
Using Hadamard transform for cryptanalysis of
pseudo-random generators in stream ciphers
Guillermo Sosa-Gómez1,∗, Omar Rojas1, Octavio Páez-Osuna2

1Universidad Panamericana. Escuela de Ciencias Económicas y Empresariales. Álvaro del Portillo 49, Zapopan,
Jalisco, 45010, México
2Ronin Institute for Independent Scholarship, Montclair, NJ 07042, USA

Abstract

In this work we discuss results obtained from an application of the Hadamard transform to cryptanalysis, and
in particular, we determine the probability to decipher different pseudo-random number generators used as
components of stream ciphers. Also, we found a relationship between entropy and Hadamard’s values.

Received on 02 March 2020; accepted on 09 April 2020; published on 15 April 2020

Keywords: pseudo-random generators, Hadamard transform, stream ciphers, entropy

Copyright © 2020 Guillermo Sosa-Gómez et al., licensed to EAI. This is an open access article distributed under the
terms of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/), which permits
unlimited use, distribution and reproduction in any medium so long as the original work is properly cited.

doi:10.4108/eai.13-7-2018.163980

1. Introduction
Cryptography, or cryptology, deals with the practice
and study of securing communications between parties.
Thus, it is of the greatest importance nowadays, in
particular since we live in a society with digital
presence for almost all of our activities and assets, to
be able to rely on the methods employed to secure
such information. There are plenty of applications,
such as in electronic commerce [1, 2] and blockchain
[3–5], among others. In particular, stream ciphers,
which are the object of our present study are useful
for protecting data in real-time, like the encryption
and decryption of a DVD [6]. Cryptanalysis is the
study of methods to reveal the meaning of encrypted
information, without access to the secret key. Typically,
this translates into obtaining the key used to encrypt
the information. In non-technical terms, this practice is
known as breaking or forcing the cryptosystem. Despite
the aim being always the same, the methods and
techniques of cryptanalysis have changed drastically
throughout the history of cryptography, adapting to
an increasing cryptographic complexity. The methods
of cryptanalysis have also changed as it is no longer
possible to have unlimited success in breaking a
cryptosystem, and there is a hierarchical classification
of what constitutes an attack in practice, see [7]. In

∗Corresponding author. Email: gsosag@up.edu.mx

this work, we develop theoretical statistical attacks
by searching for auto correlations in the output bits
of stream ciphers. The term cryptanalysis is also used
to refer to any attempt to circumvent the security
of different types of algorithms and cryptographic
protocols in general, and not just encryption [8].
Although the objective has always been the same, i.e.
totally breaking the cryptosystem, the methods and
techniques of cryptanalysis have changed drastically
throughout the history of cryptography, adapting to a
growing cryptographic complexity, which ranges from
the pen and paper methods of the past, through
machines like Enigma to the systems based on modern
computers and other electronic devices. The purpose
of any pseudo random generator (PRNG) is to obtain
sequences that behave statistically as if they were
random. Although some design criteria are known, how
can you decide when a sequence is sufficiently random?
How can unpredictability be measured? To overcome
the complexities of modern day cryptography we must
resort to advanced mathematics and algorithms. A
very useful mathematical technique to reduce the
complexity of a problem is that of changing its
domain by means of a transformation. A transform
represents the change from one domain to another, and
with the right properties, it reduces the complexity
of the given task. In the context of our problem,
the cryptanalysis of stream ciphers, the Hadamard
transform will prove to be useful. In the domain

1

EAI Endorsed Transactions
on Energy Web Research Article

EAI Endorsed Transactions on
Energy Web

03 2020 - 05 2020 | Volume 7 | Issue 27 | e1

http://creativecommons.org/licenses/by/3.0/
mailto:<gsosag@up.edu.mx>

Guillermo Sosa-Gómez, Omar Rojas and Octavio Páez-Osuna

of random sequences there are those generated by
intrinsically random physical processes, i.e, based on
the assumption of the existence of random processes
in nature. In many applications it is necessary to have
the same sequence (apparently random) in two different
experiments, so it is necessary to use ireproducible
deterministic algorithms. Sequences produced by such
algorithms are called pseudo-random. Pseudo-random
sequences are used in various environments related
to telecommunications. One of the most important
steps in cryptanalysis is to establish correspondences
between the elements of the output with probable
clear text. The main task is to find ways of facilitating
the computation of a probability that relates several
terms of an output, and determine the likelihood to
decipher the message or parts of it. In this work, we
develop theoretical statistical attacks by searching for
autocorrelations in the output bits of stream ciphers
[9]. The term cryptanalysis is also used to refer to
any attempt to circumvent the security of different
types of algorithms and cryptographic protocols in
general, and not just encryption [8]. Although the
objective has always been the same, i.e. totally breaking
the cryptosystem, the methods and techniques of
cryptanalysis have changed drastically throughout
the history of cryptography, adapting to a growing
degree of cryptographic complexity, which ranges from
the pen and paper methods of the past, through
machines like Enigma to the systems based on modern
computers and other electronic devices. For a general
introduction in the subject, see [10, 11]. The purpose
of any pseudorandom generator (PRNG) [12] is to
obtain sequences that statistically behave as random.
Although some design criteria are known, how can
one decide whether a sequence is sufficiently random?
How can unpredictability be measured? To overcome
the complexities of modern day cryptography one
must resort to advanced mathematics and algorithms.
A very useful mathematical technique to reduce the
complexity of a problem is that of changing its domain
by means of a transformation. A transform represents
the change from one domain to another, and with the
right properties, it reduces the complexity of the given
task. In the context of our problem, the cryptanalysis of
stream ciphers, the Hadamard transform (also known
as Walsh-Hadamard transform [13]) will prove to be
useful. The structure of the paper is as follows. Section
2 presents the stream ciphers used in the current work
Section 3 presents the results related to entropy of the
stream ciphers under study. Section 4. Section 5 gives an
example of how to apply our proposed method. Finally,
Section 8 presents the conclusions of the word and some
desirable future work.

2. Stream ciphers
A stream cipher algorithm is simply specifying a
pseudorandom generator, which allows to encrypt
messages of arbitrary length by combining the bit
sequence produced with the message by exclusive-OR
operation, symbol by symbol [14]. When designing
stream ciphers, a number of properties must be taken
into account besides generating randomly looking bit
sequences [15]; the generated sequence must present
the most unpredictable behavior possible, i.e., given a
fraction of the sequence, it should not be possible to
predict the rest, either before or after the given sub-
sequence. More formally, a stream cipher can be viewed
as a function f : Fn2 → Fm2 which transforms a binary
vector input X = (x1, . . . , xn) of n bits into a binary
vector output Y = f (X) = (y1, . . . , ym) of m bits where
n,m ∈ N. Denoted as ei with 1 ≤ i ≤ n, the unit vectors
e1 = (1, 0, . . . , 0, 0, 0), . . . , en = (0, 0, . . . , 0, 0, 1). To detect
regularities in binary sequences, it is necessary to
resort to probabilistic studies allowing for quantitative
evaluation of the randomness of a sequence . Among
the 15 statistical tests proposed by the NIST in its
battery of tests to evaluate PRNG there is there is the
so called approximate entropy test [16]. We will apply
this technique as a measurement for our method. In
what follows we briefly describe commonly used stream
ciphers which we will also use as a way to illustrate our
proposed method and obtained results.

2.1. Shrinking Generator
The so-called Shrinking Generator(SG) is a nonlinear
key stream generator composed by two LFSRs [17]
so that a control register SRS decimates the sequence
produced by the other register SRA. S and A denote
respectively their corresponding lengths and fulfill that
(S, A) = 1 and S < A. PS (x), PA(x) ∈ F(2)[x] denote their
corresponding primitive characteristic polynomials.
The sequence {si}, produced by SRS, controls the bits of
the sequence {ai} produced by SRA which are included
in the output shrunken sequence Z according to the
following rule: If si = 1 then zj = aI , and if si = 0 then ai
is discarded. As different pairs of SRA/SRS initial states
can generate the same shrunken sequence, in the sequel
we assume, without loss of generality, that the first term
of the sequence {si} equals 1, that is s0 = 1. According
to [17], the period of the shrunken sequence is: T =
(2A − 1)2S−1,its linear complexity, notated LC, satisfies
the following inequality: A2S−2 < LC ≤ A2S−1. It can be
proven [18] that the shrunken sequence has also good
distributional statistics. Therefore, due to all these good
characteristics, this scheme has been traditionally used
as a key stream sequence generator with application
in secret-key cryptography. A potential problem is that
the shrinking generator outputs bits at an irregular
rate, and a timing attack might reveal something about

2 EAI Endorsed Transactions on
Energy Web

03 2020 - 05 2020 | Volume 7 | Issue 27 | e1

Using Hadamard transform for cryptanalysis of pseudo-random generators in stream ciphers

the sampling sequence a unless some sort of buffering
conceals this.(see [17])

2.2. A5/1
Stream ciphers are considered nowadays the fastest
encryption procedures. Consequently, they are imple-
mented in many practical applications e.g. the algo-
rithms A5 in GSM communications (GSM). Cryptosys-
tem A5/1 is a synchronous stream encryption that
accepts a 64-bit session key Ks = (k0, . . . , k63) ∈ F(2)64

and an initialization 22-bit vector IV = (v0, . . . , v21) ∈
F(2)22 derived from the 22-bit frame number that is
publicly known. It consists of three LFSRs of lengths
19, 22 and 23, called R1, R2 and R3, respectively. These
LFSRs are irregularly synchronized. Each of them has
a clocking bit C1, C2 and C3, respectively. Each time
the LFSRs are registered, the three clock bits C1, C2
and C3 determine which of the LFSRs are synchronized.
The output of the three LFSRs are XOR combined.
The records are updated according to their primitive
polynomials. Then the records produce sequences of
maximum periods. There are several kinds of attacks
are listed on A5/1 in section 1 in [19]. One of them is
the method of Biryukov [20]. He found a known-key
stream attack on A5/1 requiring about two seconds of
the keystream and recovers Kc in a few minutes on a
personal computer. The second one is the method of
Barkan [19]. He proposed a cipher-text-only attack on
A5/1 that can recover Kc by using only four frames of
ciphertext. According to National Institute of Standards
and Technology (NIST), all important cryptography
tests (Frequency test, Serial test, Run, Long Run test,
Poker test, Auto-Correlation test, Maurer’s Universal
Test) have applied on designed stream cipher algorithm.
All of tests passed successfully. [21]

2.3. Blow-fish
Blow-fish [22] is an encryption of the DES type of
16 rounds, with blocks and keys from 64 bits up
to 448 bits in length. The computing intensive key
expansion phase creates eighteen 32-bit sub keys plus
four S boxes of 256 32-bit inputs derived from the
input key, for a total of 4168 bytes. Data encryption
occurs through a 16-round Feistel network. Each round
consists of a permutation dependent on the key and
a substitution dependent on the key and the data. All
operations are XORs and sums in 32-bit words. The only
additional operations are four indexed memory reads
per round. Blowfish’s weak keys produce bad S-boxes,
since Blowfish’s S-boxes are key-dependent. There is a
chosen plaintext attack against a reduced-round variant
of Blowfish that is made easier by the use of weak
keys.[23]

3. Entropy of stream ciphers
In information theory, Shannon’s entropy or entropy
(in honor of Claude E. Shannon)(see [24]) measures the
uncertainty of a source of information, that is, entropy
is a measure of randomness in information. Crypto-
graphic algorithms are required to introduce high ran-
domness on encrypted messages, with minimum or no
dependence between the key and the ciphertext. With
high randomness, the relationship between the key and
the encrypted text becomes complex. This property is
also called confusion. A high degree of confusion is
desired to make it difficult to guess the plain text by an
attacker. Entropy is thus a reflection of the performance
in terms of effectiveness of a cryptographic algorithm.
The maximum entropy of a message is reached when all
symbols are equally probable. Entropy is computed by
means of Shannon’s formula

H(X) = −
N−1∑
i=0

pi log2(pi)

where pi is the probability of a given symbol and N is
the length of message X. The amount of information
associated with the simplest event, consisting of only
two equiprobable possibilities, will be the unit of
measure for entropy and is called bit. This is why the
base 2 logarithm is used in the definition of entropy,
so that the amount of information from the simplest
event is equal to one. It can be said that the entropy of
a random variable is the average number of bits needed
to encode each of the states of the variable, assuming
that each event is expressed using a message written in
a binary alphabet.

Table 1. Entropy values for reference cryptosystems for
k = 4, 8, 12, 16.

Generators k=4 k=8 k=12 k=16
SG 3.95 7.52 8.27 11.87

A5/1 3.997 7.90 10.21 13.76
Blow-fish 3.999 7.989 10.10 14.35

The entropy of a truly random sequence of length
k must be equal to k, in practice, however, source
information rarely generates random messages and, in
general information entropy value is less than ideal
(see for example [25]). However, after messages are
encrypted, their entropy should ideally be k. If the
output of such encryption emits symbols with entropy
less than k, there is a certain degree of predictability,
which threatens its security. We conducted entropy
tests for A5/1, Blow-fish and Shrinking Generator
cryptosystems, results are listed in table ??. It can be
observed that as k increases entropy drops from its
ideal value as expected and, it does not imply these
generators have no practical use.

3 EAI Endorsed Transactions on
Energy Web

03 2020 - 05 2020 | Volume 7 | Issue 27 | e1

Guillermo Sosa-Gómez, Omar Rojas and Octavio Páez-Osuna

4. Hadamard transform
The Hadamard Transform is perhaps the best known
of non-sinusoidal orthogonal transformation. The
Hadamard Transform has gained prominence in
applications in the processing of digital signals [26],
because it only uses sums and subtractions to compute.
Therefore, its implementation in hardware is very
efficient. The Hadamard transform proves also useful
as a tool in the construction of q-bent functions [27] ,
and vectorial bent functions [28]. Let Vn be the vector
space of dimension n over the binary Galois field F2. For
two vectors a,b ∈ Fn2, we define the scalar product a · b =
(a1b1 ⊕ . . . ⊕ anbn) and the sum a ⊕ b = (a1 ⊕ b1, . . . , an ⊕
bn), where the product and the sum ⊕ (called XOR) are
over F2. We recommend the articles of Bernasconi et al.
[29] and Pommerening [30] for more on this topic.

Definition 4.1. The Hadamard transform of a function f
on Vn (with the values of f taken to be real numbers) is
the mapping H(f) : Vn → R, defined by

H(f)(h) =
∑
x∈Vn

f (x)(−1)h·x. (1)

It can be verified that a direct calculation of
the complete Hadamard spectrum using previous
definition implies a complexity of N2 steps, with N =
2n. However, there is a quick procedure to calculate
the Hadamard transform that can be computed with
only Nlog(N) steps, using the concept of a butterfly
diagram(see [31]).

4.1. Hadamard transform in cryptanalysis
Cryptanalysis is the study of methods to reveal the
meaning of encrypted information, without access to
the secret key. Typically, this translates into obtaining
the key used to encrypt the information. In non-
technical terms, this practice is known as breaking
or forcing the cryptosystem; we will not discuss the
details. Despite that the aim has always been the
same, the methods and techniques of cryptanalysis
have changed drastically throughout the history of
cryptography, adapting to an increasing cryptographic
complexity. The methods of cryptanalysis have also
changed as it is no longer possible to have unlimited
success in breaking a cryptosystem, and there is
a hierarchical classification of what constitutes an
attack in practice (see [7]). In the domain of random
sequences there are those generated by intrinsically
random physical processes, i.e, based on the assumption
of the existence of random processes in nature.
In many applications it is necessary to have the
same sequence (apparently random) in two different
experiments, so it is necessary to use ireproducible
deterministic algorithms. Sequences produced by such
algorithms are called pseudo-random. Pseudo-random

sequences are used in various environments related
to telecommunications. One of the most important
steps in cryptanalysis is to establish correspondences
between the elements of the output with probable clear
text. The main task is to find ways of facilitating the
computation of a probability that relates several terms
of an output, and determine the likelihood to decipher
the message or parts of it. Let Z = {z1, z2, . . . , zp} be the

output of a binary generator, and z
j
w = (zj+wi−w)ki=1 ∈

Vk a rolling sequence with a window of size w of Z
for all j ∈ J = {1, . . . , p − wk + w} and ξ = (ξ1, . . . , ξk) ∈
Vk for a fixed k. In our analysis, we want to find the
probability P {zjw · ξ = 0} for ξ , 0. Our main goal is the
computation of this probability, and thus we start by
defining n0 =| {j ∈ J : zjw · ξ = 0} |, and n1 =| {j ∈ J : zjw ·
ξ = 1} |, such that n0 + n1 = N := p − wk + w. Then, by a
classical result in probability, it follows that

P {zjw · ξ = 0} =
n0

N
, (2)

for all j ∈ J . This probability depends of ξ. Now, before
we proceed to apply certain transformations, we let

1
N

∑N
i=1(−1)z

j
w ·ξ = 1

N

(∑
z
j
w ·ξ=0

(−1)z
j
w ·ξ +

∑
z
j
w ·ξ=1

(−1)z
j
w ·ξ

)
= 1

N (n0 − n1) = ∆ξ .
(3)

Then,

∆ξ =
n0 − n1

n0 + n1
. (4)

The problem is, given ∆ξ , to find the values of n0 and
n1, which leads to a Diophantine equation that due
to the conditions of the previous variables makes it
necessary to resort to resources such as Kronecker’s
Theorem, which makes the solution of the problem
very complicated. The idea then is to use a transform
that as it is known represents the change from one
domain to another and that due to its properties, it
reduces the complexity of mathematical problems. This
type of tool has been very useful and fundamental
in solving problems in different fields, and of diverse
nature. The Hadamard transform allows us to solve the
problem posed. Thus, we transform the problem using
the Hadamard Transform. It turns out that by finding a
relationship between ∆ξ , n0 and n1:

1 + ∆ξ = 1 +
n0 − n1

n0 + n1
=

2n0

n0 + n1
. (5)

Then, 1+∆ξ
2 = n0

N . The probability that we want to find is

P {zjw · ξ = 0} =
n0

N
=

1 + ∆ξ

2
, (6)

reducing the problem to that of finding ∆ξ .

4 EAI Endorsed Transactions on
Energy Web

03 2020 - 05 2020 | Volume 7 | Issue 27 | e1

Using Hadamard transform for cryptanalysis of pseudo-random generators in stream ciphers

4.2. Hadamard transform of a sequence
Suppose now that we obtain an output sequence Z, we
want to count the repetitions of zjw, for this we build the
set α = {αl ∈ Vk}, for l = 1, . . . , 2k and we use the Alg. 1
. Then we compute the following

Data: zjw
Result: Counter zjw
for l = 1 to 2k do

nl = 0;
for j = 1 to N do

if zjw = αl then
nl = nl + 1;
break;

end
end

end
Algorithm 1: Counter

∆ξ =
1
N

N∑
j=1

(−1)z
j
w ·ξ =

1
N

∑
αl∈α

(−1)α
l ·ξ · nl , (7)

for all ξ ∈ Vk . Each zjw is mapped to yj ∈ N such that

yj =
k−1∑
i=0

z
j
i · 2

i , (8)

for all j ∈ J , then we let Π[yj] = Π[yj] + 1, this is a
counter for the number of yj ’s such that nl = Π[l].
Now let n̂ξ =

∑
αl∈α(−1)α

l ·ξnl . Then to compute {n̂ξ , ξ ∈
Vk} and solve (3), we will use the Discrete Hadamard
Transform. If we write nl = f (x) and to (h, x) = (αl , ξ),
then the transform can be written as

H(nl)(ξ) =
∑
αl∈α

nl(−1)α
l ·ξ , (9)

arriving to

∆ξ =
n̂ξ
N

=
H(nl)(ξ)

N
, (10)

which is a less cumbersome computation of ∆ξ . Once ∆ξ
is obtained, we can determine if there are distinguished
elements within Vk that can help us characterize certain
parts of the output sequence Z or in this case by
finding a certain relationship between the elements of
the sequence.

5. Example
In this example, we illustrate our methods by analyzing
the A5/1 described in the section 2.2. We use
Key: 1223456789ABCDEF. We organize the output Z

sequentially in blocks of length k = 12 and w = 12,
and interpret these blocks as the sequences z

j
w. It

has therefore length p = 16380. Each z
j
w is the binary

expression of an integer in the interval [0, 212 − 1].
We store their frequencies in vector Π of length 212;
i.e., Πi = |{r |i =

∑11
j=0 z12r+j2j , r = 0, . . . , 16380}|.We now

resort to Hadamard matrices to transform our problem.
Recall that we may construct Hadamard matrices to
use Paley construction(see [32]) In our example, N =
p/k = 1365 and define δ := H12·Π

N and δ0 := 0. In this
experiment we find that max(δ) = 0.115, corresponding
to the 2195-th entry. Now 219510 = 1000100100112,
and with probability 1+δ2195

2 = 0.5575 which implies
that, with high probability, 2195 is a distinguished
element from the output. Indeed, we may verify this by
computing∑N

i=0(−1)z12i+z12i+4+z12i+8+z12i+10+z12i+11

N
= 0.115 = δ2195,

(11)
which tells us that our computation is correct.

6. Hadamard values for A5/1, Blow-fish and SG
Using the example given in the previous section as a
prototype, we tested our method with other well known
generators such as A5/1, Blow-fish and SG. Table 2
summarizes the Hadamard values computed using
1000 rounds for each generator. Our method is able to
identify distinguished elements on each generator for
different values of k.

Table 2. Hadamard values for 1000 rounds for A5/1, Blow-fish
and SG generators.

Generators k = 4 k = 8 k = 12 k = 16
SG 0.515 0.616 0.618 0.748
A5/1 0.514 0.532 0.548 0.564

Blow − f ish 0.514 0.531 0.549 0.566

7. Correlation analysis between entropy and
Hadamard values
We proceeded to apply Pearson’s p-test to determine
correlation coefficients for entropy and Hadamard
values. summarizes our findings. In all cases a strong
correlation was obtained. It can be observe that the
entropy values and the Hadamard values are strongly
correlated. As the step size increases, the entropy value
decreases and Hadamard values increase. No further
exploration of this data will be conducted in the present
work.

5 EAI Endorsed Transactions on
Energy Web

03 2020 - 05 2020 | Volume 7 | Issue 27 | e1

Guillermo Sosa-Gómez, Omar Rojas and Octavio Páez-Osuna

Table 3. Pearson’s p-test results for Hadamard values and
entropy correlation coefficients.

SG A5/1 BF

k = 4
r -0.802 -0.597 -0.582

p-value 1.1 10−221 5.4 10−98 9.8 10−39

k = 8
r -0.532 -0.292 -0.341

p-value 8.9 10−73 4.2 10−21 1.5 10−12

k = 12
r -0.455 -0.069 -0.0727

p-value 2.5 10−51 0.028 0.027

k = 16
r -0.411 -0.999 -0.685

p-value 0.027 0.0012 0.041

8. Conclusions

We presented a method for the cryptanalysis of pseudo-
random generators in a stream cipher. The method
relies on the discrete Hadamard transform to map the
problem from a statistical setting to a probabilistic
domain, in which it is possible, with high probability,
to single out elements of the output and pair them with
their corresponding clear texts. We included a complete
example as a prototype to illustrate the simplicity of
our method and its accuracy. We summarized statistical
results for the computation of Hadamard values for
A5/1 and Blow-fish generators. We included results of
a correlation analysis for entropy and Hadamard values
indicating a strong correlation which we will explore in
a future work.

References

[1] Ford, W. and Baum, M.S. (2000) Secure Electronic Com-
merce: Building the Infrastructure for Digital Signatures
and Encryption (Upper Saddle River, NJ: Prentice Hall
PTR).

[2] Torrubia, A., Francisco, J.M. and Marti, L. (2001)
Cryptography regulations for e-commerce and digital
rights management. Computers & Security 20(8): 724–
738.

[3] Kosba, A., Miller, A., Shi, E., Wen, Z. and Papaman-

thou, C. (2016) Hawk: The blockchain model of cryptog-
raphy and privacy-preserving smart contracts. In 2016
IEEE symposium on security and privacy (SP) (IEEE): 839–
858.

[4] Nofer, M., Gomber, P., Hinz, O. and Schiereck,

D. (2017) Blockchain. Business & Information Systems
Engineering 59(3): 183–187.

[5] Henry, R., Herzberg, A. and Kate, A. (2018) Blockchain
access privacy: Challenges and directions. IEEE Security
& Privacy 16(4): 38–45.

[6] Venkatesulu, M. and Ravi, M. (2016) A stream cipher
for real time applications. In International Conference
on Theoretical Computer Science and Discrete Mathematics
(Springer): 453–456.

[7] Katz, J. and Lindell, Y. (2014) Introduction to Modern
Cryptography (Chapman and Hall/CRC).

[8] Schneier, B. (2000) A self-study course in block-cipher
cryptanalysis. Cryptologia 24(1): 18–33.

[9] Rueppel, R.A. (1986) Stream ciphers. In Analysis and
Design of Stream Ciphers (Springer), 5–16.

[10] Sinkov, A. and Feil, T. (2009) Elementary Cryptanalysis,
22 (Washington: MAA).

[11] Dooley, J.F. (2018) History of Cryptography and Crypt-
analysis (Cham: Springer).

[12] Håstad, J., Impagliazzo, R., Levin, L.A. and Luby, M.

(1999) A pseudorandom generator from any one-way
function. SIAM Journal on Computing 28(4): 1364–1396.

[13] Beer, T. (1981) Walsh transforms. American Journal of
Physics 49(5): 466–472.

[14] Jiao, L., Hao, Y. and Feng, D. (2020) Stream cipher
designs: a review. Science China Information Sciences
63(3): 1–25.

[15] Ibáñez, M.S. and Díaz, R.G. (1999) Generación y Análisis
de Secuencias Pseudoaleatorias (Edicions UPC).

[16] Cover, T.M. and Thomas, J.A. (2012) Elements of
Information Theory (John Wiley & Sons).

[17] Coppersmith, D., Krawczyk, H. and Mansour, Y.

(1993) The shrinking generator. In Annual International
Cryptology Conference (Springer): 22–39.

[18] Shparlinski, I. (2001) On the linear complexity of the
power generator. Designs, Codes and Cryptography 23(1):
5–10.

[19] Barkan, E., Biham, E. and Keller, N. (2003) Instant
ciphertext-only cryptanalysis of gsm encrypted commu-
nication. In Annual international cryptology conference
(Springer): 600–616.

[20] Biryukov, A., Shamir, A. and Wagner, D. (2000) Real
time cryptanalysis of a5/1 on a pc. In International
Workshop on Fast Software Encryption (Springer): 1–18.

[21] Bakhtiari, M. and Maarof, M.A. (2011) An efficient
stream cipher algorithm for data encryption. Interna-
tional Journal of Computer Science Issues (IJCSI) 8(3): 247.

[22] Schneier, B. (1994) Description of a new variable-length
key, 64-bit block cipher (blowfish). In Anderson, R. [ed.]
Fast Software Encryption (Berlin, Heidelberg: Springer
Berlin Heidelberg): 191–204.

[23] Chaudhari, M.P. and Patel, S.R. (2014) A survey
on cryptography algorithms. International Journal of
Advance Research in Computer Science and Management
Studies 2(3).

[24] Shannon, C.E. (1948) A mathematical theory of
communication. Bell system technical journal 27(3): 379–
423.

[25] Tsuneda, A. (2019) Orthogonal chaotic binary sequences
based on bernoulli map and walsh functions. Entropy
21(10): 930.

[26] Cariow, A., Majorkowska-Mech, D., Papliński, J.P. and
Cariowa, G. (2019) A new fast algorithm for discrete
fractional hadamard transform. IEEE Transactions on
Circuits and Systems I: Regular Papers 66(7): 2584–2592.

[27] Chen, Z, G.T. and Klapper, A. (2019) On the q-bentness
of boolean functions. Designs, Codes and Cryptography
87(1): 163–171.

[28] Carle, C. and Mesnager, S. (2010) On the construction
of bent vectorial functions. International Journal of
Information and Coding Theory 1(2): 133–148.

6 EAI Endorsed Transactions on
Energy Web

03 2020 - 05 2020 | Volume 7 | Issue 27 | e1

Using Hadamard transform for cryptanalysis of pseudo-random generators in stream ciphers

[29] Bernasconi, A., Codenotti, B. and Simon, J. (1996) On
the fourier analysis of boolean functions. preprint : 1–24.

[30] Pommerening, K. (2005), Fourier analysis of boolean
maps–a tutorial–, Johannes-Gutenberg-Universitaet
working paper.

[31] Cooley, J.W. and Tukey, J.W. (1965) An Algorithm for the
Machine Calculation of Complex Fourier Series. Mathe-
matics of Computation 19(90): 297. doi:10.2307/2003354,

URL https://www.jstor.org/stable/2003354.
[32] Van Lint, J.H., Wilson, R.M. and Wilson, R.M. (2001) A

Course in Combinatorics (Cambridge University Press).

7 EAI Endorsed Transactions on
Energy Web

03 2020 - 05 2020 | Volume 7 | Issue 27 | e1

https://doi.org/10.2307/2003354
https://www.jstor.org/stable/2003354

	1 Introduction
	2 Stream ciphers
	2.1 Shrinking Generator
	2.2 A5/1
	2.3 Blow-fish

	3 Entropy of stream ciphers
	4 Hadamard transform
	4.1 Hadamard transform in cryptanalysis
	4.2 Hadamard transform of a sequence

	5 Example
	6 Hadamard values for A5/1, Blow-fish and SG
	7 Correlation analysis between entropy and Hadamard values
	8 Conclusions

