework, 
and adding new nodes 

processing memory of 
local edge 

The proposed system was deployed into 
the field using tools such as Arduino, 
Raspberry Pi 3 Model B, Python, Django 
Web Framework, and Standard 433 MHz 
RF link. 

Agriculture 
Easy setup, cost-
effective and low-level 
implementation 

Half-duplex 
architecture, 
cannot fulfil immediate 
response, low 
bandwidth, 
single real-time thread 
execution 

[29] 

The proposed system is a base line to 
manage the soilless culture requirements 
in recirculation having moderately saline 
water with 3-tier architecture. Cyber-
physical system interacts with the crop, 
and the edge layer takes care of 
connection and failures. The cloud module 
FIREWARE takes care of data.  

Greenhouse, 
Hydroponics 

Effective control of 
environmental data, 
water consumption, 
nutrients validation, 
and crop cycle 
estimation 

System is costly and 
needs regular 
maintenance [30] 

Two perspectives considered are: a 
device (or Thing) and a functional 
perspective of users with virtual devices 
are enabled to aggregate the capabilities 
of IoT devices, derive new services by 
inference, delegate requests/responses 
and generate events.  

Virtual Devices 

Siloization, network 
bandwidth, latency, 
speed, semantic 
interoperability 

No real-time 
implementation [31] 

An Edge-IoT platform and a Social 
Computing framework is proposed to build 
a system aimed at smart energy efficiency 
in a public building scenario.  

Smart Energy 
High computing, 
network resource cost, 
and energy efficiency 

Security,  
traceability and 
data integrity 

[32] 

The architecture consists of three 
modules: (i) the Sensor Interface Module 
(SIM), (ii) the Communication Module 
(CM) and (iii) the Measuring Engine
Module (MEM).

Engine 
Software overhead 
was negligible with 
less CPU busy time 

Fewer trails are 
considered 

[33] 

A concerted tracking methodology for 
manufacturing resources was proposed 
by appropriating IoT and edge computing 
technology. It facilitates automatic tracking 
and tracing of the location underpinned by 
Bluetooth signals and edge gateways. 
The entire system was executed in an air 
conditioner manufacturing unit situated in 
an industrial park to validate the feasibility 
and efficiency. 

Manufacturing, 
Industries 

Accuracy and maintain 
effectiveness in 
decision making at 
edge, lower 
transmission delay, 
low latency 

Data tracking is limited [34] 

The experiment reveals that refining raw 
IoT data at the edge devices is efficient 
with respect to latency and imparts 
circumstantial awareness for the smart 
city decision-framers in a logical manner. 

Smart City Low latency, effective 
decision-maker Huge data analysis [35] 

The architecture to implement the active 
maintenance contains device, network, 
data and application domain which acts 
on connection failure and mapping of 
equipment. 

Manufacturing 

Information fusion, 
cooperative 
mechanism, bandwidth 
optimization and 
response latency 

Security mechanism is 
required  [36] 

A data collection framework in Wireless 
Sensor Network (WSN) using edge 
computing was proposed for agriculture in 
which for each task allocation, double 

Agriculture 

Quality data,  
data collection time, 
low Latency, 
energy consumption, 

Not compared with IoT 
scenario [37] 
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selection strategy has been applied to 
filter out the node and sensor data. 

low waiting time 

Figure 4. Edge Computing data flow Model 

i. Modelling and aggregation implementation techniques
The fundamental methods executed for reinforcing

aggregation formed a major portion in Wireless Networking 
[52] and distributed processing of data stream [53]. Dense
and large-scale sensor networks are unable to route the
entire sensor generated data to a centralized server. In-
network data aggregation is explained as utilizing the
intermediary nodes to aggregate the data along the data path
[54].
a) Techniques based on Graphs

Directed graph-based and Tree-based methods used for
data aggregation is explained here. 

(1) Techniques based on Tree concept
Tree-based techniques encompass two forms such as

Spatial index trees and Data Aggregation Trees (DATs). 
DATs are utilized for aggregation of WSN using 
Probabilistic Network Models (PNMs) or Deterministic 
Network Models (DNMs). Recently, the usage of PNMs 
over DNMs is drawing the attention in research for 
making logical conclusions of lossy links in the network 
using tree-oriented methods in balancing the load [55]. 
Spatial index trees are applied in making query inside 
networks but also addressed for aggregation in recent 
times.  An energy-effective index tree named EGF-tree 
is applied for collecting and aggregating the data [56]. 
Table 2 presents some of the applications of edge 
computing.  

Table 2. Applications of Edge Computing 

Reference Description 

[57] 

mF2C is a European project to design, 
execute and evaluate the unique 
management for a synchronized fog and 
cloud computing system 

[58,59] 

Nippon Telegraph and Telephone 
Corporation (NTT) created an edge 
accelerated web platform to decrease the 
response time for cloud applications

[60,61] 
Android apps with cognitive assistance to be 
more efficient to decrease the response time 
for cloud applications 

[62] Cisco Kinetic platform provides fog
processing module to process IoT data

[63] 
Vortex platform allows connecting each 
vortex edge device to an IoT device to 
construct global shared fog domain 

[64] Cisco IOx platform offers edge features to
develop IoT applications

[65] FogSim simulator allows the manipulation of
edge features

[66] ParaDrop is an edge computing platform for
wireless gateways and applications

[67] 
Implementation of cloudlet based on 
Software Defined Networking (SDN) for 
patient monitoring 

[68] 
A converged wireless access architecture 
based on edge servers for heterogeneous 
cloud access networks 

[69] Managing and configuring heterogeneous
IoT networks using UbiFlow framework

(2) Methods based on Directed Graph
The programming model in dataflow and WSN

applications use a directed graph. Distributed Dataflow 
(DDF) programming model used in fog computing [70] 
works on the Message Queuing Telemetry Transport 
(MQTT) protocol, which makes the workflow easier in 
various nodes by assuming the diversity in devices [71].  

b) Techniques based on Graphs
The programming model in dataflow and WSN

applications use a directed graph. Distributed Dataflow 
(DDF) programming model used in fog computing [70] 
works on the Message Queuing Telemetry Transport 
(MQTT) protocol, which makes the workflow easier in 
various nodes by assuming the diversity in devices [71].   
c) Methods based on Clusters

Effectiveness in energy is a major aspect of node
clustering in cloud-based methods. A node from each cluster 
is selected as the cluster head. It is accountable for making 
aggregation process in each cluster locally and transferring 
the aggregated data to other node. Data aggregation is made 
energy-effective by clustering methods is also stated [72].  
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d) Methods based on Petri Net
Recent studies draw the attention of using the High-Level

Petri Net (HLPN), called as RedEdge, for modelling the 
aggregation in Edge-oriented systems [73]. HLPN makes 
heterogeneity easier, and it is authenticated by verifying 
fulfilment by an automated solver. This framework was 
analyzed for a smart city implementation and validated for 
different effectiveness metrics like power, latency, and 
memory usage.   
e) Decoupled methods

The typical aggregation methods discussed above
generally possess heavy incorrectness if data is lost in the 
network. The aggregation method finds the routing data 
path. Synopsis Diffusion (SD) is a method to decouple the 
routing process from aggregation and thereby optimizing 
separately to improve correctness [74]. 
f) Batch methods

Batch method is an algorithm which is used in computing
for external data stream. The data produced from different 
sources is transferred to a node where it is clustered 
periodically to a batch job and gets executed on the node.  
g) Hybrid methods

Hybrid methods relate one or more of the techniques
mentioned above. It decreases the loss rate and presents only 
a few communication errors while enhancing the network’s 
overall effectiveness. 

ii. Aggregation improvement techniques
Aggregation is applied to reform various goals in the

computational environment. The efficiency of 
communication is expressed concerning the latency, 
bandwidth and energy restraints. Therefore, the goals range 
from the efficiency in communication to the definite quality 
of aggregation (or analytics) which is carried out on the edge 
node.  After exploring the conventional works on methods 
to improve aggregation, the following methods are obtained 
and explained below. 
a) Efficiency-aware approaches

Efficiency-aware approaches are classified into three
methods: 1) For optimization of bandwidth 2) For 
minimization of latency 3) For reduction of energy 
utilization. 

(1) Optimization of bandwidth
Three modules are present in the

Bandwidth Efficient Cluster-based Data 
Aggregation (BECDA) algorithm [75]. First
module concerns with arranging the distributed
nodes into many clusters. The second module deals
with choosing a cluster head for each cluster and
then aggregating data from within the cluster. The
last module makes every cluster head to promote
for intra-cluster aggregation. It uses bandwidth
effectively for aggregating the network data and
systematic than forerunner techniques.

(2) Latency-conscious

Latency is one of the significant 
benchmarks frequently examined in edge-based 
systems for aggregation [76, 77]. It can be reduced 
by proposing an intermediary architecture 
concerning data services [78]. 

(3) Energy-conscious
Recent studies in the energy 

effectiveness of data aggregation concentrate in 
reducing the network’s power consumption by 
creating separate nodes that are energy effective 
through software and hardware methods. The data 
aggregation algorithm which is used a consecutive 
interference cancellation method to reaches lower 
limits of latency and maintains constant energy at 
the same time. RedEdge is an edge computing 
paradigm that works on mobile devices in which 
the consumption of energy for data transfer is 
reduced [73]. 

b) Quality-conscious Techniques
An approach where end devices data are compulsorily

transferred for decreasing overheads to a node is referred to 
as selective forwarding. “Quality-aware” is the creation of 
functional decisions to improve predictive analytics quality 
in selective forwarding [79].  
c) Security-aware Techniques

Security and privacy in identity are the important factors
for the process of aggregation in the edge node between a 
public cloud and user devices. An Anonymous and Secure 
Aggregation (ASAS) scheme [80] utilizing elliptic curve 
public-key cryptography, a linearly homomorphic 
cryptosystem and bilinear pairings termed as the Castagnos-
Laguillaumie cryptosystem [81], is created inside fog 
environment. 
d) Heterogeneity-conscious Techniques

Diverseness is a natural aspect of edge-oriented
environments. [82]. Diverseness of resources is a source to 
various kinds of fog/edge nodes, comprising architectures of 
CPU, a union of allocated micro data centers (CPU-oriented 
systems), and traffic control devices like routers, switches, 
base stations at the Edge of the network. [128]. There is a 
possibility of using diversified resources in a unique 
fog/edge computing model at the same time, and there exists 
a little proof of such type of completely implemented 
system.  

Sharing model 
It is normally deployed if the workload is shared among 
peers in contrast to the aggregation model. This model 
fulfils the processing needs of a workload by directly 
offloading in battery powered peer devices rather than 
offloading inside the cloud. As a result, network with 
dynamicity is established, provided that devices tend to 
connect and quit the network without an intimation. 
Pragmatically achievable schemes developed for 
coordinated task execution requires to be innately energy-
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conscious. Studies in sharing techniques can be categorized 
into three methods, as depicted in figure 4. 
i. Control oriented

Centralized and distributed control differentiate the
sharing model in mobile edge devices. 
a) Centralized Controller

It is dedicated in managing the workload on every edge
device in a network. Directed Acyclic Graph (DAG)-based 
workflow is used by the devices at the edge. The 
cooperative execution of tasks is rested in a cloud controller 
[83, 84]. SDN is used as the basis for implementing 
Software-Defined Cooperative Offloading Model (SDCOM) 
[85]. A controller is used to enhance the coordination among 
mobile devices linked to the controller on a Packet Delivery 
Network (PDN) gateway. The controller focuses on 
decreasing the gateway’s traffic and assuring impartiality in 
energy utilization among mobile devices. The actively 
arriving tasks are managed by Online Task Scheduling 
(OTS) algorithm. 
b) Distributed Controller

A game-theoretic method was utilized as a decentralized
method for attaining the Nash equilibrium in coordinated 
devices [86]. The Nash equilibrium in the sharing model is 
concerned deeper to create the Congestion Game (COG)-
based sharing and Multi-item Auction (MIA) model [87]. 
ii. Adaptive Techniques’ oriented

It is nature-stimulated and provide a solution for multi-
objective optimization problems [88]. Sharing model is used 
concerning various goals in a system. For instance, the 
battlefield scenario implements the sharing model at the 
edge [89]. In this environment, latencies are expected to be 
in a decreased value, and the energy consumption of the 
devices is also expected to be in optimal value. The adaptive 
methods discussed in existing literature is summarized 
below: 
a) Connectivity-conscious
The sharing model requires the details about the
connectivity among devices, for instance, a battlefield
scenario. A mobile device increases its processing when peer
devices come inside its proximity of communication [89].  A
probabilistic forecasting model in an inherently scheduled
task can complete the execution process promptly on a peer
device when it is in the scope of the device. Connectivity-
conscious techniques can be of single or multi-hop, or
opportunistic [90].

(1) Single Hop Techniques
In this method of single hopping, a fully
interconnected network is formed by a device after
getting a list of its neighbours. If a device shares a
workload, then the workload is automatically
shared with other devices that are in direct
connection with the respective device [90,].

(2) Multi-hop Techniques
Every device calculates the shortest path to each
other node in the network which is capable of
workload sharing. The workload is generally
distributed with devices that may decrease the
entire energy footprint. When compared to single-
hop techniques, the advantage of using the multi-
hop technique in the sharing mode is, a huge supply
of resources can be drawn into workloads that need
thorough computations. The total running time of a
distributed workload is decreased using a task-
sharing approach implementing a greedy algorithm
[91].

(3) Opportunistic Techniques
A device in need to distribute its workload in these
methods confirms whether its peers can run a task
when it is inside the proximity of communication.
It is forecasted through contextual profiling of how
long a device was inside the communication
proximity of its peers. In the IoT environment for
data-centric services, a group of mobile devices
creates a mobile cloud through opportunistic
networking to process the multiple IoT sensors
requests [92].

b) Heterogeneity-conscious
Generally, edge devices are diversely natured at all levels in
a mobile cloud. Hence, the operating system, processor
architecture, and workload deployment confront various
issues in easing coordination [93]. Solutions for handling
diverseness concerned problems in mobile networks are
developed. For instance, Honeybee, a work-sharing method
was developed in which rotations of diversified mobile
devices are utilized to share the workload among the edge
devices [94].
c) Security-conscious
Honeypot which identifies and separates malicious attacks 
present in a device employed in the sharing model is 
proposed [95,151]. A malevolent device is found in twenty 
minutes. If a device is found to be malevolent, then it is 
separated for safeguarding the network.  
d) Fairness-conscious
It is a multi-objective optimization issue. The goals are to 
decrease the battery drain in mobile devices to extend the 
lifetime of the network as well as enhance the performance 
gain of the workload shared among devices [96].  
iii. Cooperative sharing oriented

Devices at edge can distribute workloads either (a) in a
less framed environment based on ad hoc coordination or (b) 
in a more tightly coupled surrounding to ease coordination. 
Facilitating device-to-device communication by using ad 
hoc networks is an existing research area. This coordination 
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is encountered for Mobile cloud computing (MCC) in the 
sharing model environment for the edge [97]. The term 
“transient clouds,” is named by a research work where 
neighbouring mobile devices form an ad hoc cloud, and the 
fundamental algorithm for managing the tasks is relied on an 
alternative of the Hungarian method [98].  
a) Infrastructure- based Cooperative sharing

Federation of devices is being analysed at the edge of
the network to ease the coordination [99]. This produces 
tightly coupled coalitions when compared to ad hoc clouds 
and cost-effective than exclusive micro cloud deployment. 

Offloading 
Here, a server, an application, and its associated data are 
transferred to the Edge of the network. It either increases the 
processing needs of a single or a group of user devices or 
conducts cloud services  to process device requests nearer to 
the source. Analysis based on Offloading can be 
distinguished in the following two ways. 
i. Offloading from User Device to Edge
It increases processing in user devices by utilizing edge
nodes (usually a single hop away). Two major methods used
for offloading to edge from user device are application
partitioning and caching mechanisms.
a) Partitioning of application

GigaSight architecture is an instance for offloading
from devices to the Edge through application partitioning 
[76] in which Cloudlet Virtual Machines (VMs) helps in
processing videos streamed from numerous mobile devices
[100]. The Cloudlet VM is utilized for denaturing, a process
of removing user related content for protecting privacy. The
framework involved is presented as a Content Delivering
Network (CDN) inversely. In this section methods and
models used for application partitioning are discussed.

1) Methods
Brute Force, Greedy Heuristic, Simulated
Annealing and Fuzzy Logic are the four methods
discussed in the context of application partitioning.
Brute force approach:  The entire feasible
combinations of offloading plans (taking the cloud,
edge nodes, and user devices) are analyzed [101].
The scheme with the minimal running time for a
task is then selected. It is simply not an exact
practical solution given the time required to obtain
a scheme, but instead could provide awareness into
the search space.
Greedy Heuristic approach: It concentrates on
reducing the time taken for finishing the execution
of a task on the mobile device [101]. Offloading
framework utilizes a greedy heuristic approach for
obtaining offloading plans during the
implementation of prototype models [102].

Simulated Annealing approach: The search space is 
dependent on the usage of fog and cloud nodes, 
total costs, and the finishing time of an application 
to derive an offloading plan that reduces the costs 
and the task accomplishment time [103].  
Fuzzy logic: The objective is to enhance the QoE 
given by several parameters like resource 
requirements, sensitivity and service access rate for 
delay in data processing.  It is utilized in ranking 
every application placement request by taking the 
nodes’ processing abilities [104]. 
2) Models
Graph-oriented, component-oriented and neural
network-oriented are the three fundamental models
used for partition the application from devices to
the edge.
Graph-oriented: It is used in the automated
partitioning of application in Clone Cloud [105]. In
the execution time, it translates to moving the
application thread onto the clone, then it is returned
onto the first mobile device.
Component-oriented: The various capabilities of an
application (a web browser) executing on a device
are formed as components separated from the
device and edge server [106].
Neural Network-oriented: A deep neural network’s
latency is decreased for latency-critical applications
without transmitting images/videos distantly from
the source. Many layers are present in deep
networks that are shared over various nodes. The
infrastructure of Neurosurgeon models the
separation among layers that is both energy and
latency effective from end-to-end [107].

b) Caching Mechanisms
A global cache is formed in a way that it is accessible on an
edge node that plays as a distributed memory for numerous
devices that require to interact and the caching mechanisms
are:

1) Chunking and Aggregation based
The multi Radio Access Technology (multi-RAT) was
an architectural model for upload caching. Here, in this
mechanism, VMs are present at the edge of the network,
and a user device uploads chunks of a large file onto
them concurrently [108]. After aggregation VM
integrates these chunks, and transmitted to a cloud
server.
2) Reverse Auction Game-based
A caching mechanism on coordinating the edge nodes
was stated as an alternate mechanism in [109]. The
user-generated videos are distributed among the users
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through caching the edge. A reversible auction game is 
utilized to stimulate caching.   

ii. Offloading to the Edge from the cloud
Here, the data flow direction is reversed when compared to
the above mechanism by moving the workload to the edge
from the cloud. Server offloading, caching mechanisms and
web programming are the different mechanisms.
a) Server Offloading

Replication or partitioning is used to offload the server
executing in the cloud to edge. Replication is a method to 
create server replications on edge.  

1) Database Cloning
An application’s database tends to be made replica and
shared by multiple applications or users at the edge of
the network [111].
2) Application-specific Data Replication
This approach enables a particular application to fetch
the relevant data to the users in the edge for executing
the application in a consistent way which is contrasting
to database cloning [110].  However, these methods are
not viable in resource-constrained edge scenarios
because of the assumption that edge nodes are not
storage restricted by the cloning and application-
concerned data replication methods.
3) Partitioning
The partitioning factors such as functionality aware,
latency-aware and geography-aware in the server are
concerned in offloading to the edge from the cloud.
Functionality-aware: Google Glass comes under the
cognitive assistance applications category in which the
cloud alone does not provide the processing required for
such type of latency-critical applications. To fulfil the
latency and processing demands of applications based
on cognitive assistance, the research is ongoing to
offload the required processing into the Cloudlet VMs
[112].
Latency-aware:[114] explained the backend partitioning
with an application logic traditionally present in clouds
for servicing the application requests concurrently. The
hybrid edge-assisted execution model for LTE networks
works by fulfilling the application requests by the cloud
and also the edge networks oriented on latency needs. It
varies with the Edge Nohyde Resource Management
(ENORM) framework by way of partitioning the server
along with geographical requirements [112].
Geography-aware: Online gaming application such as
Pokemon request the services which are normally
transferred to a cloud server from user devices.  The
ENORM framework segregates the game server and
utilizes in an edge node instead of transmitting the
entire traffic to data centers [113]. Geographically

related data to a particular location is then made 
obtainable in an edge node. The users form the cloud to 
Edge from the relevant offloading. Functionality aware, 
latency-aware and geography-aware are the factors 
involved with partitioning. 

b) Caching Mechanisms
It is found that two methods, such as multi-layer caching
and content popularity and forms the methodologies in
caching.

1) Based on Content Popularity
ISP-based caching and CDN mitigate the network
congestion problems at the time of downloading apps in
user devices. However, considerable issues emerge due
to increased growth of apps and devices.
2) Caching in Multi-layers
It is a wireless networking method used for delivering
the contents [115]. It is assumed that a global cache
caches the data from data centers is available at a base
station, and localized caches are accessible on edge
nodes. Uncoded caching and coded caching are the two
methods deployed in this caching. Every node is
unknown about the cached content of other nodes, and
hence data cooperation is not needed in uncoded
caching. The coded caching method deals with coding
the cached content provided that all other edge nodes
are needed to encode the content before sending to
users.

3.2. Control 

Controlling the resources is another method for categorizing 
architectures in accomplishing the management of various 
resources in an edge scenario. This research survey 
identified two architectures, such as centralized and 
distributed control architectures. Centralized control is the 
usage of a controller which decides the processing, 
communication, networks of the edge resources. In contrast 
to this, the architecture can be called as distributed if the 
process of making decisions is distributed across the edge 
nodes. The control techniques used in edge computing are 
summarized in Figure 5 and discussed in this section. 
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Figure 5. Resource control of edge computing model 

Centralized 
The two centralized architectures commonly used in edge 
computing are: (i) solver-approach and (ii) graph matching–
approach. 
i. Solver-approach
Solver approach is based on mathematical solvers which are
generally employed in initiating deploying and redeploying
plans for distribution of workloads in clouds, clusters, and
grids. Approaches similar to the above is fixed for edge
scenario [116]. For instance, a Least Processing Cost First
(LPCF) method was developed for controlling the
assignment of tasks in edge nodes. Solver approach is
focussed at processing costs and reducing network.
ii. Graph Matching-approach
An offloading infrastructure considering device-to-device
and cloud offloading techniques were stated. Offloading of
tasks through a 3-layer graph-matching algorithm formed by
getting the offloading space (mobiles, edge nodes, and the
cloud) into consideration. The issue in reducing the running
time of the whole task is plotted to the minimal weight-
matching problem in the 3-layer graph. A consolidated
method utilizing the Blossom algorithm was used to produce
an offloading plan [117].

Distributed 
The three different types of distributed architectures are (i) 
game-theoretic approach (ii) blockchain approach (iii) 
genetic algorithm 

i. Game-theoretic approach
It is used to attain control in a decentralized manner for

tasks offloading in the mobile-edge cloud computing having
a diverse-channel in wireless environment [119]. It is
obtaining an ideal solution using centralized methods that
results in NP-hard. Hence the game-theoretic method is

found to be more suitable in those type of environments. 
The Nash equilibrium was accomplished for offloading in a 
decentralized scenario. In contrast, two metrics, such as the 
number of benefited users in the cloud and the overheads in 
computation, were analyzed to substantiate the viability of 
the game-theoretic method over other centralized methods. 
ii. Blockchain approach
It serves as a supporting method to implement decentralized
management in edge computing systems [118] and enables
the feasibility in developing a decentralized peer-to-peer
network in the absence of intermediaries. Therefore,
imparting the blockchain to edge computing model leads to
communication among the nodes present at the edge without
the need of intermediates.  A decentralized ledger platform
termed as Hyper ledger Fabric is utilized for execution and
promotion of intelligent contracts defined by the user
securely.
iii. Genetic algorithm
Generally, the sensors are the end devices which transmits
the data to a computing node through a network in IoT
systems and the several features regarding communication,
computation and networking ae decided by it.  This decision
making is shared along with several edge nodes by using the
Edge Mesh approach, which utilizes a processing overlay
network also with a genetic algorithm [120]. This
combination is used for mapping the task graph to the
communication network for minimizing the utilization of
energy. The variables concerned in this genetic algorithm are
the Generation Gap for mutation rate, crossover methods,
and size of the population [121].

3.3. Tenancy 

Tenancy is one of the techniques used in the management of 
resources by providing a classification of architectures in an 
edge-oriented environment. It can be defined as the 
possibility of sharing the fundamental resources of hardware 
among various entities to achieve optimized usage of 
resources and effectiveness in energy consumption. The 
complete utilization of hardware resource by a single entity 
can be called a single-tenant system. Contrarily, the 
utilization of the same resource by various entities 
constitutes the multi-tenant system.  Multi-tenancy is the 
essential attribute for an absolute distributed system to be 
accessed publicly. A single-tenant scheme applies to an 
entity's access to a private hardware. Conversely, a multi-
tenant scheme refers to the sharing of the same resource by 
many individuals. Multi-tenant requires to be an optimal 
distributed system that is publicly available to allow the 
efficient use of resources in edge computing with minimal 
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costs.The different possibilities in the classification are as 
follows: 
i. Single Application, Single User (SASU)
This method makes the edge capable of executing only one
application, and only the user can alone get connected to the
application. The user and application utilize the hardware
resources.
ii. Single Application, Multiple User (SAMU)
It provides the edge with the capability to execute one
application that supports multiple users. Although the
fundamental hardware resources are not shared among
applications, there is a higher degree of sharing than SASU,
since the edge node services multiple user requests.
iii. Multiple Application, Single User (MASU)
It makes the edge node to host multiple applications, but

each application can only support one user. This mode of the
tenancy is used for experimental purposes (or stress-testing
the system) during the development of an ideal
infrastructure.
iv. Multiple Application, Multiple User (MAMU)
It makes the edge node to host multiple applications, and
many users are connected to an individual application. This
is a perfect infrastructure in representing the publicly
accessible infrastructure.

Multi-tenancy is supported by two methods termed as 
system virtualization and network slicing. 

1) System Virtualization
It is a method supporting multi-tenancy at the system
level. Different virtualization techniques are presently
obtainable, like containers (considered in Section 3.2.1)
and traditional VMs. VMs possess a wider resource
footprint in comparison to containers. Hence edge
computing uses lightweight virtualization presently
[112, 122, 124] that eases the isolation of resources for
separate applications made feasible by virtualization,
where the users may access the virtualized
application—for instance, simultaneous hosting of
numerous applications with various containers on an
edge node.
2) Network Slicing
Several logical networks are made to execute on the

physical network’s top layer while considering the
network level.  Therefore, the same physical network is
used for communication by different networks with
various throughput and latency requirements [124].

4. Infrastructure

The fog/edge computing framework gives functionalities 
with software and hardware to control the computation, 

storage resources and network [53] for utilities using the 
fog/edge. The three classes of infrastructure involved in 
effective management of resources in fog/edge computing is 
given below: 

 Hardware: Research in edge computing proposes
utilizing small-form-factor devices like Wi-Fi set-
top boxes, Access Points (APs), network gateways,
small home servers, drones, cars, and even edge
ISP servers, as computing servers forming
effectiveness in resources [127]. Single-board
computers (SBCs) are fixed in these devices,
offering substantial computing functionalities.
Products like smartphones, laptops, desktops are
also used by edge computing.

 System software: It executes edge hardware
resources directly on the CPU, memory, and
network devices. It controls and share the resources
to the edge applications. Operating systems and
virtualization software are some kinds of system
software.

 Middleware: It works by executing on an
operating system (OS) and providing compatible
functionalities not underpinned by the system
software. The middleware correlates decentralized
process nodes. Containers or virtual machines are
deployed for each edge node.

4.1. Hardware 

Hardware forms the core unit of any framework for handling 
the functioning and controlling of computation on a real-
time basis. The grouping of such small computing servers 
enhances the environment in cloud computing and it can be 
accelerated by a well-defined set of applications 
implementing cyber-physical systems (CPS) and IoT data. 
The hardware in fog/edge computing is categorized into two 
methods, as depicted in Table 3.  

4.2. Software 

In fog/edge platform, system software functions directly 
with fog/edge devices and controls the processing, storage 
and networking of the devices. Some examples are VMs and 
containers. In fog/edge computing, the usage of system 
software is categorized as virtualization concerning system 
and network as depicted in Table 4. 

4.3. Middleware 

Along with delivering interrelated services to system 
software, middleware involves in monitoring the 
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performance, coordinating & organizing, providing 
communication utilities, and protocols to fog/edge 
computing. There are four classes about the usage of 

middleware in fog/edge computing is divided into the 
following, as presented in Table 5. 

Table 3. Hardware for IoT Infrastructure 

Hardware Devices Technique used Application areas Reference 

Computation 
Devices 

Single-board Computers - 
Raspberry Pi 

Efficient data 
aggregation 

Connected vehicles, 
Drones, 

cloud system 

[129,146] 

Commodity Products- 
desktops, laptops, and 

smartphones 

Rendering service using 
under-utilized resources 

classrooms, movie 
theatres, and cafes 

[130] 

Network Devices 

Gateways and Routers Network bandwidth 
utilization 

Establish a data path [131] 

Wi-Fi Access point Wireless 
communication 

Gateways to WSN [121] 

Racks in edge Network Innovations in 
a Global Environment 

Smart cities [132] 

Table 4. System Software for IoT Infrastructure

System Software Virtual machine concept 
used 

Technique used Application areas Reference 

System 
Virtualization 

Virtual machine 
hypervisor, cloudlet 

Partition the resources 
among multi-tenants 

Remote surveillance [133,134] 

Containers, 
Namespaces 

Platform-as-a-Service 
(PaaS) 

Wi-Fi access point, 
gateway 

[135,136] 

VM Container Migration, 
Data centres 

Proactive techniques Load balancing and 
fault tolerance 

[137,138] 

Network 
Virtualization 

Network Function 
Virtualization (NFV), SDN, 

Hybrid Fog and cloud 
(HFC) 

Routing, firewall Managing network 
through software 

[77,139,140,150] 

Overlay Network, 
Peer to peer 

Virtual link Decentralized Edge 
computing 

[141] 

Table 5. Middleware for IoT Infrastructure 

Middleware Edge Types Technique used Application areas Reference 
Volunteer Edge 

Computing 
Data Store Nebula Location-aware data 

processing 
Network performance 

monitoring 
[142,143] 

Hierarchical 
Fog/Edge 

Computing 

Mobile Fog facilitates 
Distributed processes 

Load-balance 
workloads 

Scaling capabilities 
during runtime 

[144,145] 

Mobile Fog/Edge 
Computing 

Execution Prediction, 
FemtoCloud 

Offload computation-
intensive task 

Achieving 
satisfactory latency 

and bandwidth 

[83,104] 

Cloud 
Orchestration 
Management 

Inter-device coordination 
Micro Cloud 

Exploiting resources Image processing [146] 
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5. Algorithms

The four fundamental algorithms enabling fog/edge 
computing are: (i) discovery - finding edge resources inside 
the network to be utilized for distributed processing, (ii) 
benchmarking - acquiring resources’ performance to make 
decisions in expanding the performance concerning 
implementation, (iii) load-balancing - distributing workloads 
among various resources with some bases like fairness, 

priorities and (iv) placement - finding resources necessary 
for the deployment of workload. Table 6 presents the 
techniques used and applications based on the four 
algorithms. Edge computing can minimise the network and 
bandwidth issues by localising cluster-based networks and 
associated with moving large amounts of data to or from IoT 
devices and reduce reliance on the network. This reduced 
reliance of networks enables the intractability among the 
edge devices. 

Table 6. Types of Algorithms 

Algorithms Techniques used Services Application areas Reference 

Discovery 

Programming frameworks, 
protocols for handshaking 

and message passing 

Foglets, 
Edge-as-a-Service 

(EaaS), 
Internet. 

Public resource 
distribution. 

Online game. 
simulation-based 

validation 

[82,147,148] 

Benchmarking 

Basic conventions for 
assessing functional 

properties, benchmarking 
based on application and 
integrated benchmarking 

Spark, 
Cloud Sim 

IoT application [149,153] 

Load-balancing 

Particle Swarm 
Optimization - Constrained 

Optimization 

Internet of vehicles, 
Cooperative load-
balancing model 

(CooLoad), 
Breadth-First Search 

(BFS) 

Effective load 
balancing 

authenticated data 
center. 

[152,154,155] 

Placement 

Dynamic condition-aware 
iterative techniques 

Priced timed Petrinets 
(PTPNs) 

Fog-to-Cloud (F2C) 

Dynamic behaviour 
on performance, time 

and cost. 
Real-time 

applications 

[156,157] 

6. Use Case Scenarios

The goal of this Section is to explain the most important 
functional requirements and features of edge computing 
platforms from a use case. There are many use cases 
where the edge computing is implemented such as Smart 
Agriculture, Smart Healthcare, Smart Transportation and 
Smart Waste Managements. Edge computing is the subset 
of the cloud computing to enrich the cloud services for all 
kinds of applications in IoT environment various 
techniques is reviewed under the hardware, algorithm and 
infrastructure for efficient resource management. A 
typical use case scenario of smart agriculture is explained 
in this section.  

6.1. Smart agriculture 

The advent of Information and Communication 
Technologies (ICT) has a significant part in the 
agricultural sector by delivering computer-based services 

and functionalities [123]. These systems are unable to 
satisfy the needs of the current generation because of the 
factors like processing of massive data, lack of major 
functionalities such as storage space, processing speed, 
dependability, availability and extensibility. It also lacks 
an effective utilization of resources in computer-based 
agricultural systems. Big data features are presented in the 
form of Agriculture-as-a-Service (AaaS) applications. 
Cloud-based service can easily control various kinds of 
agriculture based-data and serves as the solution for ever-
growing volume of agricultural data. As per the 
government report, the amount of agriculture data sets 
acquired by Open Government Data Platform India 
records to a size of 3.5GB [126]. The data becomes 
diverse, specifically in the form of images. Figure 6 
depicts the edge computing based smart agriculture. 

The status of agricultural crops affected due to insects, 
weather, and other factors is acquired through the IoT 
sensors and satellites in the form of heterogeneous, huge 
volume of big data. Data sets expand with a velocity of 
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80.72 KB/ minute or more [126] due to the continuous 
data collection. Cloud-based service is a key solution for 
solving this problem which works on various aspects 
(soil, crop, pest, weather, fertilizer, cattle, productivity, 
irrigation, and equipment) following the steps given 
below. 

• gathering of data from multiple sensors through
predefined devices,

• categorizing the collected data into several
classes after analysis,

• storing the categorized information in cloud
repository for upcoming use and

• automatic diagnosing of the status in agriculture.

Figure 6. Edge Computing scenario for intelligent 
agriculture 

The number of users in agriculture systems and the 
volume of data sets is directly proportional to each other. 
Therefore, Cloud computing serves as a solution for 
providing highly extendable and resilient distributed 
computing environments.  The cloud-based information 
system can find the QoS needs from user requests, and 
resources should be allocated effectively to run the user 

request.  There arises a need to track and control the 
ground level factors, which is then automated and 
predicted by communicating to the cloud. These 
agricultural factors are handled in the field level itself, 
where IoT plays a major role. where Edge computing 
arrives into the picture. Edge computing decreases the 
computation burden on the cloud for better results in 
smart farming. 

In accordance with architecture in resource 
management, [125] the edge-server layered method 
named DART (Data analysis in real time) scheme is 
proposed in tomato harvest yield prediction. The layered 
method involves the separation of edge layer and server 
layer. An edge trained and tested devices are used to 
analyse the collecting and pre-processing of growth 
measurement values and environment sensor values by 
the IoT gateway. The server analyses after collecting 
cumulative data from the edges for predicting the 
complete tomato yield which includes the process of 
server training and server testing. At this point, 
infrastructure in resource management comes into the 
picture where the system deploys sensor devices to 
communicate with MCU using UART interface. REST 
api is used for sending the data from MCU to the edge 
device (IoT gateway by the Raspberry Pi 3) 
systematically. A mini MySQL database is employed in 
the edge device for storing the data to implement the 
DART methodology. In the meanwhile, the edge device 
executes the Smart Farm Edge application that runs on the 
apex of the DART framework. Appropriate usage of 
algorithm handles the computation analytics at the edge of 
this system where the nonlinear polynomial model aids 
the server in predicting the subsequent harvest yield and 
gross fruit yield. The system was analysed on the edges 
with different machine learning models, such as Long 
Short-Term Memory Recurrent Neural Networks 
(LSTM), multi-layer perceptron and ridge regression as a 
comparison with the proposed algorithm.  

The various perspectives in resource management of 
edge computing are effectively addressed in this article 
for tomato yield prediction. 

7. Conclusion

An extensive range of technical challenges regarding 
management of resources in fog/edge computing is 
approached in this survey work. Although some 
demanding issues prevail with respect to the capacities 
and performance factors in fog/edge computing, few 
future research directions are discussed to confront the 
remaining issues. Edge computing has drawn heed over 
the last decade as an alternate methodology to traditional 
centralized cloud computing model. Latency in 
communication is reduced and network bandwidth is used 
effectively by bringing the processing devices within the 
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proximity of mobile and IoT devices. The various 
techniques in resource management are presented in this 
paper to find and differentiate the major benefactions in 
terms of architectures, frameworks and algorithms. 
Evolution from prototype models to usable platforms in 
daily life is still in its infancy. Edge computing systems 
are expected to be the most important links for effective 
processing of information. Methodical studies in this 
domain are expanding over these years and several 
resource optimization and management schemes are 
proposed. A wide survey of edge-based computing 
systems presented in this paper is expected to provide an 
intuitive understanding for both academicians and 
researchers. 
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	The data flow architectures work on the principle of finding the way of transferring the data or workloads inside a fog/edge computing environment. The types of data flow architectures reported in literature are: aggregation, sharing, and offloading. ...



