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Abstract 

Capturing the complex correlations among the data on the crude oil price time series is challenging, hence accurate 

prediction of it is difficult. Contrast to multilayer artificial neural network, Pi-Sigma neural network (PSNN) is 

characterized with stronger approximation ability, fast learning and higher fault tolerance. Fireworks algorithm (FWA) is a 

new metaheuristic motivated from the occurrence of fireworks explosion, characterized with fast convergence capability, 

parallelism and finds global optima. This article intends to achieve the synergetic effect of both on hybridizing them. It 

uses FWA for optimization of weight and bias of PSNN (FWA-PSNN) and overcomes the limitations of gradient based 

training. It has single hidden layer structure and trainable weight, hence fast and robust. The FWA-PSNN is evaluated on 

prediction of crude oil price time series. Extensive simulation results, performance analysis, and statistical significance test 

suggested the suitability of FWA-PSNN. 
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1. Introduction

Crude oil price plays a major function in the economical 

growth of a country. During last few decades the crude oil 

price has been facing arbitrary changes in its movement. It 

depends upon multiple socioeconomically as well as 

political factors. The random fluctuations and high 

nonlinearities associated with the crude oil price time series 

make its forecasting difficult. Nominal change that occurs to 

the crude oil price gives impact to the petroleum price, crude 

oil products and the global economy. The volatility in the 

price series is generally affected by factors like population, 

demand and supply, political climates, international 
relationship [1]. Thus, a correct and proficient prediction 

instrument is crucial for crude oil price forecast. Advances  

in computational intelligence techniques including artificial 

neural networks (ANNs) are used as better alternative to this 

domain [2]. ANN-based models are applied successfully to 

forecast the crude oil price [3 - 6]. 

ANN has the resemblance with the judgment power of 

human intellect and mimicking it [7 - 9]. The ANN can 

replicate the process of human actions to crack nonlinear 

problems. This characteristic made it popular to be used in 

resolving complex systems. ANNs are measured to be 

valuable modelling process to map input-output relationship 

where the data contains both regularities and exceptions 

such as financial time series. These facts of ANN attract 
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financial stake holders to forecast financial time series with 

ANN based models. Dealing with uncertainty and 

nonlinearity allied with financial data with ANN-based 

forecasting method primarily involves identification of 

patterns in the data and use of such patterns to forecast. 

Multilayer neural networks have certain issues like adding 

more computational complexity, leads to lower learning rate 

and accuracy. They are characterized with structural 

complexity, computational overhead and have black box 

visualization. In contrast to them, higher order neural 

networks (HONN) have certain characteristics such as 
stronger approximation capability, speedy learning 

properties, larger storage and higher fault tolerance 

capability. Also, they have a prevailing mapping single layer 

tunable weight set that overcomes the black box nature [10]. 

Use of higher order terms can amplify the information 

capacity and help solving intricate nonlinear task even with 

a petite network without compromising the convergence 

capability. In the other hand, with the swell in network 

order, there is intensification in tunable weights which may 

lead to additional computation cost. To alleviate these 

drawbacks, another kind of HONN, i.e. PSNN is introduced 
in [11] which use a lesser amount of connection weights. 

Few applications of HONN in predicting financial time 

series are proposed by authors in [12 - 16]. 

The adjustment of neuron weight and bias of ANN is the 

key factor of ANN training and requires frequent human 

interventions. The performance of ANN solely depends 

upon the adjustment of weight and bias vectors. To 

circumvent the limitations of gradient descent based ANN 

training, large number of nature and bio-inspired 

optimization techniques are proposed and applied [17]. 

Evolutionary computing techniques are based on the 

behaviour of nature. Usually, these algorithms are inspired 
from theory of evolution and termed as evolutionary 

optimization algorithms or metaheuristic. The ideas of 

imitating concepts from nature have great potential in 

developing algorithms to solve engineering problems. In 

recent past, applications of these techniques have achieved 

popularity in wide area of engineering, computer science, 

medicine, economics, finance, social networks and so on. 

More often, performance of these techniques depends on 

proper adjustment of several algorithm specific control 

parameters. There is no distinct technique performing well 

on all problems. Evolutionary learning techniques such as 
GA [18], PSO [19], DE [20], Ant colony optimization [21], 

FWA [22] etc. are more proficient than gradient descent 

based methods in searching the optimal solution.  

FWA is a newly suggested metaheuristic which simulates 

the occurrence of fireworks explosion at night [22]. Like 

other nature inspired optimization it is also a population-

based evolutionary algorithm. It tries to find the best fit 

solution in the search space through the explosion of 

fireworks. Several applications of FWA are found in the 

literature for solving real data mining problems. Mean time, 

there are some improved and enhanced version of FWA 

proposed and their superiority have been established. 
However its application toward crude oil price time series is 

limited. Analysis and improvement of fireworks algorithm is 

suggested by authors in [23]. A cooperative framework for 

FWA is suggested in [24]. An enhanced version of FWA is 

proposed and evaluated on standard benchmark functions 

[25]. Adaptive FWA and dynamic search in FWA are also 

introduced by authors in [26 - 27]. 

The intention of current work is to investigate the potential 

of FWA based PSNN (FWA-PSNN) hybrid model on 

forecasting the crude oil price time series. The hybrid model 

employed FWA to optimize the weight and bias vector of 

PSNN. Each location (individual) of FWA can be viewed as 

a possible weight and bias vector for a PSNN. The FWA 
applies local as well as global search techniques in the form 

of fireworks explosion to explore the best possible weight 

and bias vector in the potential search space. The proposed 

hybrid FWA-PSNN model is evaluated on forecasting crude 

oil price time series. The performance of the model is 

compared with that of four other models such as PSO-

PSNN, GA-PSNN, gradient descent based PSNN (GD-

PSNN) and MLP trained similarly. The major advantages of 

the proposed FWA-PSNN based forecasting model are as 

follows. 

 Use of FWA which posses the characteristics of fast

convergence, parallelism, able to find the global

optima, and necessitates lesser number of tunable 

parameters 

 The base ANN, i.e. PSNN possesses single hidden

layer architecture and single trainable weight

vector, hence structurally simple 

 The resulting hybrid model, i.e. FWA-PSNN

possesses both the characteristics of FWA and

PSNN, hence more fast and robust 

 Exhaustive experimentation on real crude oil price

time series and comparative study

 Statistical significance of the proposed model

The article is structured in five major sections. Section 1 

gives a short description about the crude oil price 

forecasting, ANN and FWA. An overview of FWA is 

discussed in Section 2. The FWA-PSNN based forecasting 

is presented in Section 3. Section 4 summarizes the 

experimental outcome and analysis. Section 5 gives the 

concluding remark followed by a relevant list of references. 

2. Related studies

Crude oil is a precious commodity for economical and 

industrial development of a country as well as for global 

economy. Several related and recent studies have been 

carried out in the domain of crude oil forecasting which 

includes both linear as well as nonlinear models. The 

stochastic and nonlinearity behaviour of crude oil prices has 

been demonstrated in the work [28]. The authors compared 

statistical and ANN based models and concluded that ANN 

models produces better forecast. Traditional approaches 

including linear and parametric models are found not 
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efficient in capturing the dynamics of financial time series 

[29, 30].  

The first category of forecasting model includes statistical 

models like autoregressive moving average (ARMA), 

autoregressive integrated moving average (ARIMA), 

generalized autoregressive conditional heteroscedasticity 

(GARCH) and their hybridization. Many authors proposed 

this approach for financial and oil market forecasting. 

Gavriilidis et al. studied the effect of inclusion of oil price 

shocks from different origin in a set of GARCH-X models 

[31]. Herrera et al. evaluated the relative performance of 

various econometrics models using high frequency intra-day 

volatility data [32]. A hybrid metaheuristic approach based 

on ANN, ARIMA, and support vector machines (SVM) was 

proposed by Naderi et al. [33]. A nonlinear metabolic grey 

model corrected by ARIMA (NMGM-ARIMA) for 

enhanced accuracy in China’s foreign oil dependence has 
been demonstrated by Wang et al. [34]. 

The second category includes artificial intelligence, machine 

learning, soft computing, and hybridization of them. Huang 

and Wu [35] developed deep multiple kernel learning 

approach for energy commodity price forecasting. Hybrid 

linear and non-linear techniques for energy demand 

forecasting in China and India are proposed by authors in 

[36]. To study the nonlinear complex nature of crude oil 

price movement Chen et al. [37] proposed a deep learning 

based model and achieved improved forecasting accuracy. A 

GA and fast ensemble empirical mode decomposition (GA-

FEEMD) for forecasting crude oil price time series data has 

been proposed by authors in [38]. They compared the 

proposed model with ARIMA, and ANN found 

improvement. A PSO optimized gray Markov model was 

suggested by Hu et al. [39] and found smaller error and 

better accuracy compared to others. A hybrid PSO and 

radial basis functional neural network is proposed in [40] 

that outperformed other models. A forecasting model based 

on Grey Wolf Optimizer is proposed for short term 

forecasting of energy commodity [41]. The model has been 

compared with model trained with artificial bee colony 

optimization and differential evolution and found more 

competitive. A combination of kernel principal component 

analysis and DE optimized support vector machine is 

proposed for crude oil price prediction [42]. A survey on 

computational methods for crude oil price forecasting has 

been done by authors in [43]. During last decades several 

nature-inspired metaheuristic algorithms as well as machine 

learning techniques have shown their capability in 

application areas like healthcare [44, 46], medical image 

processing [47], query optimization [48], crude oil price 

forecasting [49], optimal feature selection and classification 

[50]. These metaheuristics are population based and able to 

land at global optima with a reasonable computational cost. 

FWA is a recent optimization technique which tries to find 

the best fit solution in the search space through the 

explosion of fireworks. It has characteristics like fast 

convergence and reaching global optima. Analysis and 

improvement of FWA is discussed by authors in [23]. A 

cooperative framework for fireworks algorithm is proposed 

by authors in [24]. Enhanced version of fireworks algorithm 

is proposed and evaluated on standard benchmark functions 

by the authors in [25]. Adaptive FWA and dynamic search 

in FWA are also introduced by authors in [26 - 27]. An icing 

forecasting system based on FWA and weighted least square 

support vector machine is proposed in [44] and the result 

show that the model obtained high prediction accuracy. 

FWA is also applied for portfolio optimization and found 

better to other swarm intelligence methods [45]. FWA and 

adjusted FWA applications for multilevel image threshold 

and retinal image registration are found in [46, 47]. 

3. Methods

This section describes about the metaheuristic, i.e. FWA 

used in this article for optimization of weight and bias 

vector of the PSNN followed by the proposed FWA-PSNN 

based forecasting. The mathematical detail of FWA is 

beyond the range of this article. The base articles are cited 
wherever required. 

3.1. FWA metaheuristic 

Fireworks algorithm is a recently proposed optimization 

technique which mimics the explosion process of fireworks 

[22]. It tries to select certain amount of locations in a search 

space for explosion of fireworks to produce set of sparks. 

Locations with qualitative fireworks are considered for the 

subsequent generation. The procedure continues iteratively 

up to a desired optimum or reaching the stopping condition. 

The process mainly comprises three steps: setting off N 

fireworks at N selected locations, obtaining the locations of 

sparks after explosion and evaluating them, stop on reaching 
optimal location or select N other locations for the next 

generation of explosion. An explosion of fireworks can be 

visualized as a search process in the local space. According 

to the basic FWA, for each firework xi, the amplitude of

explosion (Ai) and number of sparks (si) are defined as

follows: Ai = Â ∙ f(xi)−fmin+ε∑ (f(xj)−fmin)+εpj=1  (1) si = m∙fmax−f(xi)+ε∑ (fmax−f(xj))+εpj=1 ,  (2) 

where Â is the maximum amplitude of explosion. fmax is the

maximum of objective function value and fminis the

minimum objective function values among the p fireworks. 

The m is a controlling parameter for total number of sparks 

generated by a firework and ε is a constant used to avoid

zero division error. Bounds are imposed on sito overcome

the devastating effects of marvelous fireworks as follows: 

si = {smax, if si > smaxsmin, if si < sminsi , otherwise  (3) 

The location of each spark xjgenerated by xiis calculated by

setting z directions randomly and for each dimension k 
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setting the component xjkbased on xik, where 1 ≤ j ≤ si , 1 ≤k ≤ z.

The setting of xjkcan be done in two ways as follows:

 For most sparks, a displacement is added to xjk as:xjk = xik + Ai ∙ rand(−1,1)                     (4)

 For maintaining the diversity, for few specific sparks,

an explosion coefficient based on Gaussian

distribution is applied to xjk as:xjk = xik ∙ Gaussian(1,1)  (5) 

A new location is mapped to the potential space when it falls 

out of the search space as: xjk = xmink + |xjk| % (xmaxk − xmink ),  (6) 

where % is the modulo operator.

The next step is selection of another N location for the 

fireworks explosion. This step always keeps the current best 

location x∗for the next generation. Remaining N-1 locations
are considered on the basis of their distance to other 

locations. The distance between a location xi and other

locations (K) can be calculated as the sum of Euclidean 

distance between them and as follows: Distance (xi) = ∑ ‖xi − xj‖j∈K ,  (7) 

A location is xi selected for the next generation based on a

probability value as follows: prob (xi) = Distance (xi)∑ Distance (xj)j∈K  (8) 

Since the sparks suffer from the power of explosion, they 

move along z directions simultaneously. This makes FWA 

to achieve faster convergence. Also, it avoids the premature 

convergence with the two types of spark generation methods 

and specific location selection method [22]. The advantages 

of FWA over standard PSO and its improved variants are 

demonstrated in the research work [22]. 

3.2. FWA-PSNN based forecasting 

The PSNN belongs to the class of HONN and having 

architecture of double layered as shown in Figure 1. The 

network is feed forward and fully connected [11]. The first 

layer is a composed of summing units and the second layer 

is composed of product units. The network input are feed to 

input layer consist of summation units and the consequent 

outputs are feed to the output layer consist of a product unit. 

The synaptic input-summing layer weights are trainable 

where as the connection summing-product layer weights are 
non-tunable and set to a value of unity. Since only one 

tunable weight set is required, the network achieved a 

significant decline in training time. Linear activation 

functions are used at summing layer units and nonlinear 

activation functions are used by the product units. The order 

of the network increases by one in addition of each extra 

summing unit. The product unit offers higher order 

capabilities to the network by intensifying the input space 

from lower to higher dimension. In this way, the network 

avoids being suffered from exponential swell in weights and 

simultaneously offering better nonlinear separable capacity 

to the network. 

Figure 1. FWA-PSNN based forecasting

The output of FWA-PSNN is calculated as follows. Let the 

output at jth summing component of hidden layer is

computed by summing up the products from each input xiand corresponding weight wijas in Eq. 9.yj = ∑ wij ∗ xi,ni=1  (9) 

where n = volume of input signals fed to the input neurons. 

The output unit computes the product of outputs from the 

summing units of hidden layer. It then forwards this ouput to 

a nonlinear sigmoid activation as in Eq. 10. ŷ = σ(∏ yjmj=1 ),   (10) 

Where, m is the order of the network and symbol σ is the

product operator. Now the target (y) is supplied to the output

neuron, compared with model estimation (ŷ) and the error

value is calculated as follows. error =  |y − ŷ|  (11) 

The objective is to minimize the error function value in Eq. 

11. Each candidate solution represents one potential weight

set for the model. The candidate with least error value is

considered as the best candidate solution. Now the weight

set is optimized as by FWA algorithm. A location

(individual) of FWA can be viewed as a potential weight
and bias vector for the PSNN in the search space. At

beginning, a set of such location is initialized and for each
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such location, two types of explosion are carried out as 

discussed in Section 2. The exploration as well as 

exploitation of the search space is achieved by these 

explosion methods. The locations are then evaluated in 

terms of error signal generation. The location with lowest 

error signal is considered as the best location. The selection 

process is then carried out with inclusion of this best 

location and remaining locations as described in Section 2. 

The above process continues till an optimal location found 

and the search process then terminates. The best location is 

the optimal weight and bias vector for the PSNN model. The 

FWA-PSNN based forecasting is presented by Algorithm1. 

The FWA parameters are chosen as suggested in [22]. The 

TrainData and TestData are generated from the original time 

series using a window of fixed size sliding over it. The 

training and test datasets are normalized using sigmoid 

normalization method. This is explained in Subsection 5.2. 

Algorithm 1: FWA-PSNN-based forecasting 

1. Set FWA parameters

2. Select N locations randomly for fireworks

3. Form TrainData and TestData /*using sliding

window from original time series*/

4. While (more TestData)

4.1. Normalization of TrainData and TestData

 /*using sigmoid method*/ 

     /*Training phase*/ 

4.2. While (stopping criteria == false) 

 Set off N fireworks at N locations 

For each firework xi
Calculate number of sparks siusing Eq.3

Obtain locations of sisparks of firework xi
 using Eq.4. 

   End For 

 For k = 1: m 

Select a firework xj randomly

   Generate a specific spark using Eq.5. 
 End For 

Present TrainData, location xi to PSNN and

 evaluate 

Select the best location x∗and keep it for next

generation 

Select remaining N-1 locations randomly based 

on a probability using Eq.8. 

End While 

/*Test phase*/ 

4.3. Present TestData, and best location x∗ to
PSNN 

Estimate and preserve error  

/*the error will be used to measure the 

performance of the model*/  

End While 

4. Experimental results and analysis

This section explains about the experimental 

data, experimental setup, input selection and 

normalization, performance metrics, experimental 

results, comparative study and result analysis. 

4.1. Experimental data 

The crude oil prices (Dollars per Barrel) are extracted from 

US Department of energy: Energy Information 

Administration web site: http://www.eia.doe.gov/ during 

the period April 1983 to July 2019. The crude oil price 

series are shown by Figure 2 - 5. The information about the 

dataset and descriptive statistics are summarized in Table 1 

and Table 2 respectively. It can be seen from the Figure 2 –
5 that the crude oil price time series are highly fluctuating 

and chaotic by nature. There are random picks and falls on 
the time series. All the experiments are carried out in 

MATLAB-2015 environment, with Intel ® core TM   i3 

CPU, 2.27 GHz processing and 2.42 GB memory size. 

Table 1 Information about four time series 

S.No. Crude oil price
dataset 
(Dollars/Barrel) 

Period No. of 
data 
points 

1 Daily Crude Oil 
Price  

Apr. 04 1983 –
July 02 2019 

9105 

2 Weekly Crude Oil 
Price 

Apr. 08 1983 –
June 28 2019 

1891 

3 Monthly Crude Oil 
Price 

Apr. 1983 –
May 2019 

434 

4 Annual Crude Oil 
Price 

1983 - 2018 36 

A fireworks algorithm based Pi-Sigma neural network (FWA-PSNN) for modelling and forecasting chaotic crude oil price time series

EAI Endorsed Transactions on 
Energy Web 

05 2020 - 07 2020 | Volume 7 | Issue 28 | e2

http://www.eia.doe.gov/


6 

Table 2. Descriptive statistics from crude oil price datasets

Crude oil 
price dataset 
(Dollars per 
Barrel) 

Statistics 

Min. Max. Mean Std dev. Skewness Kurtosis 

Daily Crude 
Oil Price 

10.4200 145.2900 42.9828 28.5640 0.9953 2.8829 

Weekly 
Crude Oil 
Price 

11.0900 142.4600 42.8949 28.5241 1.0011 2.8921 

Monthly 
Crude Oil 
Price 

11.3100 134.0200 42.8508 28.5115 0.9969 2.8629 

Annual 
Crude Oil 
Price 

14.4000 99.7500 42.6214 28.0382 0.8772 2.3527 

Figure 2. Daily crude oil price data
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Figure 3. Weekly crude oil price data

Figure 4. Monthly crude oil price data
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Figure 5. Yearly crude oil price data

4.2. Input selection and normalization

A sliding window of fixed size is used for selecting input for 

the forecasting models [55]. In this method rather than 

selecting all data points observed so far, or on some sample, 

decision is made based only on some recent data points. On 

each sliding of the window, a new data point is incorporated 

and the oldest one is discarded. The window moves through 

whole time series. Selecting the size of window is a matter 

of experimentation. For an instance, the patterns generated 

from the time series using a sliding window for one-step-

ahead forecasting is presented below. Here, window size is 

written as blen and l is the training length. All the three 

financial time series are normalized before feeding them to 

the ANN model [56]. 

Train data Train targetx(d)⋮x(d + 𝑙) x(d + 1)⋮x(d + 𝑙 + 1) ⋯ x(d + 𝑏𝑙𝑒𝑛)⋮ ⋮⋯ x(d + 𝑙 + 𝑏𝑙𝑒𝑛) ⋮⋮⋮ x(d + 𝑏𝑙𝑒𝑛 + 1)⋮x(d + 𝑙 + 𝑏𝑙𝑒𝑛 + 1)
Test data Test targetx(d + 𝑙 + 1) x(d + 𝑙 + 2) ⋯ x(d + 𝑙 + 𝑏𝑙𝑒𝑛 + 1) ⋮ x(d + 𝑙 + 𝑏𝑙𝑒𝑛 + 2)
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Table 3. Forecasting errors from all models

Crude oil Price 
Dataset 

Error 
Statistic 

Forecasting Models 

MLP GD-PSNN GA-PSNN PSO-PSNN FWA-PSNN 

Daily Crude Oil 
Price 

Minimum 9.0384e-05 8.6386e-05 7.6336e-06 7.6336e-05 7.5590e-08 

Maximum 0.0502 0.0395 0.0382 0.0376 0.0353 
Average 0.0097 0.0095 0.0088 0.0057 0.0016 
Standard 
Deviation 

0.0087 0.0081 0.0075 0.0075 0.0019 

Weekly Crude 
Oil Price 

Minimum 6.9508e-05 5.9528e-05 3.0527e-06 3.0507e-05 1.8450e-06 

Maximum 0.0582 0.0466 0.0432 0.0418 0.0414 
Average 0.0128 0.0122 0.0096 0.0094 0.0034 
Standard 
Deviation 

0.0166 0.0159 0.0055 0.0057 0.0039 

Monthly Crude 
Oil Price 

Minimum 4.8234e-03 4.5224e-05 4.1226e-05 4.1760e-05 1.8193e-05 

Maximum 0.0867 0.0555 0.0458 0.0452 0.0384 
Average 0.0180 0.0159 0.0138 0.0098 0.0078 
Standard 
Deviation 

0.0133 0.0102 0.0082 0.0074 0.0104 

Annual Crude 
Oil Price 

Minimum 6.84822e-03 5.84879e-04 5.74875e-04 6.44875e-
04 

4.8149e-04 

Maximum 0.0473 0.0453 0.0393 0.0399 0.0133 
Average 0.0398 0.0293 0.0167 0.0179 0.0137 
Standard 
Deviation 

0.0049 0.0047 0.0042 0.0048 0.0035 

4.3. Experimental results and discussion 

The data after normalization are used to feed the model. To 

stay away from the stochastic behaviour of ANN based 

forecast, for each training dataset, we simulated the model 

for twenty times. The mean error from twenty simulations is 

considered as the average performance of a model. Adaptive 

training has been followed as suggested in [13, 15, 55]. 

During model simulation, different feasible values for the 

model parameters were experienced and best values are 

recorded. The acceleration coefficients for PSO are chosen 
as c1 = 2.15 and c2 = 2.15. The population size was set to 60 

and the selection mechanism followed the global best. The 

GA used a population of size 70, crossover probability of 

0.6 and mutation probability of 0.004. It used elitism 

method for selection operation (20% better fit individual + 

80% binary tournament selection). The learning rate and 

momentum factor of GD were set to 0.1 and 0.3 

respectively. The parameters of FWA were set as suggested 

in [22], (i.e. N = 5, m = 50, a = 0.04, b = 0.8, Â= 40 and m̂
= 5). The number of iterations for GA, PSO, FWA, and GD 

were set to 400, 250, 250, and 600 respectively. The optimal 

architecture of MLP used is 6-18-1 and that of PSNN is 6-

12-1 respectively. The average performance of the models

over 20 runs are considered for comparison.

To validate the the proposed model, we developed four 

other forecasts such as GA-PSNN, PSO-PSNN, GD-PSNN 

and MLP. All the five models are trained in the similar way.  

The error statistics in terms of minimum, maximum, average 

and standard deviation generated by five models from four 

datasets are summarized in Table 3. The predicted crude oil 

prices against actual prices are visualized in Figure 6 – 9.

For daily price data all the models are generated lower error 

values which are acceptable. However, the FWA-PSNN 

obtains an average error value of 0.0016 which is better than 
other models. Figure 6 shows the closeness of FWA-PSNN 

estimated crude oil prices and actual prices. Similar results 

are observed from weekly and monthly price datasets. In 

cases of annual crude oil time series the average error 

generated by FWA-PSNN is bit more compared to other 

three time series. This might happed due to insufficient 

training sample, i.e. only 36 data points are available in 

annual crude oil price time series. The observations from 

experimental work can be summarized as follows: 

 Computational intelligence methods such as ANNs

are promising methods for forecasting crude oil

prices 

 Compared to multilayer ANN, higher order neural

network (PSNN here) produced more accurate

forecasts 
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 Nature inspired optimization techniques (GA, PSO

and FWA here) are found superior to gradient

based method in searching the optimal PSNN 

model parameters. 

 Performance of the proposed model is found better to

other hybrid models as well as multilayer artificial

neural network model. 

Figure 6. Actual crude oil prices v/s estimated by FWA-PSNN from daily crude oil price time series
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Figure 7. Actual crude oil prices v/s estimated by FWA-PSNN from weekly crude oil price time series

Figure 8. Actual crude oil prices v/s estimated by FWA-PSNN from monthly crude oil price time series
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Figure 9. Actual crude oil prices v/s estimated by FWA-PSNN from annual crude oil price time series

Table 4. Computed DM statistic values

Crude oil price dataset 

FWA-
PSNN 

PSO-
PSNN 

GA-
PSNN 

GD-
PSNN 

MLP 

Daily Cushing, OK Crude 
Oil Price Dataset 

1.9845 -2.2650 2.2363 2.7746 

Weekly Cushing, OK 
Crude Oil Price Dataset 

2.1035 2.2505 -3.1507 -3.2362

Monthly Cushing, OK 
Crude Oil Price Dataset 

-2.3165 2.0163 2.1553 2.7058 

Annual Cushing, OK 
Crude Oil Price Dataset 

1.9965 1.9775 2.1105 -3.1528

Further, to find the precise advantage of the proposed model 

we conducted a statistical significance test, i.e. Deibold-

Mariano test [55, 58]. It compares two or more forecasts 

pair wise. The computed DM statistics are presented in 

Table 4. It is observed that the statistics obtained are beyond 

the critical range. Hence, the null hypothesis of no 

difference between the proposed and other models is 

rejected. 

To check the performance of the forecasts considered we 

computed the relative worth (RW) of a model [57]. It 

considers the average reductions% in the forecast error of 

the best performing model over all datasets. Then, jRW
of 

the
th

j
combination method is defined as in Eq. 12 

























 


D

i
w

i

ij

w

i

j nj
err

errerr

D
RW

1

,,2,1,100*
1



(12) 

where, ijerr
is the forecast error from 

th
j

model on 

th
i dataset,

w

ierr
s the error of worst individual model for the 

same dataset. D is the total number of datasets. The 
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computed RW values are summarized in Table 4. It can be 

observed that the relative worth value of the proposed model 

is highest, i.e. 69.7968% followed by PSO-PSNN and GA-

PSNN with values 42.0950% and 28.9129%. The GD-

PSNN model obtained the lowest worth value of 11.1994%. 

Table 5. Relative worth values of forecasting models

Forecasting 
model 

Relative worth 
value 

FWA-PSNN 69.7968 
PSO-PSNN 42.0950 
GA-PSNN 28.9129 
GD-PSNN 11.1994 

5. Conclusions

In order to incarcerate the uncertainties coupled with the 

crude oil prices, this paper proposed a hybrid forecasting 

model termed as FWA-PSNN. The model uses the fast and 

effective learning ability of FWA and better generalization 

property of PSNN for modelling and forecasting crude oil 

prices efficiently. FWA is used to explore the most 

favourable weight and bias vector of PSNN based forecast 

and quite able to minimize the forecasting error. The 

proposed FWA-PSNN based forecasting is validated on 

predicting one-step-ahead oil price of four real crude oil 

price datasets. The performance of FWA-PSNN is compared 

with that of four other forecasts such as PSO-PSNN, GA-

PSNN, GD-PSNN and MLP trained similarly. From 

extensive simulation studies and result analysis it is 

observed that FWA-PSNN performed superior to others. 

The current work may be extended by applying the proposed 

model to other data mining problems. Exploration of other 

nature inspired optimization techniques can be another 

direction. 
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