
1

GPGPU based Multi-hive ABC Algorithm for
Constrained Global Optimization Problems
Sandeep U. Mane1,*, Amol C. Adamuthe2 and Aprupa S. Pawar3

1Dept. of CSE, Rajarambapu Institute of Technology (affiliated to Shivaji University Kolhapur), Rajaramnagar, Sangli Dist.,
MH, India.
2Dept. of CS&IT, Rajarambapu Institute of Technology (affiliated to Shivaji University Kolhapur), Rajaramnagar, Sangli
Dist., MH, India.
3Dept. of CSE, Walchand College of Engineering, Sangli, (affiliated to Shivaji University Kolhapur), MH, India.

Abstract

INTRODUCTION: The artificial bee colony (ABC) algorithm is a nature-inspired technique used for solving different
optimization problems. This paper presents a multi-hive ABC algorithm for solving constrained benchmark functions of
CEC2006. The CEC2006 data set contains the global benchmark functions with different design variables, number and type
of constraints.
OBJECTIVES: The objective of the proposed work is to design and apply the GPGPU based multi-hive ABC algorithm to
solve constrained optimization problems.
METHODS: The proposed approach is a multi-population coarse-grained system implemented using General Purpose
Graphics Processing Unit (GPGPU). The performance of the proposed approach is compared with the serial ABC algorithm
for eleven benchmark functions and results in the literature. The multi-hive ABC algorithm has multiple hives, each running
separate ABC algorithm on different cores of GPGPU.
RESULTS: The proposed approach provides global best solutions in significantly reduced time for all benchmark functions.
The speed-up obtained is approximately 7X to 9X. The GPGPU device utilization is approximately 57% to 91%.
CONCLUSION: The GPGPU based multi-hive ABC algorithm is a found good with respect to best results, speed up factor
and GPU utilization to solve constrained optimization problems.

Keywords: Multi-hive ABC algorithm, GPGPU, Coarse-grained model, Constrained benchmark functions, Optimization problems.

Received on 30 September 2019, accepted on 31 January 2020, published on 14 February 2020

Copyright © 2020 Sandeep U. Mane et al., licensed to EAI. This is an open access article distributed under the terms of the Creative
Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use, distribution and
reproduction in any medium so long as the original work is properly cited.

doi: 10.4108/eai.13-7-2018.163156

1. Introduction

There exist various optimization techniques broadly
classified into traditional and non-traditional techniques.
Each type of technique has its own merits and demerits. The
widely used non-traditional techniques are nature-inspired.
These techniques include swarm intelligence based
optimization algorithms like particle swarm optimization, ant
colony optimization, artificial bee colony algorithm, etc. The
global collective behaviour of social insects that arises from

*Corresponding author. Email: manesandip82@gmail.com

self-organization and division of tasks is the root of all
swarm-based optimization algorithms. Ant colony
optimization imitates the behaviour of ants, Particle swarm
intelligence imitates the behaviour of birds and Artificial Bee
Colony algorithm imitates the behaviour of honey bees [1-5].
The artificial Bee Colony (ABC) algorithm was proposed by
Karaboga in 2005, for multidimensional, multimodal
optimization problems. Artificial bee colony algorithm is
inspired by the honey bees’ behaviour of searching for food.
The colony of honey bees contains three types of bees
namely, employed bees, onlooker bees and scout bees. The

EAI Endorsed Transactions
on Energy Web Research Article

EAI Endorsed Transactions on
Energy Web

05 2020 - 07 2020 | Volume 7 | Issue 28 | e8

http://creativecommons.org/licenses/by/3.0/

Sandeep U. Mane, Amol C. Adamuthe and Aprupa S. Pawar

2

entire colony is divided into two parts - the employed bees
and the onlooker bees. The number of food sources is equal
to the number of employed bees. Each bee tries to improve its
solution by neighbour search method [4].

The benchmark functions are used to test the performance
of heuristic algorithms. Benchmarking is required for an
effective evaluation of the working of newly proposed
algorithms. There are different benchmark functions used for
the evaluation of the algorithms. The benchmark functions
are designed in such a way that, it possesses different
properties of the real-world optimization problems. The
different properties of the objective function are continuous,
discontinuous, separable, non-separable, linear, nonlinear,
unimodal, multimodal, constrained and unconstrained [6].

Parallel processing is the ability to process or perform
multiple operations simultaneously. It is the simultaneous use
of more than one CPU or processor core to execute a program
or multiple computational tasks. Parallel programming is
useful for getting better and fast performance from an
algorithm which gives us results with a short period of time.
The parallel processing is useful for getting results of highly
non-linear, high dimensional real-world problems [7]. Due to
the development of high throughput oriented hardware as
well as advancement in parallel programming framework,
nowadays multi-core or many-core based software’s
performance is enriched enormously. The General Purpose
Graphic Processing Unit (GPGPU) is a device with huge
computational power due to the presence of hundreds of cores
as compare to multi-core CPUs. The Nvidia developed a
Compute Unified Device Architecture (CUDA) framework to
program the GPGPU, developed by them. The development
of the CUDA framework made GPGPU programming easy.
The GPGPU based development of a parallel algorithm or
application is most preferable when selected algorithm or
application supports data parallelism. The compute-intensive
applications when implemented using GPGPU, the speed-up
achieved is more than 100 times as compared to its sequential
version. The GPGPUs have developed throughput oriented
rather than latency oriented [8].

In the literature, it is found that many algorithms have been
successfully implemented on GPGPU and have yielded better
performance [5, 9, 10]. The parallel ABC versions were also
developed to address optimization problems. Parpinelli et al.
[11] developed three parallel models of the ABC algorithm:
multi-hive with migrations, master-slave, and hybrid
hierarchical. The proposed approach tested unconstrained
benchmark optimization problems. Anan Banhamsakun et al.
proposed an artificial bee colony algorithm for the distributed
environment using the manager-worker model [12]. Ruhai
Luo et al. [13] proposed ABC optimization with ripple
communication strategy (PABC-RC), implemented for three
benchmark problems. Milos Subotic et al. proposed three
different approaches for the parallelization of a standard
artificial bee colony (ABC) algorithm. These approaches are
independent parallel runs and two variations of multiple
swarm parallelizations [14]. Zhang et al. proposed a “multi-
hive artificial bee colony” to solve constrained multi-
objective optimization problems (MHABC-CMO). The
experiments were performed on a set of five benchmark test

functions [15]. Basturk and Akay in [16] presented a parallel
version of the ABC algorithm based on a coarse-grained
parallel computing model. In [17] Kun Xu et al. have
presented Parallel Artificial Bee Colony Algorithm (PABCA)
using Linux based Message Passing Interface for solving the
travelling salesman problem.

The parallelization strategy used for the ABC algorithm
are Parallel Master-Slave Model, Parallel Multi-Hive Model,
Parallel Hybrid Hierarchical Model, Manager-Worker
Model, Independent parallel runs approach, and Multiple
swarms-one best solution and Multiple swarms-best solutions
from all swarms [11, 14, 15]. Each strategy has its own merits
and demerits.

The proposed work presents the design and
implementation of GPGPU based multi-hive ABC algorithm
to solve constrained optimization problems. The main motive
of implementing GPGPU based multi-hive ABC algorithm is
to reduce execution time and improve the performance. The
eleven single-objective constrained benchmark functions are
used to test the performance of the proposed approach, which
possesses different properties. The multi-hive model is a
multiple-population coarse-grained system that uses two or
more hives that are initialized at the same time with different
random seeds. Each population can be seen as an island. The
hives work independently from each other, and each one runs
an ABC algorithm, with a migration process occurring
periodically.

The constrained optimization problems were addressed by
researchers using various traditional and non-traditional
techniques. When such problems are solved with a sequential
(CPU based) approach it takes significant time to get results.
The importance of the proposed work is to implement the
multi-hive ABC algorithm on GPGPU so as to obtain the
result in less time and utilize the available computational
resources. As the proposed approach succeeds in reducing
execution time significantly, it can be used to solve real-time
single-objective constrained optimization problems.

The remaining paper is organized as follows: Section 2
discusses the proposed methodology. The benchmark
functions used to evaluate the performance of the proposed
approach are presented in section 3. The results and
discussion with experimental setup and parameter settings are
presented in section 4. The conclusion of the proposed work
and future research direction are discussed in section 5.

2. Methodology

This section briefs about the Artificial Bee Colony algorithm,
proposed GPGPU based multi-hive ABC algorithm. The
steps of the proposed approach and execution flowchart are
presented.

2.1. Artificial Bee Colony Algorithm

The Artificial Bee Colony (ABC) algorithm was proposed by
Karaboga in 2005, to solve multidimensional, multimodal
optimization problems. Artificial bee colony algorithm is

EAI Endorsed Transactions on
Energy Web

05 2020 - 07 2020 | Volume 7 | Issue 28 | e8

GPGPU based Multi-hive ABC Algorithm for Constrained Global Optimization Problems

3

inspired by the honey bees’ behaviour of searching for food.
A colony of artificial bees has three types of bees namely
employed bees, onlooker bees and scout bees. The entire
colony is divided into two parts - the employed bees and the
onlooker bees. The number of food sources is equal to the
number of employed bees. Each bee tries to improve its
solution by neighbour search method [3-4]. The detailed
pseudo-code of the ABC algorithm to solve constrained and
unconstrained optimization problems and its explanation can
be found in [4].

2.2 Proposed GPGPU based Multi-hive
ABC Algorithm

The proposed GPGPU based multi-hive ABC is described in
this section. This section presents and describes the flowchart
of the proposed approach as well as the execution of a multi-
hive model on GPGPU. The execution steps of the proposed

approach and strengths of the selected parallel model are
presented.

The proposed GPGPU based multi-hive ABC algorithm is
implemented using GPGPU for solving constrained
benchmark functions. The major steps of the ABC algorithm
are executed on GPGPU using multi-hive with a migration
strategy. This strategy consists of multiple colonies, each
colony executes the ABC algorithm. At the end of certain
iterations, each colony shares its best solution with other
colonies and replaces its own worst solution with the
migrated best solution from other colonies. By following this
procedure, all the colonies move towards the best solution in
a co-evolution fashion. For migration, unidirectional ring
topology is used. In this topology, each colony migrates
(sends) its best solution to the colony on its right and replaces
its worst solution by the migrated solution of the colony to its
left. This strategy adds the migration gap (number of
iterations between successive migrations) as one more
parameter to the ABC algorithm. Fig. 1 shows the flowchart
of the proposed GPGPU based multi-hive ABC algorithm.

Figure 1. Flow of Proposed GPGPU based Multi-hive ABC algorithm

The CPU initially allocates memory on GPGPU’s global
memory for migrating the best solution parameters and
saving the best solution after the execution. When the kernel
is launched, it creates the instances of function which are

equivalent to the total number of threads. In the end, when the
Maximum Cycle number is reached the global best solutions
from each hive are copied into a global array that is sent to
CPU with their number of constraints violated. From this

EAI Endorsed Transactions on
Energy Web

05 2020 - 07 2020 | Volume 7 | Issue 28 | e8

Sandeep U. Mane, Amol C. Adamuthe and Aprupa S. Pawar

4

array one best solution is returned as the final solution. Odd-
even sorting is performed to select the best solution.

For constrained benchmark problems, the ABC algorithm
given in [3] is implemented. It has two more parameters
called the Modification rate (MR) and the Scout generation
period (SPP). Here for finding best solution between two
candidate solutions, the solution with minimum constraint
violation is preferred than the solution with more constraint
violation and if the number of constraints violated by both
solutions is same or zero the solution with minimum objective
function value is preferred over another in case of
minimization function and the solution with maximum
problem value is preferred than the other solution in case of
maximization problem. For finding this minimum Odd-Even
sort [18] is used as atomic minimum CUDA functions are
available only for GPGPU with compute capability above
3.5.

Fig. 2 presents the execution of kernel (function) on
GPGPU. The thread organization in CUDA is two-level
hierarchical. The grid consists of the number of blocks and
each block consists of the number of threads. The blocks and
threads are multi-dimensional. Here, when the kernel is
launched, the number of blocks denotes the number of
colonies and the number threads denote the number of
employee bees. The grid size is a product of a number of
blocks and number of threads per block. Each thread-block
runs a separate copy of multi-hive ABC algorithm and
migrates the solution after every migration gap with the use
of global memory. The total instances of multi-hive ABC
algorithm are equivalent to grid size.

Figure 2. Execution of multi-hive ABC on GPGPU’s
Thread-Block

The steps of the proposed GPGPU based multi-hive ABC
algorithm are presented below.

(i) Input: colony size, number of food sources equal to half
of the colony size, scout, production period Maximum
cycle number, Number of colonies (hives), migration
interval, modification rate for a new solution and
Problem specific variables.

(ii) Output: f(x) function’s optimal value.

(iii) Allocate memory on the host (CPU) and device
(GPGPU) for solution variables and optimal solution.
Transfer data from the host to the device.

(iv) Algorithm:
a. Launch kernel with the number of

blocks equal to the number of colonies
and the number of threads equal to the
number of employed bees.

b. Each block independently runs the ABC
algorithm on the device.

c. The best solution from each colony is
migrated to another colony by using a
unidirectional ring topology, depending
on the value of the migration rate
parameter.

d. According to ring topology, each
colony (block) replaces its worst
solution with the best solution of
another colony.

e. The kernel exits when it reaches to
maximum cycle number.

(v) Copy the best solution of each colony to host.
(vi) Sort the copied best solutions on the host and find the

optimal solution to the problem.

The parallel multi-hive model is a multiple-population
coarse-grained system that uses two or more hives that are
initialized at the same time with different random seeds [11].
Each population can be seen as an island. The hives work
independently from each other, and each one runs an ABC
algorithm, with a migration process occurring periodically.
For example, one processing core can be used for each hive.
Migrations occur between hives by using a migration policy
that includes some parameters defined by the user. Two
important parameters used are the migration gap, which is the
number of generations between successive migrations; and
the migration rate at which the number of individuals will
migrate per migration event. It also defines some criteria for
the selection of immigrants and the substitution of emigrants.
For example, unidirectional ring topology. The merits of the
coarse-grain approach are presented in [16]. The coarse-
grained method is preferred due to its ease of implementation.
Other parallelization models provide profit in the evaluation
of expensive fitness functions, while the coarse-grained
model is very useful when the fitness function is
computationally inexpensive. The serial algorithm uses only
one random seed at the initial step, the coarse-grained model
uses a number of random seeds equal to the number of
subpopulations (or swarms). This method increases the
diversity of the population and thus the enhancement of the
exploration process on search space increases the probability
to hit the optimal solution as well as improves the
convergence rate. Another advantage of this model is that it
can be used with many topologies (mesh, ring, hypercube,
etc.) and also it needs less communication between nodes, so
its efficiency may be better than those of other models.

EAI Endorsed Transactions on
Energy Web

05 2020 - 07 2020 | Volume 7 | Issue 28 | e8

5

3. Tested Benchmark Functions

This section describes the properties of CEC2006 benchmark
functions used for experimentation. The CEC 2006
benchmark functions are single-objective linear, nonlinear,
cubic, and polynomial types. Each function has a different
number of design variables as well as the range of each design
variable varies from function to function. The real-time
single-objective optimization problems exist in engineering
and scientific domains possess similar characteristics to
selected benchmark functions. Hence, instead of solving real-
time single-objective optimization problems, the proposed
work considers CEC 2006 standard benchmark functions.
The performance of the proposed GPGPU based Multi-Hive
ABC algorithm evaluated using constrained benchmark
functions (CEC2006). The definition and mathematical
model of the constrained benchmark functions can be found
in [19].

Table 1 presents the constrained benchmark functions with
the number of decision variables, type of function, number
and type of constraints, and global best solution. G1 is a
quadratic function with 9 linear inequality constraints. G2 is
a non-linear function with two non-linear inequality
constraints. G3 is a polynomial function with 1 non-linear
equality function. G4 is a quadratic function with 6 non-linear
inequality constraints. G5 is a cubic function with two linear
inequality and three non-linear equality constraints. G6 is a
cubic function with two non-linear inequality constraints. G8
is a non-linear function with two non-linear inequality
constraints. G10 is a linear function with three linear
inequality constraints and three non-linear inequality
constraints. G11 is a quadratic function with one non-linear
equality constraint. G12 is a quadratic function with 1 non-
linear inequality constraint. G13 is a non-linear function with
three non-linear equality constraints.

Table 1. Benchmark functions with its properties

Fun
ction

No. of
Decision
Variable
s

Type of
function

Number
and Type
of
constraints

Global
Best
Solution

G1 13 Quadratic 9 Linear
Inequality

-15

G2 20 Nonlinear 2 Nonlinear
Inequality

-0.803619

G3 10 Polynomial 1 Nonlinear
Equality

-1.0

G4 5 Quadratic 6 Nonlinear
Inequality

-30665.539

Fun
ction

No. of
Decision
Variable
s

Type of
function

Number
and Type
of
constraints

Global
Best
Solution

G5 4 Cubic 2 Linear
Inequality
and
3 Nonlinear
Equality

5126.484

G6 2 Cubic 2 Nonlinear
Inequality

-6961.814

G8 2 Nonlinear 2 Nonlinear
Inequality

-0.095825

G10 8 Linear 3 Linear
Inequality
and
3 Nonlinear
Inequality

7049.28

G11 2 Quadratic 1 Nonlinear
Equality

0.75

G12 3 Quadratic 1 Nonlinear
Inequality

-1

G13 5 Nonlinear 3 Nonlinear
Equality

0.05394

4. Results and Discussion

This section describes the parameter settings, experimental
setup, results obtained and its comparison with results from
the literature.

The experiments performed using GeForce GTX 680
Nvidia’s GPGPU. It has 8 streaming multiprocessors with
1536 CUDA cores. The device has 2GB global memory with
a speed of 6.0 Gbps. The compute capability of the device is
3.0. The proposed approach is implemented in CUDA-C
using CUDA Toolkit 7.0 with the Thrust library. The
performance of the proposed GPGPU based multi-hive ABC
algorithm is evaluated using the CEC2006 constrained
benchmark dataset. The proposed approach is implemented
for G01 to G06, G08, and G10 to G13 benchmark functions.

The artificial bee colony size set as 64, the maximum
number of cycles used as 1000, Modification Rate (MR) set
as 0.8, SPP set as a product of half of the colony size and the
number of problem dimensions. The Migration gap used as
250. The maximum number of cycles used for the G1
benchmark function is 5000 [3]. The number of CUDA
blocks used is equal to the number of hives and the number
of CUDA threads used is equal to the number of employed
bees. The GPGPU based multi-hive ABC algorithm is
executed for 30 times for each function. The mean and
standard deviation statistical tests are used to measure the
performance. Table 2 to Table 7 presents the results obtained
by GPGPU based multi-hive ABC algorithm for selected
benchmark functions.

GPGPU based Multi-hive ABC Algorithm for Constrained Global Optimization Problems

EAI Endorsed Transactions on
Energy Web

05 2020 - 07 2020 | Volume 7 | Issue 28 | e8

Sandeep U. Mane, Amol C. Adamuthe and Aprupa S. Pawar

6

Table 2. Results obtained using GPGPU based multi-hive ABC algorithm for 11 benchmark functions

Function No. of Decision
Variables

Global Best
Solution

Obtained Best
Solution

Mean Std. Deviation Time (in ms)

G1 13 -15 -15 -15 0.00E+00 86.72
G2 20 -0.803619 -0.803619 -0.7924 5.56E-03 120.07
G3 10 -1.0 -1.0 -0.99999 8.43E-07 17.93
G4 5 -30665.539 -30665.53 -30365.35 7.35E+01 21.49
G5 4 5126.484 5126.48 5184.603 4.37E+01 135.12
G6 2 -6961.814 -6961.814 -6961.810 4.99E-02 18.76
G8 2 -0.095825 -0.095825 -0.09582 4.83E-06 20.65
G10 8 7049.28 7051.43 7156.287 5.78E+01 19.66
G11 2 0.75 0.75 0.75 3.89E-04 15.12
G12 3 -1 -1 -1.00 0.00E+00 47.92
G13 5 0.05394 0.05394 0.0539 4.97E-06 19.027

 The values in boldface indicate the best results

Table 2 presents the results obtained in terms of best,
mean, standard deviation, and execution time. The GPGPU
based multi-hive algorithm obtains global best results for all
the selected functions. The number of hives used is 4 with 64
as population size. The function evaluations performed for
function G1 are 12,80,000 (as the maximum cycle number
used is 5000). The function evaluations performed for the
remaining functions are 2,56,000. The parallel execution time
is from 15.12 milliseconds to 135.12 milliseconds. The

proposed approach succeeds to obtain the global best solution
for all the selected benchmark function except G10 function.
The best value obtained for G10 function using the proposed
approach is close to the global best solution. From the results,
it can be said that irrespective of the platform used to
implement the multi-hive ABC algorithm, it gives better
results to selected benchmark problems. The GPGPU based
multi-hive ABC algorithm is a promising approach to solve
the single objective constrained optimization problems.

Table 3. Comparison of Sequential ABC and Proposed GPGPU based multi-hive ABC Algorithm

Function Global
solution

Sequential ABC Results taken from [3] Proposed GPGPU based Multi-hive ABC Algorithm
Best Mean Std. Deviation Best Mean Std. Deviation

G1 -15 -15 -15 0.00E+00 -15 -15 0.00E+00

G2 -0.803619 -0.803598 -0.7924 1.20E-02 -0.803619 -0.7924 5.56E-03

G3 -1.0 -1.0 -1.0 0.00E+00 -1.0 -0.99999 8.43E-07

G4 -30665.539 -30665.539 -30665.539 0.00E+00 -30665.53 -30365.35 7.35E+01

G5 5126.484 5126.484 5185.714 7.54E+01 5126.48 5184.603 4.37E+01

G6 -6961.814 -6961.814 -6961.813 2.00E-03 -6961.814 -6961.810 4.99E-02

G8 -0.095825 -0.095825 -0.09582 0.00E+00 -0.095825 -0.09582 4.83E-06

G10 7049.28 7053.904 7224.407 1.34E+02 7051.43 7156.287 5.78E+01

G11 0.75 0.75 0.75 0.00E+00 0.75 0.75 3.89E-04

G12 -1 -1 -1.00 0.00E+00 -1 -1.00 0.00E+00

G13 0.05394 0.760 0.968 5.50E-02 0.05394 0.0539 4.97E-06

The values in boldface indicate the best results.

Table 3 presents a comparison of results given in [3] of
sequential ABC and proposed GPGPU based multi-hive ABC
algorithm. The results are compared based on best, mean and
standard deviation. The proposed approach obtains equally

best results for G1, G3, G4, G5, G6, G8, G11, and G12. The
results obtained for function G2, G10, and G13 are better than
the results given in [3]. The mean results obtained for G4, G5,
G10, and G13 are better than the results presented in [3] for

EAI Endorsed Transactions on
Energy Web

05 2020 - 07 2020 | Volume 7 | Issue 28 | e8

7

the ABC algorithm. From the results presented in Table 3, it
is observed that the proposed approach is competitive with
the existing ABC algorithm.

Table 4. Mean solutions comparison of proposed approach with results from [3]

Function Global Best Solution PSO [3] DE [3] ABC [3] Proposed GPGPU based
multi-hive ABC algorithm

G1 -15 -14.710 -14.555 -15.000 -15

G2 -0.803619 -0.419960 -0.6657 -0.792412 -0.7924

G3 -1.0 -0.764813 -1.000 -0.99999 -0.99999

G4 -30665.539 -30665.539 -30665.539 -30665.539 -30365.35

G5 5126.484 5135.973 5264.270 5185.714 5184.603

G6 -6961.814 -6961.814 -- -6961.813 -6961.810

G8 -0.095825 -0.095825 -0.095825 -0.095825 -0.09582

G10 7049.28 7205.5 7147.334 7224.407 7156.287

G11 0.75 0.749 0.901 0.750 0.75

G12 -1 -0.998875 -1.000 -1.000 -1.00

G13 0.05394 0.569358 0.872 0.968 0.0539
The values in boldface indicate the best results

Table 4 presents the comparison of mean results obtained
using the proposed GPGPU based multi-hive ABC algorithm
and results presented in [3] for ABC, PSO and DE algorithm.
Form the comparison, it is observed that, the proposed
approach succeed to obtain better mean results for G1, G2,

G11, G12, and G13 functions than the other approaches used
for comparison. The proposed approach gives better mean
results than the ABC algorithm for all the selected benchmark
functions except G4 and G8.

Table 5. Execution time and Device utilization of GPGPU based multi-hive ABC algorithm

Function No. of Decision
Variables

Population
Size

No. of
Iterations

Time (in ms)

Speed-up Sequential ABC
Algorithm

Proposed
GPGPU based

multi-hive ABC
Algorithm

G1 13 64 5000 679.21 86.72 7.832

G2 20 64 1000 1083.41 120.07 9.023

Table 5 presents the comparison of results obtained using
the ABC algorithm and proposed GPGPU based multi-hive
ABC algorithm and the speed-up of the proposed approach.

The proposed approach gives 7X to 9X faster results than the
sequential ABC algorithm. The parameter settings were kept
similar to both the approaches to obtain better results.

GPGPU based Multi-hive ABC Algorithm for Constrained Global Optimization Problems

EAI Endorsed Transactions on
Energy Web

05 2020 - 07 2020 | Volume 7 | Issue 28 | e8

8

Table 6. Execution time and Device utilization of proposed GPGPU based multi-hive ABC algorithm

Function
No. of

Decision
Variables

Population
Size No. of Iterations Time (in ms) Device Utilization

G1 13 64 5000 86.72 86.9%

G2 20 64 1000 120.07 77.2%

G3 10 64 1000 17.93 57.9%

G4 5 64 1000 21.49 63.5%

G5 4 64 1000 135.12 61.8%

G6 2 64 1000 18.76 65.7%

G8 2 64 1000 20.65 59.8%

G10 8 64 1000 19.66 63.0%

G11 2 64 1000 15.12 57.0%

G12 3 64 1000 47.92 91.2%

G13 5 64 1000 19.027 68.0%

Table 6 presents the execution time required for
proposed GPGPU based multi-hive ABC algorithm and
GPGPU utilization for selected benchmark functions. The
device utilization varies with the number of decision
variables, number and type of constraints as well as the
type of function. The device utilization is more than 55%
for all the selected benchmark functions. The maximum
device utilization recorded is about 91% for G12 function,
which is quadratic with one nonlinear inequality constraint.
The minimum device utilization recorded is about 57% for
the G11 function which is quadratic in nature with one
nonlinear equality constraint. The device utilization is
varying due to different reasons, it depends on the number
of ideal threads during execution, the thread divergence, as
well as the complexity of the selected problem.

Table 7. Convergence of 4 hives vs. 8 hives

Function No. of Iterations for Convergence

4 – Hives 8 – Hives

G1 920 906

G2 951 853

G3 946 920

G4 961 954

G5 391 307

G6 993 987

Function No. of Iterations for Convergence

4 – Hives 8 – Hives

G8 916 850

G10 159 141

G11 832 750

G12 993 981

G13 980 972

Table 7 presents the convergence rate of 4 hives and 8
hives GPGPU based multi-hive ABC algorithm. As the
number of hives increased from 4 to 8, it is observed that
the best solutions are obtained early due to co-evolution
effect.

5. Conclusion and Future Work

This paper presents a GPGPU based multi-hive ABC
algorithm to solve constrained optimization problems. The
proposed approach is implemented on GPGPU using a
coarse-grain model. The multi-hive ABC algorithm is
executed on GPGPU using CUDA-C. The number of
blocks and the number of threads used is equivalent to the
number of hives (colonies) and the number of employed
bees, respectively. The performance of the proposed
approach is evaluated using 11 constrained benchmark
functions of CEC2006. The proposed approach obtains
global best solutions for all selected benchmark functions.
The speed-up achieved is approximately 7X to 9X faster

Sandeep U. Mane, Amol C. Adamuthe and Aprupa S. Pawar

EAI Endorsed Transactions on
Energy Web

05 2020 - 07 2020 | Volume 7 | Issue 28 | e8

9

than the sequential ABC algorithm. The parallel execution
time to obtain the best result varies from 15.12
milliseconds to 135.12 milliseconds as per the properties of
selected benchmark functions. The GPGPU device is
utilized from approximately 57% to 91%. The parallel
execution time required and device utilization depends on
the type of problem, the number of decision variables,
number and type of constraints. The device utilization
according to the number of active threads, the thread
divergence, number of design variables and type of
constraints of the problem. The performance of the
proposed approach is also compared with the results found
in the literature using various statistical tests. From
obtained results and comparison with literature, the
GPGPU based multi-hive ABC algorithm is one of the
promising approaches to solve constrained optimization
problems on GPGPU.

The performance of the proposed approach can be
evaluated using complex constrained global optimization
problems as future work. The device utilization can be
improved by using various CUDA related features. The
parallel execution time can be improved by implementing
the proposed approach using GPGPU with compute
capability more than 3.5, it will facilitate to use various
libraries developed by Nvidia for CUDA-C. The GPGPU
based multi-hive ABC algorithm can be used to solve real-
world constrained optimization problems. Also, the ABC
algorithm can be implemented on GPGPU using different
parallelization strategy that has not been implemented yet.

References
[1] Rao SS. Engineering optimization: theory and practice. John

Wiley & Sons; 2019.

[2] Karaboga D. An idea based on honey bee swarm for
numerical optimization. Technical report-tr06, Erciyes
University, engineering faculty, computer engineering
department; 2005.

[3] Karaboga D, Basturk B. Artificial bee colony (ABC)
optimization algorithm for solving constrained optimization
problems. In: Melin P., Castillo O., Aguilar L.T., Kacprzyk
J., Pedrycz W. (eds) Foundations of Fuzzy Logic and Soft
Computing. IFSA 2007. Lecture Notes in Computer
Science, vol 4529. Springer, Berlin, Heidelberg; 2007. PP.
789-798.

[4] Karaboga D, Basturk B. A powerful and efficient algorithm
for numerical function optimization: artificial bee colony
(ABC) algorithm. Journal of global optimization. 2007 Nov
1; 39 (3):459-71.

[5] Luo GH, Huang SK, Chang YS, Yuan SM. A parallel Bees
Algorithm implementation on GPU. Journal of Systems
Architecture. 2014 Mar 1; 60 (3):271-9.

[6] Opara K, Arabas J. Benchmarking procedures for
continuous optimization algorithms. Journal of
Telecommunications and Information Technology.
2011:73-80.

[7] Mane S.U., Narsinga Rao M.R. Large-Scale Compute-
Intensive Constrained Optimization Problems: GPGPU-

Based Approach. In: Ray K., Sharma T., Rawat S., Saini R.,
Bandyopadhyay A. (eds) Soft Computing: Theories and
Applications. Advances in Intelligent Systems and
Computing, vol 742. Springer, Singapore; 2019. PP. 579-
589.

[8] Mane SU, Omane R, Pawar A. GPGPU based teaching
learning based optimization and artificial bee colony
algorithm for unconstrained optimization problems. In 2015
IEEE International Advance Computing Conference
(IACC). IEEE; 2015. PP. 1056-1061.

[9] Hofmann J, Limmer S, Fey D. Performance investigations
of genetic algorithms on graphics cards. Swarm and
Evolutionary Computation. 2013 Oct 1; 12:33-47.

[10] Mussi L, Daolio F, Cagnoni S. Evaluation of parallel
particle swarm optimization algorithms within the CUDA™
architecture. Information Sciences. 2011 Oct 15; 181
(20):4642-57.

[11] Parpinelli RS, Benitez CM, Lopes HS. Handbook of Swarm
Intelligence. Berlin, Heidelberg: Springer; 2011. Parallel
approaches for the artificial bee colony algorithm; PP. 329-
345.

[12] Banharnsakun A, Achalakul T, Sirinaovakul B. Artificial
bee colony algorithm on distributed environments. In 2010
second world congress on nature and biologically inspired
computing (NaBIC). IEEE; 2010. PP. 13-18.

[13] Luo R, Pan TS, Tsai PW, Pan JS. Parallelized artificial bee
colony with ripple-communication strategy. In 2010 Fourth
International Conference on Genetic and Evolutionary
Computing. IEEE; 2010. PP. 350-353.

[14] Subotic M, Tuba M, Stanarevic N. Different approaches in
parallelization of the artificial bee colony algorithm.
International Journal of mathematical models and methods
in applied sciences. 2011 Mar; 5 (4): 755-62.

[15] Zhang H, Zhu Y, Yan X. Multi-hive artificial bee colony
algorithm for constrained multi-objective optimization. In
2012 IEEE Congress on Evolutionary Computation. IEEE;
2012 PP. 1-8

[16] Basturk A, Akay R. Performance analysis of the coarse-
grained parallel model of the artificial bee colony algorithm.
Information Sciences. 2013 Dec 20; 253:34-55.

[17] Xu K, Jiang MY, Yuan DF. Parallel artificial bee colony
algorithm for the traveling salesman problem. In Advanced
Materials Research 2013 (Vol. 756, pp. 3254-3259). Trans
Tech Publications Ltd.

[18] Jan B, Montrucchio B, Ragusa C, Khan FG, Khan O. Fast
parallel sorting algorithms on GPUs. International Journal
of Distributed and Parallel Systems. 2012 Nov 1; 3(6):107.

[19] Liang JJ, Runarsson TP, Mezura-Montes E, Clerc M,
Suganthan PN, Coello CC, Deb K. Problem definitions and
evaluation criteria for the CEC 2006 special session on
constrained real-parameter optimization. Journal of Applied
Mechanics. 2006 Sep 18; 41(8):8-31.

GPGPU based Multi-hive ABC Algorithm for Constrained Global Optimization Problems

EAI Endorsed Transactions on
Energy Web

05 2020 - 07 2020 | Volume 7 | Issue 28 | e8

