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Abstract 

INTRODUCTION: There are several online mapping systems like Google Maps, Waze, Here, Apple Maps, Bing Maps, etc. 

which are developed to visualize real-time traffic conditions which rely on crowdsourced GPS trails; obtained from 

worldwide smartphone users. Such systems still suffer from some limitations like a) inadequate traffic information in 

suburban cities and rural zones, b) system failure to infer the proper reasons for slow traffic state, c) difficulties in the 

extraction of raw traffic data for further development of any customized application. Significant spatio-temporal similarity 

patterns are observed in city traffic behavior unless there are some exceptional events like any disaster, VIP visit, 

international cricket match or bad weather condition, etc. 

OBJECTIVES: Designing a framework and developing a system which enables collection of raw sensor information from 
users and to identify a model to generate a speed profile of city roads using historical logs as well as to infer the context of 

slow traffic based on ambient subjective road features and to provide map visualization. 

METHODS:  We have  used  road  surface  quality,  density  of vehicles,  type of neighborhood  and road geometry  for 

developing speed profile  for  a  particular road  segment.  We  have  carried out the experiments on different 

classification  algorithms like, K-nearest Neighbor(KNN), Decision Tree(DT), Random Forest(RF) and Gradient 

Boost(GB) with necessary tuning   of parameters. 

RESULTS: GB  outperforms  other  classification algorithms  in estimating the speed class of road segments  among 

all  classifier  algorithms   with  highest  F1- Score of 0.8345.  A fair driver rating  system  which  can  be derived  from 

our  results. 

CONCLUSION: The results  obtained from the proposed  novel framework  provide a proof of concept  that speed profiles 

may  be successfully derived  from ambient road  features  even when sample space is sparse. 
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1. Introduction

“If you make more roads, you will have more traffic”-

Jan Gehl 

Understanding traffic behavior and estimating traffic-

related  parameters1  like speed, volume, flow, 

density, and modelling their correlation has always been 
challenging. A precise estimation of traffic parameters 

and modelling of traffic behavior is the key to developing 

services like travel time estimation, predicting traffic 

congestion, route recommendation, and city traffic 

planning. These days there had been several online 

mapping systems like Google Maps2, Waze3, Here4, 

Apple Maps, Bing Maps5, etc. which are developed to 
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visualize real-time traffic conditions. Additionally, many 

of these systems provide services like route 

recommendations along with driving directions, show 

rerouting options, give transit information, assist in 

locating parking lots, etc. Some systems also allow users 

to report and localize several traffic instances like road 

accidents, hazards, weather conditions, police warnings, 

etc. on map. 
The systems mentioned above rely on crowdsourced GPS 

trails; obtained from the smartphone sensors; recorded by 

their massive worldwide user base. However, such 
systems still suffer from some limitations, as 

following. Firstly, the traffic information is inadequate 

and is often completely missing in many areas of smaller 

suburban cities and rural  zones6, especially along by-

lanes, where the density of users using such a system is 

still very sparse. Secondly, the traffic map systems mostly 

provide visualization of color-coded traffic  information7 

8, e.g., Green (Free Flow - vehicles can move easily at 

particular speed limit), Orange (Light traffic - slight 

congestion but drivers can still travel at relative speed), 

Red (Heavy Traffic - expect significant delays) and Dark 
red (Traffic is near standstill). It may be noted that these 

colors encode real-time space-mean speed9 10  value for a 

road segment. Here, the reason for lower speed ranges is 

always interpreted as traffic congestion. However, studies 

suggest that vehicle speed is significantly affected by the 

roughness of the road surface and the intensity of light at 

night. Vehicles may be forced to travel at a slower speed 

due to extremely poor road surface conditions11. Hence, 

present systems fail to infer the proper reasons for lower 

speed levels of traffic. Thirdly, although these systems are 

generally free to use, there is no way (or at least no 

reasonably easy and convenient way [7] ) to extract the 
raw traffic data or information like current and average 

traffic speeds, etc. for further development of any 

customized application. Developers are free to use API 

services, which are also not available12 13. Open-source 

software systems like OpenTraffic14 is designed to 

process and aggregate a global, freely available traffic 

speed data, but it too has almost zero coverage in 

developing cities or towns. Hence, developing novel 3rd 

party services for such areas is still fancy. 

1https://www.webpages.uidaho.edu/niatt_labmanual/

chapters/trafficflowtheory/theoryandconcepts/ 

TrafficFlowParameters.htm 

2https://www.google.co.in/maps/dir///@22.5764753,88.

4306861,15z?hl=en 

3 https://www.waze.com/

4 https://wego.here.com/?x=ep&map=20,77,10,normal

5 https://www.bing.com/maps

Objective - To overcome the above shortcomings, this 

paper aims to design a framework and to develop a 

system which enables collection of raw sensor 

information from users and to identify a model to 

estimate the space- mean  speed15  using historical logs as 

well as to infer the context for lower speed levels and to 

provide map visualization. Instead of dealing with data 

sparsity problem, the proposed system will use historical 

data logs to provide a semi-real time traffic information 

for a given road segment at a particular time of day. The 

information will be sufficient enough for developing 

services as speed profiles generally show significant 

spatio-temporal similarity patterns unless there occur 

some exceptions, i.e., events like festive occasions, 

accidents, sports events, etc. 

Issues and Challenges: The primary issue in 

designing the system is to deal with the sparsity of 

mobility logs that will be available for speed estimation 

for a given road segment. Moreover, as driving 

maneuvers widely vary among drivers, it may happen 

that for a road segment at a particular time of the day, the 

GPS mobility logs are available from such a user whose 

driving pattern is reckless, i.e., exhibiting much higher 

speed compared to the average driving speed; observed 

for that road. In such a case, calculating speed from 

multiple such GPS logs and estimating the overall traffic 

behavior, might not reflect the exact aggregate behavior 

(detail in Section 4) of the vehicles passing through the 

road segment. 

It may derive a wrong speed profile, e.g., a moderate 

traffic state might be inferred as free flow. The reverse 

may also be true where a user is over-cautious while 

driving, thereby, generating speed samples of lower 

range than observed speed range as an 

aggregate behavior. Dealing with such anomalies is 

challenging, especially in areas where most user density 

is sparse. Hence, one should not rely on GPS mobility 

logs or accelerometer to estimate speed; rather, might 

6 https://www.compare.com/auto-insurance/guides/

top-3-best-traffic-apps 

7 https://support.google.com/maps/forum/

AAAAQuUrST81I07Ih50xdk/?hl=en&gpf=%23!topic%2Fma

ps%2F1I07Ih50xdk 

8 https://waze.uservoice.com/forums/59223- waze- 

suggestion box/suggestions/ 3273686-color- coding-

for-traffic-reportsindication 

9https://nptel.ac.in/courses/105101087/downloads/

Lec-31.pdf 

10https://support.google.com/maps/forum/

AAAAQuUrST81I07Ih50xdk/?hl=en&gpf=%23!topic%2Fmaps%

2F1I07Ih50xdk 
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investigate additional features like road surface, 

traffic condition, and map-related information, which 

has a huge influence or impact on speed profile for a  

road segment.  Therefore, proper choice of those 

features, sampling them using smartphone sensors, 

encoding the raw samples, and finally developing a 

model to map the feature set into speed profile 

classes, is non-trivial. Hence, the overall challenge is 

to derive a speed profile from ambient road features 

without directly using speed signatures to eliminate 

anomalies due to specific driving maneuvers, 

especially when the sample set is sparse.  

Existing Works: Prior research has been carried out 

on intelligent road traffic and transport management 

systems [3, 23] road traffic congestion measurement 

[12], travel time estimation [20], Modelling urban 

mobility pattern,  Characterization of city traffic and 

road, etc.  Researchers have worked on off-line or online 

GPS trace of vehicles, online social media data  [22], 

sensor data from accelerometer and microphone of high-

end mobile phone or image or video captured by roadside 

cameras [13]. GPS trace is analyzed to develop transport 

and traffic monitoring systems,  traffic congestion, or any 

special event is extracted from online social media. 

Sensor data are applied to detect bad road surface 

conditions and traffic congestion. 

Some researchers have worked on analyzing the impact of 

external factors (e.g., weather,  event) on city traffic flow 

[6]. These existing works do not mention the quantitative 

measures to assess road behaviors like the roughness of 

road surface, narrow roads, crowdedness during traffic 

analysis. These subjective factors are still not considered 

in existing traffic estimation systems. To the best of our 

knowledge, a study of speed estimation using ambient 

subjective features and inferring its context has not yet 

been done. 

11 https://www.ncbi.nlm.nih.gov/pmc/articles/

12https://developers.google.com/maps/documentati

on/distance-matrix/start 

13https://stackoverflow.com/questions/432773

42/can-we-get-speed-limit-information-from-

waze-apis 

14http://opentraffic.io/#partes 

15 Space-mean speed is the harmonic mean of 

the spot speed over a specified road segment 

of unit length. Space mean speed is always 

lower than the time mean speed as it weights 

slower vehicles more heavily as they occupy 

the road stretch for longer duration of time 

Contribution: Firstly, through an extensive 

study, we identified features that significantly influence 
the aggregate speed profile of a road segment and also can 
be easily derived. We have used road surface quality, the 
density of vehicles, type of neighborhood, and count of 
road intersections for a particular road segment and 
developed a machine learning model. To eliminate the 
noise due to driving samples, for training purposes, we 
collected samples in a controlled environment, using a 
group of 12 volunteers who travelled 1184km city roads 
at Durgapur, a suburban city in India, on 2-wheelers for 
five months. These volunteers recorded count of potholes 
and bumps (as measure of roughness of road surface), 
honking levels (a measure of vehicle density) WiFi 
hotspot density (denoting type of neighborhood market 

place/highway) by using our customized smartphone 

app, RoadSpeedSense for all road segments of uniform 
length of 200m along a particular route. The above 
features, coupled with the count of road intersections 
extracted from Google map for a road segment and time 
of the day (i.e., morning/noon/evening/night) is used to 
train the learning model. For each sample of this feature 
set is associated with an estimated speed range derived 
from GPS mobility logs of volunteers along a road 
segment. We have carried out the experiments on 
different classification algorithms like K-nearest 
Neighbour(KNN), Decision Tree(DT), Random 
Forest(RF), and Gradient Boost(GB) with the necessary 
tuning of parameters which are discussed in Section 4. 
The experimental results show that GB outperforms other 
classification algorithms in estimating the speed class of 
road segments among all classifier algorithms with the 
highest F1-Score of 0.8345. Secondly, to understand the 
context, we used the interpretable LIME model, which is 
explained in Section 5, to analyze the learning model 
behavior for a particular feature.  Thirdly, as a possible 
application, we illustrated how a fair driver rating system 
could be derived from our results, as discussed in Section 
5. The results obtained from the proposed novel
framework provides a proof of concept that speed profiles

may be successfully derived from ambient road features

even when sample space is sparse. In this paper, we have
presented a detail literature study in Section 2, and a
comprehensive end-to-end system is explained in Section
3 whereas in Section 4, a detailed analysis of correlation
between speed of vehicles and selected road features, the
extraction of road features from raw sensor data as well as
the machine learning algorithms are well discussed. In
Section 5, a thorough analysis of experimental results are
presented, Section 6 describes an application
of RoadSpeedSense, and finally, Section 7 concludes the
paper.
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2. Related Works

This section provides an overview of existing literature 

that relates to intelligent road traffic monitoring and 

management system. Our broad focus is to review the 

parameters used to estimate the mean speed of vehicles 

along a road and the techniques to measure those 

parameters. The review will Firstly, discuss methods for 

estimation of parameters like traffic volume, flow, 

density using sensor infrastructures. Secondly, we 

highlight the works on real-time traffic/congestion 

monitoring and route planning using GPS  data.  Thirdly,  

we discuss techniques on detecting traffic states,  traffic 

speed, congestion using several other features other than  

GPS data like sound,  pollution emission, weather data, 

GSM signal, physical characteristics of the road,  social 

media, etc. Finally,  we also mention the systems that use 

smartphone sensors to detect road surface conditions, 

which is an important feature that affects vehicle speed.  

Study  of   traffic behaviour  using only 

GPS logs:  Several systems use GPS  logs of probe 

vehicles for real-time traffic monitoring and 

understanding travel behavior.  Biagioni et al. [3] 

extracts routes, stops, and schedule from GPS  traces of 

cars, i.e., cabs, bus. Thiagarajan et al. [20] focus on real-

time route planning, hotspot detection, and travel time 

estimation from GPS traces collected by the war-driving 

approach.  Xin et al. [23] aim at forecasting collector 

road speeds by utilizing car GPS signals. Mandal et al. 

characterize the stoppage pattern of public buses from 

historical  GPS logs  [9] [10]. Nguyen et al. [12] propose 

a traffic congestion monitoring system using historical 

and real-time vehicular data. By modelling traffic flow 

from historical logs, they have predicted and verified 

traffic congestion. Works described above only utilizes 

GPS traces for extraction of a different kind of traffic 

information. It may be noted that sudden changes in 

vehicle speed are not always well captured well by GPS, 

as reported by Zong  [25]. 

Study of traffic behaviour using 

features in   addition to GPS logs: In 

addition to GPS logs, researchers have worked on multi-
modal non-GPS features like video/image, the sound of 
honks, GSM radio signal, weather data and road network 
data as well as social media feeds for subjective analysis 
of traffic behavior. Hoang [6] et al. utilizes GSM radio 
signal, road network data, and weather data in addition to 
GPS logs to capture seasonal changes and instantaneous 

changes. Park et al. [13] have used the GPS data in 

combination with camera images to propose a traffic risk 
detection model that automatically detects dangerous 
situations by monitoring driving behavior. Vij et al. [21] 
have used microphone data of smartphones in an effective 

way of identifying different traffic states. Authors show 

that, by using audio analysis, detection of a particular 

traffic state becomes faster and easier. Sen et al. [17] 

estimate the speed of a vehicle from vehicular honks. 

Moreover, in [16] the author presents an acoustic sensing 

based technique for real-time congestion monitoring on 

chaotic roads. Zheng et al. [18] estimate the gas 

consumption and pollution levels emitted by vehicles 

traveling on ways to determine the travel speed of road 

segments. Additionally, using road features, POI, and the 

global position of the road, they aim to infer the traffic 

volume from travel speed. In another approach, Wang et 

al. [22] combine social media data with road features to 

identify traffic congestion on city roads. They estimate 

citywide traffic congestion from social media by mining 

the spatial and temporal correlations of the road segments 

facing congestion from historical data. The authors 

extracted the physical features of roads from road network 

data. They also measured the impact of a social event on 

nearby road segments. Hence, the above-studied features 

can be used along with GPS to infer traffic behavior to a 

certain extent. However, the surface condition of a road 

segment also plays a vital role in affecting vehicle speed. 

 Study  of   road  surface condition using 

GPS smartphone  sensors: Even though many of 

the road features like the number of intersections,  road 

type (highway/arterial), etc. may be extracted from map 

data mining, gauging the surface condition of roads is 

nontrivial. Various road sensing techniques have been 

deployed using data from different smartphone sensors 

such as accelerometers, microphones belonging to users 

traveling in vehicles. This sensing technique is applied 

for the detection of road surface conditions or traffic 

congestion. From a detail literature study,  we have 

observed that most of the researchers either have 

combined online data with sensor data or historical logs 

of traffic data with smartphone-like GPS, accelerometer 

data,  microphone data, and mobile phone signals, etc. 

Real-time GPS data provides proper traffic information, 

but modelling the traffic characteristics needs a detail 

behavior analysis of other sensor data and especially 

those for road characterization. Eriksson et al. [5] 

developed a Pothole  Patrol system to detect road 

anomalies by using accelerometers and  GPS  sensors 

installed in taxis.  Mohan et.al.[11] presents a system to 

monitor road conditions by detecting potholes,  bumps, 

honking from an accelerometer, microphone,  GSM  

radio signal, and GPS  data.  Vittorio et al.[1] applied the 

anomaly detection method on mobile devices based on 

vertical acceleration and  GPS signals.  Perttunen et al. 

[14] proposed a road anomaly detection method using

GPS and acceleration signals.  Wolverine [2] uses a

smartphone sensor to detect road conditions and bumps.

The authors have proposed a  reorientation using a

magnetometer beside accelerometer and  GPS  sensors.

R. Mandal et al.
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Figure 1. System architecture for Speed Profiling, For  a road  segment (Segi ), road features are: 
(a)Honk duration(Hd ), (b)Road  Surface Index (RI), (c)Intersection Density (Id ) & WiFi Density (Wd)

Nuno Silva et al. [19] detects road condition from  GPS 

and accelerometer. Haofu  Han et al. [24] estimates 

speed from an accelerometer, which senses natural 

driving conditions in urban environments, including 

making turns,  stopping, and passing through uneven 

road surfaces.  They contribute to eliminating the errors 

in speed estimation caused by accelerations in real-time. 

A. Chowdhury [4] investigates the noise performance of

accelerometers, available in smartphones and finally

apply the analysis for estimating the speed of moving

vehicle because sudden changes in vehicle speed are not

always captured well by GPS.  X. Zong  [25].

From a detailed study on existing literature, we may

observe that people have used offline and online speed

traces of vehicles for a traffic monitoring system.

Temporal and spatial speed traces along city roads are

analyzed to characterize the traffic.  But, the speed of

vehicles is random as drivers follow a random driving

style along a city road, especially at the bad road surface

and populated road segment. These aspects place a

significant question mark on the applicability of speed

traces for chaotic road conditions. Applicability of online

social media data is also not suitable where the density

of the crowd is sparse, and network connectivity is

intermittent. By application of sensor data  (i.e.,

accelerometer and microphone) apart from GPS,  people

have focused on identifying particular events like bad

road surface or traffic congestion, etc.  However, to 

generate a good speed profile for a road segment, it is 

essential to sense the road characteristics of a particular 

road segment because the speed of the vehicle gets very 

much affected by different road characteristics. In 

summary, the existing literature fails to consider the 

Spatio-temporal uncertainties of personalized driving 

behavior. The challenge lies in (a) detecting the actual 

speed profile from Spatio-temporal anomalies in speed 

traces of vehicles, and (b) Finding the dependency of 

vehicles on different road features.  (c) Generating 

context-aware temporal speed profile for city road 

segments. Such a context-aware speed profile will also 

trigger in generating the driver rating system, which will 

help the transport authority to evaluate the driver profile 

properly. It is concluded that several road factors affect 

the speed of traffic.Therefore, these important factors 

should be considered together while ranking the traffic 

state as veryfast, fast, slow, etc. for different road 

segments. Hence, each road segment should be ranked 

according to these features, and based on this ranking, 

the speed of traffic should be classified into different 

categories. Given a Road Segment  Segi  of 

the  City  Ci  with features (a) Honk Duration (Hd), (b) 

Road Surface Index (RI), (c) InterSection Density (Id ) , 

and (d) WiFi Density (Wd ), Is it possible to classify the 

(Segi ) as  slow, normal, fast and veryfast ?   
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Table 1. Information of 3 routes from Durgapur, India used in our case study

3. RoadSpeedSense:System Overview

The overall system architecture along with different 

modules are shown in Figure 1. It consists  of different 

modules for data  acquisition  and  storage,  processing  of 

data in web-server,  training speed estimation model using 

the processed data, generation of context-aware speed 

profile of city roads  followed by development of smart-

phone or desktop based application to reveal traffic 

behaviour  based on road  characteristics of city roads  on 

digital  map. Following is a brief description of each 

module. 

Module 1: Sensor Data Acquisition – To capture

the inherent features  of city roads which affects the 

speed of traffic; we have collected  smart-phone sensor 

data  for total  1184km of  city roads  for three  different 

routes  at city of Durgapur by a group of volunteers on 

2 wheeler vehicles.  The  detail  specifications  of routes  

are  given in Table 1. We have  developed  a simple 

smart-phone based  android application to collect 

these sensor data from smart-phone; carried  by  

volunteers  for almost  five months of  duration as shown 

in Figure 2. The application records the WiFi, 

accelerometer, microphone   and   GPS sensors  data   

of  android   smart- phone. A volunteer while starting 

his/her trip,  starts the application for logging the 

sensors data.  The application records,  i) GPS data  with 

time.  ii) SSID and signal strength of WiFi. iii) 

Accelerometer data. iv) Microphone  sensor data. 

Module 2: Data  Processing at  Application 

Server– Collected sensor data  are stored in main

application server.  Collected  data  are pulled  from 

cloud storage time  to  time  and  are  processed  by  

separating data  for different modes  of transport (i.e.  

Bus,  MotorCycle,  Car) while collecting. Data  are 

also geo-tagged by corresponding GPS trails 

based on date and time of collection. Newly 

uploaded  data  are identified  and are verified whether it 

is from a new route  or an existing one. Identification of 

road segments  are also performed  in this module. 

Module 3: Data Processing and Machine 

Learning Model– Different road features like 

road surface condition, road  network,  available  

WiFi  signal and road network  are extracted from 

collected sensor data  for 

each road segments.  The features  of one road segment 

are tagged  with  particular speed class and  time  as 

observed by volunteers. Thus,  a robust  training dataset is 

prepared to characterize the  city road  features  with  its 

speed at  a particular time.  These  training dataset is used 

to  train the learning  model. 

Module 4: Application Development- Different 

applications are developed from speed estimation of 

learning model like, speed profiling of city  roads, 

finding reasons behind  slow traffic and driver  rating 

system. 

Figure 2. Android Application for Sensor  
Data Acquisition.

Route No.of Trails Highway road Market road Normal city road Total Distance 

Route 1 

(8.7  km) 
60 2.2 km 2.8 km 3.7 km 522 km 

Route 2 
(6.2  km) 

60 0 km 4.5 km 1.7 km 372 km 

Route 3 
(8.3  km) 

35 7.2 km 0 km 1.1 km 290 km 

R. Mandal et al.
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4. Choice of Features Affecting Speed

To understand the characteristics of a particular road 

segment, we have selected some features which may 

have strong correlation with the speed of vehicles on the 

road.  Sound of honks from vehicles well describes a 

busy road; caused by overloaded traffic, available WiFi 

signal signifies a high activity area like a market place, 

stores,  commercial complex,  tourist spot,  stadium, 

auditorium, or any popular point of interest; where 

people gather for different purposes. At such high 

activity  areas, during busy hour, traffic movement gets 

disrupted. Therefore,  number of available  WiFi 

signals is the right choice of feature  to detect the high 

presence of crowd on a road segment.  The presence 

of bumps,  potholes on the road, or broken road 

seriously affects the speed of vehicles. Therefore, 

Road surface condition is an essential feature for 

traffic speed estimation. Another exciting feature is 

the structure of the road network, which plays a useful 

role in creating traffic congestion because traffic gets 

interrupted when vehicles from intersecting roads 

enter the main road.  Hence, if the number of 

intersecting roads is high,  then there is more chance 

of slow traffic. Therefore,  number of intersections is 

another useful feature to correlate with the speed of 

the vehicle. We have classified features mentioned 

above into four categories  like following, 

– Heavy load of vehicles (i.e., traffic feature).

– High human activity  (presence of pedestrians on the

road).

– Road  Surface  Condition  (i.e.,  Presence of potholes,

bumps on the road or broken road).

– Road network (Number of crossroads/intersections,

junction points along a road segment).

4.1. Honk Duration (Hd) 

The amount of honking is an excellent feature to 

capture the load of vehicles on a road segment [17], 

[21], [16]. On city-roads, as well as on highways, 

honks of vehicles are used to alert the surrounding 

vehicles for safe driving. Honk increases noise level 

when vehicles get stuck in traffic congestion and try to 

communicate with other vehicles to clear the road 

blockage. Therefore, during congestion, the duration of 
honk sound is much higher than a standard traffic 

condition. Therefore, honk duration is one of the most 

available features to detect traffic congestion when 

speed of traffic is obviously slow. Hence,  Hd has a 

strong correlation with the mean speed of vehicles 

along a road segment.  

Figure 3. Correlation of Hd and mean speed of vehicles. 

Figure 3 shows the correlation Hd and mean speed 

for different road segments from the market, highway, 

and normal city zones. It clearly shows that, if Hd 

increases, then mean speed along a particular 

road segment decreases. The most exciting 

observation made from Figure 3 is that almost all the 

segments, which have a honk duration greater than 4 

seconds, are the segments from the market zone. The 

mean speed values for these segments also range 

below 20km/hr, which denotes a slow speed class as 

per our observation during data collection. 

Therefore, Hd can clearly distinguish the market 

segments and their slow speed class. But the values of Hd 

for highway and normal city road segments are 

almost the same. This feature of Hd is prominent for 

traffic congestion, which is an obvious case of the 

market zone. But, in normal city roads or highways 

specifically for our city of case study, such congestion is 

very rare because of more extensive road space and 

lesser gathering of people than market area. Therefore, 

this feature is very relevant to a slow traffic state. The 

inset of Figure 3 shows the honk duration in seconds 

for each speed class. Slow speed class shows the highest 

honk duration of 5.17 sec on average, whereas, 

veryfast speed class has an average  Hd of 

0.2sec. A detail observation of Figure 3 shows that 

there are some market segments where mean speed of 

vehicles has exceeded 70km/hour speed, and honk 

duration is also either 0 or lesser than 4sec. These may 

happen for rash driving by any particular driver 

during the non-busy hour (i.e., early morning or late night) 
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when market is closed. Even for some segments of normal 

city roads also, the mean speed is very high i.e., above 

70km/hour.  

Figure 4. Honks Spectrogram. 

Figure 4 depicts the spectrogram of a horn sound i.e., a 

time versus frequency plot of sound trace for a road 

segment, with higher sound power depicted by bright 

colored yellow shades. The frequency harmonics are 

visible (with a fundamental frequency under 500 Hz), 

and there is a considerable amount of energy around the 

3 kHz band, which is human ear sensitive. Since most of 

the honk frequency is within the range of 2-4 kHz; 

therefore, we apply the honk detection method on the 

sound data for each trail with frequencies within this 

range. We apply a bandpass filtering method to filter out 

the noise outside this range. After this step, we sample 

the filtered sound trace into 1-second windows and 

calculate the maximum amplitude for each window. It 

was observed that most honks exceed 80 dB or more 

than 80dB. Therefore, 80 dB is chosen as threshold value 

to detect honks. So any 1-second window having 

amplitude more than this threshold is tagged as a honk. 

Finally, we have labeled each 1-second window of sound 

trace, recorded for each trail. In the next step, these 

sound data is localized with GPS location from the GPS 

trail. Hd of a particular segment is the sum of those 

particular 1-second windows where the sound has 

exceeded the threshold value 80dB. The calculation 

of Hd is shown in Equation 1. 

Hd(Segi) = i   where Soundi  ≥ 80dB

…(1)

4.2. WiFi Density (Wd) 

Available WiFi signal is an excellent feature to capture 

human activity, which varies with location and time. In 

this smart society, WiFi access points are mounted for 

people to provide internet facility. Higher WiFi density 

indeed signifies the high possibility of human presence 

in an area because WiFi access points are mounted in 

such a planned place where a large gathering of people is 

found. WiFi signals are available at market places, 

stores, commercial complex, tourist spots, stadium, 

auditorium, or at any popular point of interest. Therefore, 

higher WiFi signals indicate higher human activity 

which causes decrease in speed of vehicles along a road 

segment. Wd  is a handy feature to identify a busy area 

like market area in our case study and speed of vehicle is 

obviously slow in this area. Therefore,  Wd  shows a 

strong correlation with  slow speed class as shown in 

Figure 5. But, for highway or normal city area,  Wd  is 

not so prominent factor. Inset of Figure 5 shows different 

speed classes and their average  Wd. Our customized 

android application for data collection continuously 

captures the WiFi data. The application scans for 

available WiFi access points every second and records 

the MAC address, SSID, and signal strength, received by 

each access point. First, the timestamp is compared in 

both GPS and WiFi log files, and a new file is generated 

that combines GPS positions and corresponding WiFi 

signal with time. For a specific segment, the MAC ID of 

the distinct WiFi access point is counted to calculate the 

total number of distinct WiFi access points along a 

segment for a single trail. Wd is calculated by dividing 

the number of distinct access points by the length of the 

segment, as shown in Equation 2 and 3. Wd is the number 

of distinct access points per unit distance. 

W = count ( unique MACi )  …(2)

Wd (Segi ) = W / len(Segi)  …(3)

In Figure 5, Wd  and corresponding  mean speed of 

vehicles are displayed for different road segments from 

market highway  and  normal  city  zones. 

Figure 5.  Correlation between Wd  and  
Mean  Speed  of Vehicles. 
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Road Surface 
Class 

IRI RSI class Length of  the road 
network (km) 

% 

Excellent/Good 0 ≤ I RI ≤ 2 RSI 1 166.63 47.08 

Fair 2 ≤ I RI ≤ 4 RSI 2 107.74 30.43 

Poor 4 ≤ I RI ≤ 9 RSI 3 63.53 17.94 

Very poor I RI ≥ 9 RSI 4 16.12 4.55 

Table 2. Four levels of  road surface condition based on IRI.

It shows that road segments from the market zone are 

distinguishable by Wd with a value greater than 0.2 to 0.3. 

But, for both highway and normal city road segments, 

the Wd values are almost the same (i.e., <0.2). From inset 
of Figure 5, we may infer that all segments of slow speed 

class have mean Wd value of 0.15, all segments 

of normal speed class have mean Wd of 0.12, all segments 

of fast speed class have mean Wd of 0.06 and finally, all 

segments of veryfast speed class have mean Wd of 0.02. In 

our case study, we have considered a suburban city of 

India where we do not observe the sufficient number of 

WiFi signals in normal city roads and highways because 

the city is not so highly populated in those areas. 

Sometimes the normal city roads behave like highways, 

especially at non-busy hours. Then we get the almost 

same value of Wd for fast and veryfast speed class. 
Another problem with this feature is the temporal 

variations of feature values.  Wd indicates the active WiFi 

access points around, which varies with time. It decreases 

when human activity around a segment drops, and access 

points are switched off or moves away. For most of the 

market segments,  Wd is observed to be lower during 

morning hours; than the rest of the day hours because 

human activity remains high from 9 am to 1 pm and from 

4 pm to 8 pm. Due to these temporal variations, at a non-

busy hour, Wd becomes a weak feature for speed 

prediction. 

4.3. Road Surface Index (RI) 

The speed of vehicle significantly depends on road 

surface condition.  Although  road is free from load of 

vehicles yet speed  will must  be slow for t h e  bad 

road surface. The road roughness can be estimated from 

the accelerometer sensor data of the smart-phone; carried 

by travelers. The sampling frequency of the sensors was 

50Hz. The vertical acceleration  (i.e., along the  Z-axis)  is 

required to calculate the IRI-Proxy [8] index. This index is 

the metric to measure the road surface quality, which has a 

significant impact on the speed of the vehicle and thus on 

traffic state. 

The  International Roughness  Index (IRI-proxy ) [8] is the 

roughness index commonly used to examine the road 

surface condition.  We have calculated IRI-proxy for each 

road segment by multiplying the speed-normalized RMS 

by 100, as shown in Equation 4. For  each road  segment, 

IRI-proxy  can be calculated  as follows, 

IRI-proxy = (n  ● ) ● 100  …(4)

where  n  is  the  number   of  measurements gathered 

from a road segment,  R is the RMS of this road segment, 

Vi  is the  real-time  speed of the  vehicle at  the  location 

of the ith acceleration  measurement. 

Figure 6.  Probability Density Function 
of Mean  Speed  for Different Road  

Surface Index(RI). 

From volunteer’s observation, the road roughness
condition  can be classified into  4 levels (i.e. Excellent, 

Fair, Poor and Very Poor ). These four road condition 

indices are summarized in Table  2.  

Figure  6 shows the probability of mean speed; falling 

within  a  particular range  of values  instead   of a  single 

value.  We  can  observe  an  interesting fact  from  Figure 

6 that, for RSI  4  (i.e.  very  poor)  category  of road 

segments,  the  mean  speed  is 10km/hour and  the 

variation of minimum  and  maximum  speed  range  is 

very  less i.e. -10km/hour to  +10km/hour from  mean 

speed.  But,  for road  surface category RSI 1 (i.e., 

excellent road surface), the mean speed is 40km/hour 
,which denotes veryfast speed class as per our 

observation. The variation of minimum and maximum 

speed range for RSI 1 is -30km/hr to +30km/hour from 

mean speed. It means that mean speed is higher for 

excellent road surface than the mean speed of vehicle 

along inferior road surface but, there is another interesting 

fact that the standard deviation of the mean speed of 

vehicles is also higher for excellent road surface than the 

standard deviation of speed on the poor road surface. It is 

because, on a good road surface, the normal behavior of 

speed is veryfast, but it may differ for other road factors, 
which results in high standard deviation. But, for the poor  
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category of the road surface, the mean speed and standard

deviation both are very low. Therefore it is explainable 

that, for the poor road surface, the speed of the vehicle 

must be slow, and no other road factors can change the 

speed of vehicles. Hence, RI  is another useful feature that 

strongly correlates with slow speed class. For the other 

two categories of RSI, we can conclude the same analysis 

from Figure 6. 

4.4. Intersection Density (Id) 

Road  Intersection is a crossover of two or more than two 

road segments.  These are the locations where the normal 

flow of traffic gets stuck due to the crossing maneuvers of 

vehicles moving in different directions.  Vehicles get slow 

down at these locations that cause traffic delays.  Overall, 

traffic flow depends on this number of intersections. In 

our experiment, for all road segments,  we have counted 

all three and four-head intersections for each road 

segment, and intersection density is calculated by dividing 

the total number of intersections for a particular segment 

by the length of that segment as shown in Equation 5 and 

6. We have observed that the maximum number of

intersection was found on road segments passing through

the market area and the normal city area.

Intersections (Segi) = count (Tjunction , Yjunction ,Crossroads) 

…(5)

Id (segi ) = Intersections(segi )/(length(segi ))  …(6)

Figure 7 shows boxplot, which reveals interesting facts 

about the correlation between speed and  ID.  Figure  7 

shows that, for ID  value 0, the mean speed varies within 

Figure 7.  Speed  behavior based  on
Intersection Density (Id)

the range from 10km/hour to 80km/hour and the 1st 

quartile is at mean speed value of 35km/hour, the median 

value is 42km/hour, and the 3rd quartile is at 55km/hour. 

For ID values 1, 2, 3, and 4, we can observe no significant 

variation either in range of minimum and maximum value 

of mean speed or in 1st quartile or 3rd quartile values of 

mean speed. This analysis represents the fact, that if there 

are no intersections (i.e., traffic signal) in a road segment, 

then the mean speed may increase up to 80km/hour, but 

for a single intersection in between a road segment, 

maximum mean speed drops within 40km/hour to 50 

km/hour. More interestingly, if there is more than one 

intersection, then also the distributions of mean speed are 

the same with a single intersection. It means that the 

impact of single and multiple intersections is almost the 
same. Therefore, we can notice a clear separation between 

two scenarios; one is a road segment with intersection and 

road segment without intersection. The mean speed of 

vehicles is correlated with these two scenarios. 

Significant Observation: From this detail investigation 

of features, we can conclude that most of the features are 

most prominent for slow speed class among all other 

speed classes. In a busy hour, all road segments from the 

market zone depict congested traffic state. Therefore, 

honk duration is a nice feature for capturing busy market 
road segments. Similarly, WiFi density is another 

essential feature to capture the human presence, but it is 

time-variant. It is also observed that, for the poor road 

surface, the speed of the vehicle must be slow. Road 

Surface index is a powerful feature that strongly 

correlates with slow speed class. In the case of 

intersection density, we notice a clear separation between 

two scenarios; one is a road segment with intersections 

and road segment without intersections. The mean speed 

of vehicles is correlated with these two scenarios. A 

single feature can clearly distinguish the slow speed class 

from other class ,but for further classification of other 
speed classes (i.e., normal,  fast, or veryfast ), we need a 

combination of all features. 

4.5. Machine  Learning  Models 

Predictive modelling is the concept of building a 

model that is capable of making predictions. 

Typically,  such a model includes a machine 

learning algorithm that learns specific properties 

from a  training dataset to make those predictions. 

Here, we have applied the pattern classification to 

assign discrete speed class labels to road segments 

based on particular observations as outcomes of a 

prediction. In this paper,  we are trying to classify 

the speed profile of a road segment, not only based 

on its speed but also road surface condition,  road 
network structure, demographic profile and load of 

traffic, etc. We have labeled dataset, collected by 

volunteers, to train our learning model. Our 

problem is a classification problem. We have 

carried out our experiment using four 

classification algorithms over the dataset. The 

algorithms are  K Nearest Neighbour(KNN),  
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Segi Wd RI Hd T Id Class 

27 0.012966 1 0.
0

3 0.000480 Fast 

49 0.008956 1 0.
0

2 0.
0

VeryFast 

25 0.009631 2 0.093750 1 0.001445 Normal 

24 0.333728 4 0.176471 4 0.001927 Slow 

Decision Tree(DT), Random  Forest(RF), and 

Gradient Boost(GB). Different machine learning 

models are parameterized so that their behavior 

can be tuned, specific to our given problem. These 

models have several parameters, and finding the 

best combination of parameters is non-trivial. 

Tuning is the process of maximizing a model’s

performance with  neither over-fitting nor creating 

a high variance.  The traffic follows a regular 

pattern for the whole city and a specific time in 

regular life. The variation in traffic characteristics 

depends on demographic characteristics, loads of 

traffic, which vary with time, road surface 

condition, road network, human mobility, weather 

condition, etc. So we can assume that there are 

particular traffic patterns like weekdays patterns, 

holiday patterns, time level patterns, seasonal 

patterns, etc. Machine learning algorithms are 

composed of finding  similar past patterns from 

the data set and, with the help of these patterns, 

classify the new observation. In supervised 

machine learning,  each data  input object is 

preassigned a class label. The main task of 

supervised algorithms is to learn a model that 

ideally produces the same labeling for the 

provided data and generalizes well on unseen data 

(i.e., prediction). It is the main objective of 

classification algorithms. 

4.5.1 Dataset  Preparation 

Data preparation is an essential phase before applying any 

machine learning algorithms. If there is much irrelevant 

and redundant information present or noisy and unreliable 

data,  then it causes the algorithm to produce less 

accuracy. Data pre-processing includes cleaning, instance 

selection, normalization, transformation, feature 

extraction, and selection, etc. Generally,  we split the 

dataset with a ratio of 70% for the training data and 30% 

as test data for cross validation.  For our dataset, we split 

into 80% for training data and  20% for the test data.  A 

sample of our dataset is shown in Table  3. 

Table 3.  Sample  of   the dataset (Segment  ID (Segi), 
WiFi density (Wd)  Road Surface 
Index(RI), Honk duration (Hd), 
Intersection Density (Id ) 

We have presented a detail description of our training 

dataset as well as the test data set, which has been used 

for our experiment following in a tabular form. 

In Table 4, we have shown a total number of road 

segments that have been used to train the learning model 

for three routes individually. We have presented the 

number of road segments for each class for each of the 

three routes. We have enhanced our training dataset by 

introducing a new route. At Route 1, we have 355 road 

segments from fast class, 1425 number of segments of 

normal class, 81 number of segments from slow class, and 

5 segments from veryfast class. Similarly, for Route 2, we 

have 62 fast class, 52 normal class, 23 slow class, and 255 

veryfast class of road segments. From Route 3, we have 

612 number of fast class, 853 number of normal class, 

200 number of slow class, and 31 veryfast class of road 

segments. From the new Route also, we have collected 

data for 274 fast class, 459 normal class, 117 slow class, 

and 111 veryfast class of road segments. In total, we have 

1303 number of fast class road segments, 2789 number of 

road segments with normal class labeling, 421 number of 

slow class segments ,and 402 number of veryfast road 

segments. A total 4915 number of road segments have 

been used to build a robust training dataset to train our 

learning model. 

Number of segments of different class 

Route# Fast Normal Slow Very 

fast 

Total 

Route 1 112 429 28 2 571 

Route 2 19 18 11 81 129 

Route 3 183 300 73 9 565 

New 

Route 

78 138 32 40 288 

Total 392 885 144 132 1553 

Table 5. Description of Test Data

Table 4. Description of Training Data

Number of Segments of Different Class 

Route# Fast Normal Slow Very 

fast 

Total 

Route 1 355 1425 81 5 1866 

Route 2 62 52 23 255 392 

Route 3 612 853 200 31 1696 

New 

Route 

274 459 117 111 961 

Total 1303 2789 421 402 4915 

Time(T), 
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In Table 5, we have shown the total number of road 

segments that have been used to test the learning 

model for three routes individually. We have also 

enriched the test dataset by introducing data from a 

new route. In total, we have 392 number of fast class 

road segments, 885 number of road segments with 

normal class labeling, 144 number of slow class 

segments, and 132 number of veryfast road segments. 

A total of 1553 number of road segments have been 

used to build a robust test dataset to test our learning 

model. In Table 1, in addition to the route description, 
we have mentioned the characteristics features of each 

route in terms of the type of locality/zone along the 

route i.e., the spatial variations of the route like 

highway, market or normal city road. We have also 

collected trails from each route at different hours of 

the day. While collecting the data, we have tried to 

select those routes which have a good combination of 

different types zones and we have also tried to collect 

the data for all time zones of the day for each route to 

develop a well-balanced robust training and test 

dataset.  

4.5.2 Experiment with Classification 
Algorithms 

Algorithm Parameter Values Best 
Fit 

KNN 

n  neighbors 3,5,7,9,11 7 
Weights uniform, distance uniform 

distance metric euclidean, 
manhattan

manhatt
an 

DT 
max depth 2,3,4,5,6,7 5 
min  samples leaf (0.1,0.5] 0.1 

RF 

max depth 2,3,4,5,6,7 7 
n  estimators 10,15,20,25,30 20 

min  samples leaf (0.1,0.5] 0.1 

GB 

max depth 2,3,4,5,6,7 3 
n  estimators 100,120,150,200,250 120 

learning rate (0,1.0] 0.125 

min  samples leaf (0.1,0.5] 0.1 

Parameter Tuning of KNN  Selection of k is non-

trivial for KNN because the small value of K will 

have a stronger influence of noise on the outcome and 

a large value of K makes the algorithm 

computationally expensive. So, we performed 10 

fold cross-validation to find out the best K value. 

Our whole dataset is divided into training set and 

validation set. We take one single instance from the 

training set and use it to train the model. Then we 

measure the error on the validation set and on that 

single training instance. The error on the training 

instance is 0. However, the error on the validation 

set is huge because the model is trained with a 

single training instance. As the size of the training 

set increases, the accuracy of classification for any 

training instance i.e., training score decreases and 

accuracy of the validation set i.e., testing score 

increases. Initially, when the value of K = 1, each 

sample is using itself as a reference, which is a case of 

over-fitting. When K increases from 1 to 7, the test 

score improves subsequently. For the K value of more 

than 7, the score becomes consistent. Therefore, 7 is 

the right choice of k for this particular dataset. The co-

relation or similarity of features is defined by distance 

metric (Manhattan or Euclidean) between two data 

points. For our dataset, we have chosen Manhattan 

distance because Manhattan distance may be 

preferable to Euclidean distance for the case of high 

dimensional data. For our case, we have tested for both 
distance metric, but Manhattan distance gives a better 

result. 

Parameter Tuning of Decision Tree  The more rooted the 

tree, the more splits it has, and it captures more 

information about the dataset. We fit a decision tree with 

depths ranging from 1 to 32. We see an increase in the test 

score as depth increases till depth = 5 but gradually 

decreases after 5 as the decision tree model suffers from 

overfitting. So, depth = 5 was chosen. Additionally, the 

Min-sample-per-leaf node was set to 1 by default, which 

would naturally make the tree overfit and learn from all 

the data points, including outliers. We increase it to 1% of 

the data points to stop the tree from prematurely 

classifying these outliers. 

Parameter Tuning of Random Forest, Usually the 

more is the number of decision trees (n estimators), 

the more accurate classification is possible. But, 
more number of decision trees can slow down the 

training process. We have observed that the test 

score remains consistent as we keep on adding more 

n estimators. For this model, we have chosen n 

estimators = 20. 

Parameter Tuning of Gradient Boost, Increasing the 

number of boosting iterations (n estimators) to 

perform in the Gradient Boosting algorithm, reduces 

the error on the training set, but setting it too high 

may lead to over-fitting. So, in our case, we have 

chosen n estimators = 120. A technique to slow 
down the learning in the gradient boosting model is 

to apply a weight factor (learning rate) for the 

corrections by new trees when added to the model; 

lower learning rate requires more iterations. Other 

parameters to tune depth of the tree, is min number 

of data points allowed in a leaf node.  

Table 6 shows the parameters used in the 

classification algorithms and their optimal parameter 

values for the best performance. 

5. Result Analysis

We have carried out our experiments with four 

learning algorithms i.e.  K Nearest  Neighbour  

Table 6. ML configurations for K Nearest Neighbor (KNN), DecisionTree(DT), 
Random Forest(RF), GradientBoost (GB)
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Notations Definition/Interpretation 

True Positive (TP) All actual instances of speed  category Speedx  from  volunters GPS  trail, that are  classified  as Speedx . 

False  Positive (FP) all non-Speedx  instances that are  classified  as Speedx . 

False  Negative (FN) all Speedx  instances that are  not  classified  as Speedx

Precision (P) Ratio of True Positive Detections and  Total Detections. [TP/(TP+FP)] 

Recall  (R) Ratio of True Positive Detections and  Total Instances. [TP/(TP+FN)] 

F1-Score Harmonic Mean  of Precision and  Recall .[2*P*R/(P+R)] 

Table 7.  Significance of True Positive, False  Positive, False  Negative and  F1-Score.

(KNN),  Decision Tree(DT), Random  Forest(RF), 

and Gradient Boost(GB) on overall data set; 

collected from a suburban city of Durgapur.  

In the following sections, we have evaluated the 

performance of different learning models.  We have 

analyzed our experimental results further in detail 

for each speed category individually as well as for 

each road type separately.  The model is also 

evaluated for different hours of the day, which also 

infers some exciting facts about city traffic behavior. 

By experimental results, we have shown that our 
learning model not only efficiently predicts the 

practical speed  limit from road features, but it also 

provides additional information about  probable 

reasons of slow speed nature considering the features 

as mentioned earlier of road segments.  Finally, 

after characterizing all city road features,  we can 

have a clear view of the effective speed behavior of 

vehicles across the whole city. Based on such a 

speed profile of a road, we can better assess the 

individual driving performance of a driver because 

driving style is very much subjective to road 
characteristics and such assessment can be extended 

as an alarming system to prevent rash driving 

according to different road conditions. 

5.1 Performance Metric 

We have used the metric of F1-Score  to evaluate the 

accuracy of prediction for unknown test data where 

True Positive(TP), False Positive(FP), and False 

Negative are explained following in Table 7. 

5.2 Performance Evaluation of Learning 
Models 

The performance of learning model is measured based on 
the accuracy of prediction of speed class for a particular 

road segment; compared to the actual speed class for that 

segment. Obtained Accuracy  for  each of the four 

classification algorithms is shown in Figure 8, and detail 

results of Accuracy(%), Recall, Precision, and F1-Score 

of each classifier algorithm are presented in Table 8. It 

clearly shows that GB outperforms all classification 

algorithms with the highest  F1-Score of 0.8345. We have  

considered four categories of speed classes 

i.e., slow, normal,  fast and veryfast  depending on 

different ranges of speed. We have presented four cases of 

different speed ranges, appropriate for our case study, as 

shown in Table 9. 

Figure 8. Obtained Accuracy 
for all classification algorithms. 

Classifiers Accuracy 

(%) 

Recall Precision F1-

Score 

KNN 74.46 0.7551 0.7438 0.7447 

DT 79.86 0.8046 0.7930 0.7875 

RF 82.18 0.8378 0.8171 0.8143 

GB 83.40 0.8401 0.8382 0.8345 

Slow 
km/hr 

Normal 
km/hr 

Fast 
km/h
r

Veryfast 
Km/hr 

Case  1 0-26 26-32 32-39 >39

Case  2 0-20 20-35 35-50 >50

Case  3 0-15 15-30 30-45 >45

Case  4 0-25 25-40 40-55 >55

Table 9. Speed Ranges of Multiple Cases for 
Different Classifications.

Table 8. Comparison of KNN, DT, RF and GB algorithms
on test data set in terms of Accuracy, Precision, Recall and

F1-Score.
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Speed Case 1  Case 2  Case 3  Case 4 

P R F1-Score P R F1-Score P R F1-Score P R F1-Score 

Slow 0.78 0.74 0.76 0.85 0.75 0.8 0.89 0.72 0.79 0.85 0.76 0.8 

Normal 0.79 0.73 0.76 0.86 0.91 0.88 0.86 0.83 0.84 0.85 0.90 0.87 

Fast 0.64 0.66 0.65 0.75 0.67 0.71 0.8 0.84 0.82 0.74 0.58 0.65 

Veryfast 0.75 0.82 0.78 0.68 0.71 0.70 0.75 0.73 0.74 0.62 0.76 0.68 

Table 10. Precision, Recall and F1-Score of GB algorithm for multiple instances of speed classes

Figure 9. Confusion matrix for GB classification algorithm.

We have classified the speed categories of vehicles, based 

on our observations. We have applied a sharp threshold 

on speed ranges to distinguish two adjacent speed classes. 

But avoidance of human perception in choice of these 

thresholds is non-trivial. Therefore, We have excellent 

volunteer experience, and based on their expert 

observation, we have considered four instances where we 
have slightly changed the boundary thresholds to define 

different speed classes. Due to minimal deviation in speed 

at boundary conditions, a slow may be predicted 

as normal or vice versa. It may happen for each adjacent 

classes, which reduces the accuracy of our prediction 

model. To justify such fuzziness in boundary conditions 

of each speed classes, we have carried out our experiment 

for four sets of different speed ranges, which shows that 

little changes in speed ranges do not affect the accuracy 

drastically, as shown in Table 10. 

It shows that accuracy of the classifier algorithm lies 

within a range of 0.8 to 0.88 for 37.5% of cases, 0.7 to 

0.79 for 37% of times, and lies within a range of 0.65 to 

0.68 for 18.75% of times. 

A class wise analysis shows that the F1-Score  varies from 

0.76 to 0.8 for slow speed class, from 0.76 to 0.88 

for normal speed class, from 0.65 to 0.82 for fast speed 

class and finally from 0.68 to 0.78 for veryfast speed class. 

The lesser amount of variation is observed in F1-

Score  for slow and for veryfast speed class because these 

two classes are of extreme category 

whereas normal and fast classes are intermediate and are 

very hard to be hard classified. This indicates that a fuzzy 

classification, especially for normal and fast speed class, 

may improve the result. The performance of the GB 

classifier is presented in a confusion matrix as shown in 

Figure 9, which shows the confusion in the prediction of 

adjacent speed classes. We have used 70% of the dataset 

as a training dataset, and the remaining 30% of data have 

been used as test dataset for cross validation. The 

confusion matrix shows the very high accuracy of 

prediction for the case of normal speed class and shows 

the least accuracy for slow speed class because we have 

more instances for normal speed class than slow speed 

class instances. This is obvious because traffic behavior 

remains normal for maximum city road segments, 

and slow instances of speed classes are observed in very 

few road patches. 

5.3 Impact  of zone on Speed 

We have analyzed the performance of best classification 

algorithm i.e., GB for different zones, which we have 

observed for the city of our case study. We have divided 

the dataset according to the specific zone, and we have 

trained the learning model with 70% of the dataset for a 

particular zone. The residual 30% data for a zone have 

been used as test data. Table 11 shows the F1-

Score  values for each zone for the GB classification 

algorithm, where accuracy of prediction of speed class at 
the market zone is satisfactorily high (i.e., 0.8976) and 

accuracy for highway zone is comparatively less (i.e.,
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0.6535). Normal city road shows a moderate accuracy 

(i.e., 0.8001). Table 12 presents the zone-wise prediction 

and their percentage. We have obtained a good accuracy 

for market area because the road features which we have 

considered to train our learning model, are highly co-

related with almost all types of congestion factors.   

In a suburban city of a developing country, there is no 

separate market complex. The shops are built on both 

roadsides basically on pavements.  Moreover, there are no 

separate lanes for different modes of transport as well as 

for pedestrians. All types of vehicles and paratransit like a 

scooter, cycle, motor-bike, auto-rickshaw, bus, and 

pedestrians travel along the same lane of the same road 

segment. Sometimes the upstream and downstream traffic 

moves on the same lane. 

Actual and 
Predicted 

Zone Count % 

Slow (0.68) 

Highway 4 4.08 

Market 88 89.8 

Normal city 6 6.12 

Normal (0.91) 

Highway 29 3.59 

Market 579 71.75 

Normal city 199 24.66 

Fast (0.76) 

Highway 69 23.08 

Market 85 28.43 

Normal city 145 48.49 

Veryfast (0.70) 
Highway 79 84.95 

Market 85 28.43 

Normal city 145 48.49 

Due to these reasons, a market area of such a city can 

be characterized by all types of congestion factors; 

likewise, a) a huge load of vehicles. b) a high 

number of intersections of other roads.  c) high human 

activity and d) bad road surface (i.e., due to improper 

maintenance). Therefore,  the features like honk duration 

(co-related with loads of vehicles),  number of road 

intersections (co-related with number of intersecting 

roads),  WiFi  (co-related with high human activity) 

and road surface index (co-related with road condition)  

become prominent for market area and captures all 

congestion factors efficiently. But in highway segments, 

such congestion factors are missing.  The  highway  road  

segments are wide enough.

Although a large number of vehicles move along the 

highway, those do not get stuck in the traffic jam and do 

not make the sound of horns.  The highways in a city are 

constructed for congestion-free fast communication at 

long distances.  Therefore,  number of intersecting city 

roads on highway segments is very less. The number of 

pedestrians is very less on the highway, and the road 

surface is also well-maintained by the highway authority. 

Therefore, sometimes, the features like honk duration, 

intersection density,  WiFi density, and road surface 

shows similar behavior with normal city roads. By 
observing each feature value of highway segments,  we 

have found that WiFi density is the most overlapping 

feature between normal city roads and highway. In a 

suburban city of a developing country, a number of 

smartphone and internet users are still very less, and the 

facility of WiFi is also very limited. 

5.4 Experiment on Timelevel and Zone 

We have analyzed the performance of the GB classifier 

algorithm for different hours of the day and also for 

different zones. The time levels are labeled as early 

morning, mid-day, evening, and night time. Figure 10 

shows the plot of accuracy obtained on the basis of time 

levels. The accuracy thus obtained is 73.5% for early 

morning, 77.66% for mid-day, 83.46% for the evening, 

and 76.97% for night time. We find that the accuracy 

obtained during the evening is satisfactorily high, with the 

least being during the early morning. Moreover, all 

features are prominent enough for slow speed class and in 

the evening mostly slow speed class is observed. But in 

the early morning, the traffic remains 

either normal or fast and veryfast. 

Figure 10. Accuracy of GB classifier 
algorithm at different times. 

Table 11. Zonewise  Accuracy of GB  Classifier. 

Zone F1-Score 

Highway 0.6535 

Market 0.8976 

Normal City 0.8001 

Table 12. Zonewise Prediction and Percentage for GB 
classifier. 
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Seg ID Class Rank of  features Inference 

54 Slow Honk  Duration-6, Intersections-3, 

WiFi-5 

Huge  load  of vehicles, more  crossing  and  high 

human activity. 59 Slow Intersections-3, WiFi-24 More  crossing  and  very  high  human activity. 

60 Normal WiFi-69, Intersection-1 High  human activity. 

50 Normal Intersection-5, RSI-3 More  crossing  and  poor  road  surface condition. 

72 Fast RSI-1,  WiFi-2 Good  road  surface condition and  moderate human 
activity.46 Fast Intersections-0, Honk  Duration-0, 

RSI-2
No crossing, No congestion of vehicles  and  good 
road. 67 Veryfast RSI-1,Intersections-0 Good  road  condition and  no crossing.

77 Veryfast RSI-1,  Honk  Duration-0 Good  road  condition and  no congestion of vehicles. 

Table 13. Understanding Model Behavior by LIME. 

Figure 11. Feature Behaviour Analysis using LIME

5.5 Interpreting Machine  Learning  Results 
using LIME 

From the above discussion, we have already achieved 

83.45% accuracy in prediction on the unknown test 

dataset by the GB classifier algorithm. This accuracy 

ensures the strong correlation of road features and speed 
of vehicle along a particular city road segments as well as 

this accuracy confirms the worthiness of all selected road 

features for a right prediction of traffic state. In this 

particular section, we have contributed to the extraction of 

additional information as more as possible. Till now, we 

were satisfied with only information about the traffic state 

of city roads, but we have tried to gain insights about the 

reason behind a particular classification of speed class by 

classifier model, especially slow speed class. The actual 

reason for the slow traffic state will help a traveler to plan 

a route according to her mode of transport, comfort, and 
punctuality. 

5.5.1 Overview of LIME 

To understand the individual classification of a road 

segment by a classifier model, we have used an open-

source framework  LIME [15]. LIME perfectly outlines 

the basic ideas behind its explanation methods.  Model-

agnosticism LIME does not make any assumptions about 

the learning model whose prediction is explained. It treats 

the learning model as a black-box,  so the only way that it 

has to understand the behavior of the model.  It can be 

applied to any machine learning model. The technique 

attempts to understand the model from input of data 

samples and to understand how the predictions change by 

analyzing the internal components and how they interact.  

LIME provides local model interpretability. Explanations 

must be easy to understand by users, which is not 

necessarily true for the feature space used by the model 

because it may use too many input variables.  LIMEs 

explanations use a data representation (called interpretable 

representation) that is different from the original feature 

space.  LIME  modifies a single data sample by tweaking 

the feature values and observes the resulting impact on the 

output. The output of LIME is a list of explanations, 

reflecting the contribution of each feature to the prediction 

of a data sample. It provides local interpretability, and it 

also allows us to determine which feature changes will 

have the most impact on the prediction. LIME  explains a 

single prediction(i.e., local behavior of single instance). 

The features are ranked based on their contribution to a 

particular prediction. From the features of high rank,  we 

can illuminate  the proper reason of a prediction. 

Table 13 shows a few particular instances of prediction for 

our case study, where a clear inference is possible from 

feature ranking by LIME. Figure 11 shows the explanation 

of LIME for one prediction instance of our case study. It is 

explaining a slow instance with all feature values which 

have a major impact on this prediction. The probability of 

this prediction is 0.95. There are 3 features RSI, Honk 

duration, and Intersection density which have major 

contribution to this prediction. RSI or Road Surface Index 

is 4, which interprets a very bad road surface; Honk 

duration is also high (11 sec.), which indicates traffic 

congestion and a load of vehicles, and Intersection density 

has a value of 0.02 which means a moderate number of 

crossing along the segment. Among these features, road  
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Figure 12. Visualization on OpenStreetMap

surface condition is the most prominent reason 

for slow speed class, and then traffic congestion and 

number of signals are also contributing to this prediction. 

According to the fitness of the features in prediction, the 

features are ranked by its individual weight, calculated by 

LIME by fitting a linear model on feature values and their 

target class. Weights of the linear model are used as an 

explanation of the decision. The weight of RSI, Honk 

duration, and Intersection density are 2.00, 0.18, and 0.05, 

respectively. 

5.6 Map Visualisation of LIME 

A web interface and Android application are developed to 

facilitate travelers by providing a traffic information 

service with proper reasoning and all road relevant 

information, which may be inferred from feature values. 

Figure 12 shows a snap of a trail that is already analyzed 

in Table 13. Our developed system provides not only the 

traffic information but also displaying the zone and most 

dominant factors behind predicted traffic state. Figure 

13(a) shows that for 57.4% of trails, Honk duration is the 

prominent feature for prediction as slow speed class. For 

24.2% trails RSI and for 13.1% trails, Intersection density 

work as the main factor for slow speed class prediction. 

For rest of the trails, either WiFi density or Timelevel 

work. These results show that Honk duration is most 

worthy for slow speed class prediction in our case study. 

Figure 13(b) shows that for 43.2% of trails, Intersection 

density works most for prediction of veryfast speed class. 

For 17.2% of trails, RSI works, and for 15.4% of trails, 

Honk duration works as the most prominent factor 

for veryfast prediction of speed class. 

(a) Contribution of all features for Slow 

prediction. 

(b) Contribution of all features for veryfast

prediction. 

Figure 13. Contribution of all features for 
slow and veryfast prediction. 
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6. Application of RoadSpeedSene: 

Assessment  of Driving Behavior 

The above study helps to understand the effective speed 
according to road characteristics for a particular road 

segment of the suburban cities in  developing countries. 

We have carried out a detailed experiment for each zone 

separately at different hours of the day.  Therefore,  in this 

section, we have assessed the driving style of a person 

where the effective speed limit of the particular segment 

is already known. We have  tested the model on speed 

signatures of 4 different drivers along with the same road 

segments at the same time of the day.    

First, we have estimated the effective speed limit of each 
segment by our learning model and have counted the 

number segments which come under 

the fast and veryfast speed class. After this step, we 

analyze the driving signature for every driver for each 

road segment separately. Among the total segments, the 

only segments of the fast and veryfast category which 

match with individual driver’s performance are calculated

for each driver separately. We also calculate the number 

of segments where driver has run 

with  fast and  veryfast  speed, exceeding the estimated 

effective speed limit by learning model. Basically, 

only fast or veryfast driving does not always imply rush 
driving because, if road characteristics are in favor of 

high-speed driving, then it should not be considered as 

rush driving. The only segment where driver has run with 

overspeed should be considered as rush driving. If the 

total number of segments along a route is n and number of 

segments (Si ) with effective speed limit (Speedi ) 

of  fast or  veryfast category which, also matches the 

speed of driver (DSi ) is denoted as H as shown in 

Equation 7. The number of segments where a driver runs 

at  fast or veryfast  speed, exceeding the estimated speed 

limit, is denoted as L, as shown in Equation 8, and 
performance metric of a driver is denoted 

as Driverscore which can be expressed as Equation 9. 

H = i ꓯ Speedi > 40km/hr & Speedi = DSi 

…(7)

L = i ꓯ DSi > 40km/hr & DSi > Speedi 

…(8)

Driverscore = …(9)

Figure 14 shows both the percentage of total road 

segments where driver’s speed is similar to the estimated

speed i.e., either normal or fast and also the road segments 

where driver has exceeded the estimated speed Overspeed 

for each of six drivers on same road segments at the same 

time. In summary, to measure a driver’s performance, we

need to consider the ratio of over-speed 

to fast or veryfast speed, as shown in Figure 14. Here, a 

driver’s score will be maximized if he drives all road

segments with estimated speed by our learning model, and 

it will decrease with over-speed driving. Table 14 shows 

the accuracy of prediction of the classification model i.e., 

GB and the recorded speed for each driver individually. 

The accuracy is calculated again with metric of F1-

Score.  From Table 14, minimum accuracy of 0.77 is 

observed, whereas the highest accuracy is 0.93. 

Figure 14. Driver Performance

Driver ID Accuracy 

Driver-1 93.2 

Driver-2 77 

Driver-3 89.7 

Driver-4 84.6 

Table 14.  Accuracy of prediction by  classification 
model  and individual driving speed. 

7. Conclusion and Future Scope

RoadSpeedSense analyses smartphone sensor data and 

extract the significant fetures which contribute to 

estimating the practical speed limit for a road segment. 

We selected some features that are derived from different 

smartphone sensors that can be available via 

crowdsourcing and used them in a supervised traffic 

speed estimation approach to estimate the traffic state. We 

validated the estimations in a controlled environment 

against volunteer provided labels and evaluated the 

accuracy of the approach. In the best case, we achieved 

83.4% accuracy in estimating the traffic speed by the 
Gradient boosting approach. We are also analysis the 

reason for slow traffic estimation by popular interpretable 

machine learning models like LIME. 

Our RoadSpeedSense system also measures an excellent 

driver rating with accuracy ranging between 0.77 to 0.93 

according to road characteristics. Our model can estimate 

the percentage of road patches along which a driver has 

over speed for a particular trip. Though in this paper, we 
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do not address the common issues of crowdsourcing like 

incentive strategies for data providers, it instead focuses 

on making interesting estimations of traffic state from the 

crowdsourced data when the low volume of data is 

available to model that can enrich the existing map 

services. 
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