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Abstract 

INTRODUCTION: The artificial bee colony (ABC) algorithm is a nature-inspired technique used for solving different 
optimization problems. This paper presents a multi-hive ABC algorithm for solving constrained benchmark functions of 
CEC2006. The CEC2006 data set contains the global benchmark functions with different design variables, number and type 
of constraints. 
OBJECTIVES: The objective of the proposed work is to design and apply the GPGPU based multi-hive ABC algorithm to 
solve constrained optimization problems. 
METHODS: The proposed approach is a multi-population coarse-grained system implemented using General Purpose 
Graphics Processing Unit (GPGPU). The performance of the proposed approach is compared with the serial ABC algorithm 
for eleven benchmark functions and results in the literature. The multi-hive ABC algorithm has multiple hives, each running 
separate ABC algorithm on different cores of GPGPU. 
RESULTS: The proposed approach provides global best solutions in significantly reduced time for all benchmark functions. 
The speed-up obtained is approximately 7X to 9X. The GPGPU device utilization is approximately 57% to 91%. 
CONCLUSION: The GPGPU based multi-hive ABC algorithm is a found good with respect to best results, speed up factor 
and GPU utilization to solve constrained optimization problems. 
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1. Introduction

There exist various optimization techniques broadly 
classified into traditional and non-traditional techniques. 
Each type of technique has its own merits and demerits. The 
widely used non-traditional techniques are nature-inspired. 
These techniques include swarm intelligence based 
optimization algorithms like particle swarm optimization, ant 
colony optimization, artificial bee colony algorithm, etc. The 
global collective behaviour of social insects that arises from 
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self-organization and division of tasks is the root of all 
swarm-based optimization algorithms. Ant colony 
optimization imitates the behaviour of ants, Particle swarm 
intelligence imitates the behaviour of birds and Artificial Bee 
Colony algorithm imitates the behaviour of honey bees [1-5]. 
The artificial Bee Colony (ABC) algorithm was proposed by 
Karaboga in 2005, for multidimensional, multimodal 
optimization problems. Artificial bee colony algorithm is 
inspired by the honey bees’ behaviour of searching for food. 
The colony of honey bees contains three types of bees 
namely, employed bees, onlooker bees and scout bees. The 
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entire colony is divided into two parts - the employed bees 
and the onlooker bees. The number of food sources is equal 
to the number of employed bees. Each bee tries to improve its 
solution by neighbour search method [4]. 

The benchmark functions are used to test the performance 
of heuristic algorithms. Benchmarking is required for an 
effective evaluation of the working of newly proposed 
algorithms. There are different benchmark functions used for 
the evaluation of the algorithms. The benchmark functions 
are designed in such a way that, it possesses different 
properties of the real-world optimization problems. The 
different properties of the objective function are continuous, 
discontinuous, separable, non-separable, linear, nonlinear, 
unimodal, multimodal, constrained and unconstrained [6]. 

Parallel processing is the ability to process or perform 
multiple operations simultaneously. It is the simultaneous use 
of more than one CPU or processor core to execute a program 
or multiple computational tasks. Parallel programming is 
useful for getting better and fast performance from an 
algorithm which gives us results with a short period of time. 
The parallel processing is useful for getting results of highly 
non-linear, high dimensional real-world problems [7]. Due to 
the development of high throughput oriented hardware as 
well as advancement in parallel programming framework, 
nowadays multi-core or many-core based software’s 
performance is enriched enormously. The General Purpose 
Graphic Processing Unit (GPGPU) is a device with huge 
computational power due to the presence of hundreds of cores 
as compare to multi-core CPUs. The Nvidia developed a 
Compute Unified Device Architecture (CUDA) framework to 
program the GPGPU, developed by them. The development 
of the CUDA framework made GPGPU programming easy. 
The GPGPU based development of a parallel algorithm or 
application is most preferable when selected algorithm or 
application supports data parallelism. The compute-intensive 
applications when implemented using GPGPU, the speed-up 
achieved is more than 100 times as compared to its sequential 
version. The GPGPUs have developed throughput oriented 
rather than latency oriented [8]. 

In the literature, it is found that many algorithms have been 
successfully implemented on GPGPU and have yielded better 
performance [5, 9, 10]. The parallel ABC versions were also 
developed to address optimization problems. Parpinelli et al. 
[11] developed three parallel models of the ABC algorithm:
multi-hive with migrations, master-slave, and hybrid
hierarchical. The proposed approach tested unconstrained
benchmark optimization problems. Anan Banhamsakun et al.
proposed an artificial bee colony algorithm for the distributed
environment using the manager-worker model [12]. Ruhai
Luo et al. [13] proposed ABC optimization with ripple
communication strategy (PABC-RC), implemented for three
benchmark problems. Milos Subotic et al. proposed three
different approaches for the parallelization of a standard
artificial bee colony (ABC) algorithm. These approaches are
independent parallel runs and two variations of multiple
swarm parallelizations [14]. Zhang et al. proposed a “multi-
hive artificial bee colony” to solve constrained multi-
objective optimization problems (MHABC-CMO). The
experiments were performed on a set of five benchmark test

functions [15]. Basturk and Akay in [16] presented a parallel 
version of the ABC algorithm based on a coarse-grained 
parallel computing model. In [17] Kun Xu et al. have 
presented Parallel Artificial Bee Colony Algorithm (PABCA) 
using Linux based Message Passing Interface for solving the 
travelling salesman problem.  

The parallelization strategy used for the ABC algorithm 
are Parallel Master-Slave Model, Parallel Multi-Hive Model, 
Parallel Hybrid Hierarchical Model, Manager-Worker 
Model, Independent parallel runs approach, and Multiple 
swarms-one best solution and Multiple swarms-best solutions 
from all swarms [11, 14, 15]. Each strategy has its own merits 
and demerits.  

The proposed work presents the design and 
implementation of GPGPU based multi-hive ABC algorithm 
to solve constrained optimization problems. The main motive 
of implementing GPGPU based multi-hive ABC algorithm is 
to reduce execution time and improve the performance. The 
eleven single-objective constrained benchmark functions are 
used to test the performance of the proposed approach, which 
possesses different properties. The multi-hive model is a 
multiple-population coarse-grained system that uses two or 
more hives that are initialized at the same time with different 
random seeds. Each population can be seen as an island. The 
hives work independently from each other, and each one runs 
an ABC algorithm, with a migration process occurring 
periodically.  

The constrained optimization problems were addressed by 
researchers using various traditional and non-traditional 
techniques. When such problems are solved with a sequential 
(CPU based) approach it takes significant time to get results. 
The importance of the proposed work is to implement the 
multi-hive ABC algorithm on GPGPU so as to obtain the 
result in less time and utilize the available computational 
resources. As the proposed approach succeeds in reducing 
execution time significantly, it can be used to solve real-time 
single-objective constrained optimization problems.  

The remaining paper is organized as follows: Section 2 
discusses the proposed methodology. The benchmark 
functions used to evaluate the performance of the proposed 
approach are presented in section 3. The results and 
discussion with experimental setup and parameter settings are 
presented in section 4. The conclusion of the proposed work 
and future research direction are discussed in section 5. 

2. Methodology

This section briefs about the Artificial Bee Colony algorithm, 
proposed GPGPU based multi-hive ABC algorithm. The 
steps of the proposed approach and execution flowchart are 
presented.  

2.1. Artificial Bee Colony Algorithm 

The Artificial Bee Colony (ABC) algorithm was proposed by 
Karaboga in 2005, to solve multidimensional, multimodal 
optimization problems. Artificial bee colony algorithm is 
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inspired by the honey bees’ behaviour of searching for food. 
A colony of artificial bees has three types of bees namely 
employed bees, onlooker bees and scout bees. The entire 
colony is divided into two parts - the employed bees and the 
onlooker bees. The number of food sources is equal to the 
number of employed bees. Each bee tries to improve its 
solution by neighbour search method [3-4]. The detailed 
pseudo-code of the ABC algorithm to solve constrained and 
unconstrained optimization problems and its explanation can 
be found in [4]. 

2.2 Proposed GPGPU based Multi-hive 
ABC Algorithm 

The proposed GPGPU based multi-hive ABC is described in 
this section. This section presents and describes the flowchart 
of the proposed approach as well as the execution of a multi-
hive model on GPGPU. The execution steps of the proposed 

approach and strengths of the selected parallel model are 
presented. 

The proposed GPGPU based multi-hive ABC algorithm is 
implemented using GPGPU for solving constrained 
benchmark functions. The major steps of the ABC algorithm 
are executed on GPGPU using multi-hive with a migration 
strategy. This strategy consists of multiple colonies, each 
colony executes the ABC algorithm. At the end of certain 
iterations, each colony shares its best solution with other 
colonies and replaces its own worst solution with the 
migrated best solution from other colonies. By following this 
procedure, all the colonies move towards the best solution in 
a co-evolution fashion. For migration, unidirectional ring 
topology is used. In this topology, each colony migrates 
(sends) its best solution to the colony on its right and replaces 
its worst solution by the migrated solution of the colony to its 
left. This strategy adds the migration gap (number of 
iterations between successive migrations) as one more 
parameter to the ABC algorithm. Fig. 1 shows the flowchart 
of the proposed GPGPU based multi-hive ABC algorithm. 

Figure 1. Flow of Proposed GPGPU based Multi-hive ABC algorithm 

The CPU initially allocates memory on GPGPU’s global 
memory for migrating the best solution parameters and 
saving the best solution after the execution. When the kernel 
is launched, it creates the instances of function which are 

equivalent to the total number of threads. In the end, when the 
Maximum Cycle number is reached the global best solutions 
from each hive are copied into a global array that is sent to 
CPU with their number of constraints violated. From this 
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array one best solution is returned as the final solution. Odd-
even sorting is performed to select the best solution. 

For constrained benchmark problems, the ABC algorithm 
given in [3] is implemented. It has two more parameters 
called the Modification rate (MR) and the Scout generation 
period (SPP). Here for finding best solution between two 
candidate solutions, the solution with minimum constraint 
violation is preferred than the solution with more constraint 
violation and if the number of constraints violated by both 
solutions is same or zero the solution with minimum objective 
function value is preferred over another in case of 
minimization function and the solution with maximum 
problem value is preferred than the other solution in case of 
maximization problem. For finding this minimum Odd-Even 
sort [18] is used as atomic minimum CUDA functions are 
available only for GPGPU with compute capability above 
3.5.  

Fig. 2 presents the execution of kernel (function) on 
GPGPU.  The thread organization in CUDA is two-level 
hierarchical. The grid consists of the number of blocks and 
each block consists of the number of threads. The blocks and 
threads are multi-dimensional. Here, when the kernel is 
launched, the number of blocks denotes the number of 
colonies and the number threads denote the number of 
employee bees. The grid size is a product of a number of 
blocks and number of threads per block. Each thread-block 
runs a separate copy of multi-hive ABC algorithm and 
migrates the solution after every migration gap with the use 
of global memory. The total instances of multi-hive ABC 
algorithm are equivalent to grid size. 

Figure 2. Execution of multi-hive ABC on GPGPU’s 
Thread-Block 

The steps of the proposed GPGPU based multi-hive ABC 
algorithm are presented below. 

(i) Input: colony size, number of food sources equal to half
of the colony size, scout, production period Maximum
cycle number, Number of colonies (hives), migration
interval, modification rate for a new solution and
Problem specific variables.

(ii) Output: f(x) function’s optimal value.

(iii) Allocate memory on the host (CPU) and device
(GPGPU) for solution variables and optimal solution.
Transfer data from the host to the device.

(iv) Algorithm:
a. Launch kernel with the number of

blocks equal to the number of colonies
and the number of threads equal to the
number of employed bees.

b. Each block independently runs the ABC 
algorithm on the device.

c. The best solution from each colony is
migrated to another colony by using a
unidirectional ring topology, depending
on the value of the migration rate
parameter.

d. According to ring topology, each
colony (block) replaces its worst
solution with the best solution of
another colony.

e. The kernel exits when it reaches to
maximum cycle number.

(v) Copy the best solution of each colony to host.
(vi) Sort the copied best solutions on the host and find the

optimal solution to the problem.

The parallel multi-hive model is a multiple-population 
coarse-grained system that uses two or more hives that are 
initialized at the same time with different random seeds [11]. 
Each population can be seen as an island. The hives work 
independently from each other, and each one runs an ABC 
algorithm, with a migration process occurring periodically. 
For example, one processing core can be used for each hive. 
Migrations occur between hives by using a migration policy 
that includes some parameters defined by the user. Two 
important parameters used are the migration gap, which is the 
number of generations between successive migrations; and 
the migration rate at which the number of individuals will 
migrate per migration event. It also defines some criteria for 
the selection of immigrants and the substitution of emigrants. 
For example, unidirectional ring topology. The merits of the 
coarse-grain approach are presented in [16]. The coarse-
grained method is preferred due to its ease of implementation. 
Other parallelization models provide profit in the evaluation 
of expensive fitness functions, while the coarse-grained 
model is very useful when the fitness function is 
computationally inexpensive. The serial algorithm uses only 
one random seed at the initial step, the coarse-grained model 
uses a number of random seeds equal to the number of 
subpopulations (or swarms). This method increases the 
diversity of the population and thus the enhancement of the 
exploration process on search space increases the probability 
to hit the optimal solution as well as improves the 
convergence rate. Another advantage of this model is that it 
can be used with many topologies (mesh, ring, hypercube, 
etc.) and also it needs less communication between nodes, so 
its efficiency may be better than those of other models.
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3. Tested Benchmark Functions

This section describes the properties of CEC2006 benchmark 
functions used for experimentation. The CEC 2006 
benchmark functions are single-objective linear, nonlinear, 
cubic, and polynomial types. Each function has a different 
number of design variables as well as the range of each design 
variable varies from function to function. The real-time 
single-objective optimization problems exist in engineering 
and scientific domains possess similar characteristics to 
selected benchmark functions. Hence, instead of solving real-
time single-objective optimization problems, the proposed 
work considers CEC 2006 standard benchmark functions. 
The performance of the proposed GPGPU based Multi-Hive 
ABC algorithm evaluated using constrained benchmark 
functions (CEC2006). The definition and mathematical 
model of the constrained benchmark functions can be found 
in [19].  

Table 1 presents the constrained benchmark functions with 
the number of decision variables, type of function, number 
and type of constraints, and global best solution. G1 is a 
quadratic function with 9 linear inequality constraints. G2 is 
a non-linear function with two non-linear inequality 
constraints. G3 is a polynomial function with 1 non-linear 
equality function. G4 is a quadratic function with 6 non-linear 
inequality constraints. G5 is a cubic function with two linear 
inequality and three non-linear equality constraints. G6 is a 
cubic function with two non-linear inequality constraints. G8 
is a non-linear function with two non-linear inequality 
constraints. G10 is a linear function with three linear 
inequality constraints and three non-linear inequality 
constraints. G11 is a quadratic function with one non-linear 
equality constraint. G12 is a quadratic function with 1 non-
linear inequality constraint. G13 is a non-linear function with 
three non-linear equality constraints. 

Table 1. Benchmark functions with its properties 

Fun
ction 

No. of 
Decision 
Variable
s 

Type of 
function 

Number 
and Type 
of 
constraints 

Global 
Best 
Solution 

G1 13 Quadratic 9 Linear 
Inequality 

-15

G2 20 Nonlinear 2 Nonlinear 
Inequality 

-0.803619

G3 10 Polynomial 1 Nonlinear 
Equality 

-1.0

G4 5 Quadratic 6 Nonlinear 
Inequality 

-30665.539

Fun
ction 

No. of 
Decision 
Variable
s 

Type of 
function 

Number 
and Type 
of 
constraints 

Global 
Best 
Solution 

G5 4 Cubic 2 Linear 
Inequality 
and  
3 Nonlinear 
Equality 

5126.484 

G6 2 Cubic  2 Nonlinear 
Inequality 

-6961.814

G8 2 Nonlinear  2 Nonlinear 
Inequality 

-0.095825

G10 8 Linear  3 Linear 
Inequality 
and 
3 Nonlinear 
Inequality 

7049.28 

G11 2 Quadratic  1 Nonlinear 
Equality 

0.75 

G12 3 Quadratic  1 Nonlinear 
Inequality 

-1

G13 5 Nonlinear 3 Nonlinear 
Equality 

0.05394 

4. Results and Discussion

This section describes the parameter settings, experimental 
setup, results obtained and its comparison with results from 
the literature.  

The experiments performed using GeForce GTX 680 
Nvidia’s GPGPU. It has 8 streaming multiprocessors with 
1536 CUDA cores. The device has 2GB global memory with 
a speed of 6.0 Gbps. The compute capability of the device is 
3.0. The proposed approach is implemented in CUDA-C 
using CUDA Toolkit 7.0 with the Thrust library. The 
performance of the proposed GPGPU based multi-hive ABC 
algorithm is evaluated using the CEC2006 constrained 
benchmark dataset. The proposed approach is implemented 
for G01 to G06, G08, and G10 to G13 benchmark functions. 

The artificial bee colony size set as 64, the maximum 
number of cycles used as 1000, Modification Rate (MR) set 
as 0.8, SPP set as a product of half of the colony size and the 
number of problem dimensions. The Migration gap used as 
250. The maximum number of cycles used for the G1
benchmark function is 5000 [3]. The number of CUDA
blocks used is equal to the number of hives and the number
of CUDA threads used is equal to the number of employed
bees. The GPGPU based multi-hive ABC algorithm is
executed for 30 times for each function. The mean and
standard deviation statistical tests are used to measure the
performance. Table 2 to Table 7 presents the results obtained
by GPGPU based multi-hive ABC algorithm for selected
benchmark functions.
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Table 2. Results obtained using GPGPU based multi-hive ABC algorithm for 11 benchmark functions 

Function No. of Decision 
Variables 

Global Best 
Solution 

Obtained Best 
Solution 

Mean Std. Deviation Time (in ms) 

G1 13 -15 -15 -15 0.00E+00 86.72 
G2 20 -0.803619 -0.803619 -0.7924 5.56E-03 120.07 
G3 10 -1.0 -1.0 -0.99999 8.43E-07 17.93 
G4 5 -30665.539 -30665.53 -30365.35 7.35E+01 21.49 
G5 4 5126.484 5126.48 5184.603 4.37E+01 135.12 
G6 2 -6961.814 -6961.814 -6961.810 4.99E-02 18.76 
G8 2 -0.095825 -0.095825 -0.09582 4.83E-06 20.65 
G10 8 7049.28 7051.43 7156.287 5.78E+01 19.66 
G11 2 0.75 0.75 0.75 3.89E-04 15.12 
G12 3 -1 -1 -1.00 0.00E+00 47.92 
G13 5 0.05394 0.05394 0.0539 4.97E-06 19.027 

 The values in boldface indicate the best results 

Table 2 presents the results obtained in terms of best, 
mean, standard deviation, and execution time. The GPGPU 
based multi-hive algorithm obtains global best results for all 
the selected functions. The number of hives used is 4 with 64 
as population size. The function evaluations performed for 
function G1 are 12,80,000 (as the maximum cycle number 
used is 5000). The function evaluations performed for the 
remaining functions are 2,56,000. The parallel execution time 
is from 15.12 milliseconds to 135.12 milliseconds.  The 

proposed approach succeeds to obtain the global best solution 
for all the selected benchmark function except G10 function. 
The best value obtained for G10 function using the proposed 
approach is close to the global best solution. From the results, 
it can be said that irrespective of the platform used to 
implement the multi-hive ABC algorithm, it gives better 
results to selected benchmark problems. The GPGPU based 
multi-hive ABC algorithm is a promising approach to solve 
the single objective constrained optimization problems. 

Table 3. Comparison of Sequential ABC and Proposed GPGPU based multi-hive ABC Algorithm 

Function Global 
solution 

Sequential ABC Results taken from [3] Proposed GPGPU based Multi-hive ABC Algorithm 
Best Mean Std. Deviation Best Mean Std. Deviation 

G1 -15 -15 -15 0.00E+00 -15 -15 0.00E+00 

G2 -0.803619 -0.803598 -0.7924 1.20E-02 -0.803619 -0.7924 5.56E-03 

G3 -1.0 -1.0 -1.0 0.00E+00 -1.0 -0.99999 8.43E-07 

G4 -30665.539 -30665.539 -30665.539 0.00E+00 -30665.53 -30365.35 7.35E+01 

G5 5126.484 5126.484 5185.714 7.54E+01 5126.48 5184.603 4.37E+01 

G6 -6961.814 -6961.814 -6961.813 2.00E-03 -6961.814 -6961.810 4.99E-02 

G8 -0.095825 -0.095825 -0.09582 0.00E+00 -0.095825 -0.09582 4.83E-06 

G10 7049.28 7053.904 7224.407 1.34E+02 7051.43 7156.287 5.78E+01 

G11 0.75 0.75 0.75 0.00E+00 0.75 0.75 3.89E-04 

G12 -1 -1 -1.00 0.00E+00 -1 -1.00 0.00E+00 

G13 0.05394 0.760 0.968 5.50E-02 0.05394 0.0539 4.97E-06 

The values in boldface indicate the best results. 

Table 3 presents a comparison of results given in [3] of 
sequential ABC and proposed GPGPU based multi-hive ABC 
algorithm. The results are compared based on best, mean and 
standard deviation. The proposed approach obtains equally 

best results for G1, G3, G4, G5, G6, G8, G11, and G12. The 
results obtained for function G2, G10, and G13 are better than 
the results given in [3]. The mean results obtained for G4, G5, 
G10, and G13 are better than the results presented in [3] for 
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the ABC algorithm. From the results presented in Table 3, it 
is observed that the proposed approach is competitive with 
the existing ABC algorithm.

Table 4. Mean solutions comparison of proposed approach with results from [3]

Function Global Best Solution PSO [3] DE [3] ABC [3] Proposed GPGPU based 
multi-hive ABC algorithm 

G1 -15 -14.710 -14.555 -15.000 -15

G2 -0.803619 -0.419960 -0.6657 -0.792412 -0.7924

G3 -1.0 -0.764813 -1.000 -0.99999 -0.99999

G4 -30665.539 -30665.539 -30665.539 -30665.539 -30365.35

G5 5126.484 5135.973 5264.270 5185.714 5184.603 

G6 -6961.814 -6961.814 -- -6961.813 -6961.810

G8 -0.095825 -0.095825 -0.095825 -0.095825 -0.09582

G10 7049.28 7205.5 7147.334 7224.407 7156.287 

G11 0.75 0.749 0.901 0.750 0.75 

G12 -1 -0.998875 -1.000 -1.000 -1.00

G13 0.05394 0.569358 0.872 0.968 0.0539 
The values in boldface indicate the best results 

Table 4 presents the comparison of mean results obtained 
using the proposed GPGPU based multi-hive ABC algorithm 
and results presented in [3] for ABC, PSO and DE algorithm. 
Form the comparison, it is observed that, the proposed 
approach succeed to obtain better mean results for G1, G2, 

G11, G12, and G13 functions than the other approaches used 
for comparison.  The proposed approach gives better mean 
results than the ABC algorithm for all the selected benchmark 
functions except G4 and G8. 

Table 5. Execution time and Device utilization of GPGPU based multi-hive ABC algorithm 

Function No. of Decision 
Variables 

Population 
Size 

No. of 
Iterations 

Time (in ms) 

Speed-up Sequential ABC 
Algorithm 

Proposed 
GPGPU based 

multi-hive ABC 
Algorithm 

G1 13 64 5000 679.21 86.72 7.832 

G2 20 64 1000 1083.41 120.07 9.023 

Table 5 presents the comparison of results obtained using 
the ABC algorithm and proposed GPGPU based multi-hive 
ABC algorithm and the speed-up of the proposed approach. 

The proposed approach gives 7X to 9X faster results than the 
sequential ABC algorithm. The parameter settings were kept 
similar to both the approaches to obtain better results. 

GPGPU based Multi-hive ABC Algorithm for Constrained Global Optimization Problems 
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Table 6. Execution time and Device utilization of proposed GPGPU based multi-hive ABC algorithm

Function 
No. of 

Decision 
Variables 

Population 
Size No. of Iterations Time (in ms) Device Utilization 

G1 13 64 5000 86.72 86.9% 

G2 20 64 1000 120.07 77.2% 

G3 10 64 1000 17.93 57.9% 

G4 5 64 1000 21.49 63.5% 

G5 4 64 1000 135.12 61.8% 

G6 2 64 1000 18.76 65.7% 

G8 2 64 1000 20.65 59.8% 

G10 8 64 1000 19.66 63.0% 

G11 2 64 1000 15.12 57.0% 

G12 3 64 1000 47.92 91.2% 

G13 5 64 1000 19.027 68.0% 

Table 6 presents the execution time required for 
proposed GPGPU based multi-hive ABC algorithm and 
GPGPU utilization for selected benchmark functions. The 
device utilization varies with the number of decision 
variables, number and type of constraints as well as the 
type of function. The device utilization is more than 55% 
for all the selected benchmark functions. The maximum 
device utilization recorded is about 91% for G12 function, 
which is quadratic with one nonlinear inequality constraint. 
The minimum device utilization recorded is about 57% for 
the G11 function which is quadratic in nature with one 
nonlinear equality constraint. The device utilization is 
varying due to different reasons, it depends on the number 
of ideal threads during execution, the thread divergence, as 
well as the complexity of the selected problem. 

Table 7. Convergence of 4 hives vs. 8 hives 

Function No. of Iterations for Convergence 

4 – Hives 8 – Hives 

G1 920 906 

G2 951 853 

G3 946 920 

G4 961 954 

G5 391 307 

G6 993 987 

Function No. of Iterations for Convergence 

4 – Hives 8 – Hives 

G8 916 850 

G10 159 141 

G11 832 750 

G12 993 981 

G13 980 972 

Table 7 presents the convergence rate of 4 hives and 8 
hives GPGPU based multi-hive ABC algorithm. As the 
number of hives increased from 4 to 8, it is observed that 
the best solutions are obtained early due to co-evolution 
effect. 

5. Conclusion and Future Work

This paper presents a GPGPU based multi-hive ABC 
algorithm to solve constrained optimization problems. The 
proposed approach is implemented on GPGPU using a 
coarse-grain model. The multi-hive ABC algorithm is 
executed on GPGPU using CUDA-C. The number of 
blocks and the number of threads used is equivalent to the 
number of hives (colonies) and the number of employed 
bees, respectively. The performance of the proposed 
approach is evaluated using 11 constrained benchmark 
functions of CEC2006.  The proposed approach obtains 
global best solutions for all selected benchmark functions. 
The speed-up achieved is approximately 7X to 9X faster 
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than the sequential ABC algorithm. The parallel execution 
time to obtain the best result varies from 15.12 
milliseconds to 135.12 milliseconds as per the properties of 
selected benchmark functions.  The GPGPU device is 
utilized from approximately 57% to 91%. The parallel 
execution time required and device utilization depends on 
the type of problem, the number of decision variables, 
number and type of constraints. The device utilization 
according to the number of active threads, the thread 
divergence, number of design variables and type of 
constraints of the problem. The performance of the 
proposed approach is also compared with the results found 
in the literature using various statistical tests. From 
obtained results and comparison with literature, the 
GPGPU based multi-hive ABC algorithm is one of the 
promising approaches to solve constrained optimization 
problems on GPGPU. 

The performance of the proposed approach can be 
evaluated using complex constrained global optimization 
problems as future work. The device utilization can be 
improved by using various CUDA related features. The 
parallel execution time can be improved by implementing 
the proposed approach using GPGPU with compute 
capability more than 3.5, it will facilitate to use various 
libraries developed by Nvidia for CUDA-C. The GPGPU 
based multi-hive ABC algorithm can be used to solve real-
world constrained optimization problems. Also, the ABC 
algorithm can be implemented on GPGPU using different 
parallelization strategy that has not been implemented yet. 
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