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Abstract

In this work, a novel direct speech-to-speech methodology for translation is proposed; it is based on an LSTM
neural network structure which has proven useful for translation in the classical way, i.e., the one consisting
of three stages: speech-to-text conversion, text-to-text translation, and text-to-speech synthesis. In contrast
with traditional approaches, the one in this work belongs to the recently appeared idea of direct translation
without text representation, as this sort of training better corresponds to the way oral language learning takes
place in humans. As a proof of concept digits are translated from an audio source in Spanish and pronounced
as an audio signal in English. Advantages and disadvantages of the proposal when compared with traditional
methodologies are discussed.
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1. Introduction
Motivation: This work pursues the proposal in [1] which
intended to be a first step towards the investigation of
voice-to-voice methodologies for translation. Since its
appearance, very few works have been developed in the
literature that also considered direct speech-to-speech
translation as a plausible methodology in contrast with
the traditional approach, i.e.: they intended to use
raw audio signals or slight audio processing while
disregarding the use of dictionaries or grammar-based
data. Some of them have been more or less successful
because they have employed attention mechanisms
based on phonemes [2] or databases known as
codebooks which, although phonetic, constitute a sort
of dictionary [3]. None of them is purely audio-based.

This work explores this possibility still on a
preliminary stage which only addresses the problem
of translating a limited set of words, more specifically,
digits pronounced in Spanish from a variety of voices
and translated into English in another non-standard
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voice, i.e., the result is not a “synthetic” one, but
a human-based audio which captures some of the
emotions in the utterance. The full methodology is
supposed to be able to deduce grammar in the same
way as humans do: by supervised learning and implicit
adaptation, much more before written language appear.

Problem statement: Develop a direct speech-to-speech
methodology which is able to translate digits from and
to audio signals without any text representation and
contrasting the results against traditional translation
methodologies.

State of the art: This work belongs to the field of
natural language processing (NLP), which comprises
a variety of areas, depending on whereas the focus
is made on signal processing [4], human-machine
interface [5], or artificial intelligence [6]. Two extreme
approaches can be identified: on the one hand,
statistical tools usually applied when the emphasis
is made on signal treatment without any higher-level
interpretation; on the other hand, purely conceptual
handling of syntactic units and semantics, which
disregards implementation details in order to better
relate with linguistic communities [7]. An in-between
approach is that based on deep neural networks as
these biologically-inspired models have been long ago
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related with statistical analysis [8], while being capable
of subsuming large learning tasks in more conceptual
units [9].

In the last decades, neural networks have been well
established as a useful tool to perform learning tasks
by embedding highly complex, nonlinear, and parallel
information into weights that mimic brain synapsis
[10]. Three main landmarks can be distinguished in
their evolution: a modest origin when the perceptron
was nothing else than a linear filter [11], the success
of the multilayer perceptron and the backpropagation
algorithm for heuristic training [12], and, finally, the
surge of deep learning techniques via convolutional,
recurrent, and recursive neural networks [13]. The
latter framework have already made a significant
advance in computer vision and pattern recognition
by yielding shallow models such as support vector
machines (SVM) to neural networks trained with dense
vector representations [14]. A key factor on the success
of deep learning techniques is the understanding of the
importance of regularization and its influence on the
generalization capabilities of the setup [15].

Within the field of NLP, neural networks in all their
varieties have played a central role [16]: convolutional
neural networks (CNNs) have been suitable for feature
extraction [17] and data mining [18]; recurrent neural
networks (RNN) can be found in word- and sentence-
level classification [19, 20]; recursive neural networks
(VNNs) have been successfully employed for parsing
[21]. In all these tasks, multiple processing layers
on which different deep learning algorithms can be
applied, have been used to learn hierarchical data.
A subclass of the RNNs is that of the long short
term memory (LSTM) networks, which have proved
to be enjoy invariance with respect to time, a quality
particularly important for audio signals and word
detection, i.e., sequences of data whose characteristic
are not time-attached.

An important task within the NLP area is that of
automated translation, which usually involves feature
analysis (based on neural networks as well as Markov
chains, for which software tools such as HTK or
SPHINX are available [22]), unit detection (such as
phonemes, [23]), syntactic analysis (for example, for
word validation [24]), and proper translation via a
looking-up procedure in a database. Remarkably, to
the best of our knowledge, voice-to-voice translation
by direct learning is not present in the literature with
few exceptions for classification [25–28] and some
others for translation: [2], which consists in a neural
network composed by an 8-layer LSTM, an attention
model for phonemes recognition and a voice synthesis
module and [3] which uses a codebook of phonemes
for translation with three stages, firstly there are
some BiLSTM-layers to encoding the input data into
phonemes, a convolutional middle layers and a final

LSTM-layers for decoding the phonemes into an audio
signal.

Contribution: In contrast with the related work
[1], the current one uses an LSTM neural network
subject to regularization instead of a multilayer
perceptron, it employs a full spectrogram which is
pre-processed as a sequence, it does not perform
identification, but an implicit translation whose
resulting sequence is synthesized in a third-party
voice. Test signals which do not belong to the
training set are successfully translated as shown
in: https://github.com/cope-quintana/Spanish_

English_Translation_Dataset_and_Results. Thus,
the main contribution lies on a purely audio-based
translation with no text representations involved as a
proof of concept towards automated translation whose
grammar is inferred instead of imposed.

Organization: This work is organized as follows: sec-
tion 2 makes an elementary summary of what we have
to know about audio signals and pre-processing while
describing the neural network, learning algorithm, and
regularization methods employed to perform the learn-
ing tasks; section 3 details the experimental setup of the
proposed approach for automated translation as well as
the behaviour of the training and test phases; section
4 discusses the results in contrast with traditional text-
based translations; conclusions are gathered in 5.

2. Preliminaries
In this section we discuss the way audio signals are
obtained, normalized, and the sort of neural network
we are employing. It should be kept in mind that
every choice has been made as simple as possible as to
guarantee reproducibility of the results here provided.

2.1. Audio signals
When recorded via microphones or other electronic
devices, audio signals are usually displayed as a time
function resulting from the vibrations of a membrane;
its intensity (see Fig. 1, which corresponds to the
Spanish word for zero) roughly corresponds to the
volume and its variations have frequency content that
can be further analyzed via a spectrogram such as
that in Fig. 2. A spectrogram combines information
in the temporal and frequency domains: its horizontal
axis represents time while the vertical one corresponds
to frequency; the latter is usually split in bands of
1000 Hz each, and ranges from 0 to 8000 Hz, which
is the highest frequency to be found in human voice
[4], though that in Fig. 2 is limited to 5000 Hz. The
darker an area in the spectrogram is, the higher the
energy of those frequencies at that time; when these
peaks are above a certain level they are identified as
formants of the signal, which play an important role in
phonetic analysis [29] (they are identified by bullets in
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Figure 1. An audio signal corresponding to the Spanish audio
“cero” (0).

Fig. 2). Spectrograms vary depending on the window
and hop employed for performing the discrete-time
Fourier transformation; the one shown in Fig. 2 employs
2048 samples where 44100 represent 1 second; the hop
is 512 samples.

As with many other works on audio analysis, the tool
we are employing to capture the audio signals is Praat,
a computer program from the University of Amsterdam
for analysis and manipulation of speech [30]; the tool is
well beyond the needs of this report as spectral, pitch,
formant, and intensity analysis, among others, can be
performed with it. Tutorials are available for phonetics,
learning, and statistics [31].

Clearly, a deep understanding of audio analysis is
out of the scope of this work as we are only concerned
with capturing audio signals in any form so that they
can be pre-processed and fed to a neural network for
pattern recognition. It is customary to use a grid of
the spectrogram to vectorize its lighter/darker contents
for neural network processing [32, 33]; this approach
is closely linked to image processing as proven in [34].
In this work we employ the spectrogram of the audio
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Figure 2. A spectrogram: time VS frequencies. Formants are
highlighted as bullets.

signals as the input to the network, in contrast to [1]
where the intensity signals were employed; a similar
approach can be found in [2]. As with some image
processing tasks, the spectrogram graphically depicted
is converted into a sequence of data representing
intensity; information concerning the frequency bands
or the time of appearance of a particular part of
the signal are thus subsumed in the sequence within
approximately the same places.

2.2. Pre-processing of the audio signals
As digits may be spoken in a variety of volumes
and durations, they require a pre-processing in order
to make any sample signal have the same wide and
maximum height. This a reasonable choice which
may not be advisable for larger expressions as whole
statements may considerably vary in size. A number
of methods is available for neural-network-oriented
pre-processing of audio signals, e.g.: in [35] Mel
frequency cepstrum coefficient analysis is employed,
[36] also uses Mel analysis adding gaussian noise, [37]
preprocess music with binaural representations and
harmonic-percussive source separation, and [38] mixes
time-frequency representation, logarithmic magnitud
compression, and frequency weighting and scaling,
among others.

Since this work intends to keep the structures
and algorithms as simple as possible to illustrate
our hypothesis, we will perform audio processing in
five steps: an audio trimmer that eliminates silences
from the signal (below a certain intensity), a low-
pass filter of the sample which eliminates high-
frequency noise (very common in this applications),
an spectrogram converter that actually generates the
corresponding spectrogram for the already treated
audio sample, a series of straightforward operations
of shrinking/expansion of the spectrograms as to fit
uniform horizontal size corresponding to the average
width of all the samples, and finally a normalization of
the intensity of the spectrograms data which roughly
performs the same shrinking/expansion in the 3D
values of the spectrogram.

Some formulas to perform the foregoing changes are
MATLABTM functions filter for filtering, spectrogram
for spectrogram generation, and interp1 for horizontal
normalization, while the other functions like audio
trimmer and intensity normalization were customized
functions (implemented in MATLABTM). The intensity
adjustment is given afterwards by a simple formula

innew =
incurrent ×maxInglobal

maxIncurrent
, (1)

where incurrent is each data of the current spectrogram,
maxIncurrent it the maximum intensity of the whole
current sample, maxInglobal is the maximum intensity
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Figure 3. The neural network architecture: 4-Layer LSTM with
fully connected layer.

of the whole set of samples and innew is the new
intensity of the current spectrogram. After these
changes, every spectrogram sample signal will be
scaled within a similar range of intensities where all
the samples have the same maximum intensity in
their corresponding maximum point. Finally in the
horizontal normalization step all the samples where
normalized into matrices of dimensions 300 × 234.
After this normalization the resulting matrix was
converted into a vector using MATLABTM function
reshape into a vector of 70200 units. This is the vector
that will be fed for neural network training.

2.3. The neural network and the learning algorithm
A network with 70200-input, 4-layer LSTM , 70200-
output fully connected layer will be employed for this
proof of concept; the input corresponds to the sequence
of pre-processed spectrogram samples coming from
different sources in Spanish while the output, being
a processed spectrogram too, comes from a source
in English. The output must be transformed into
an spectrogram matrix for audio reconstruction and
audio results validation. Fig. 3 shows an overview of
the network architecture, the number of neurons of
each LSTM layer is 500 with a dropout regularization
applied [13].

The training algorithm was implemented with
MATLABTM function trainNetwork with the following
choices:

1. Initialization: The network consists of a 70200-
input layer, 4-layer LSTM with 500 neurons each,
followed by a fully connected 70200-output layer.

2. Training samples: Each sample has the standard-
ized pre-processed spectrogram; it consists of
70200 points whose values represent the spectro-
gram transformed into a sequence. At each epoch
all the samples are presented in random order.

3. Validation: Each 5 epochs the network is validated
with a validation set that is not part of the training
set.

4. Regularization: A dropout rate of 0.3 has been
employed in each LSTM layer, which means
that 30% of the synaptic weights are randomly
reset after each epoch to avoid overtraining

or saturation. An early-stopping-like algorithm
has also been employed to prevent overfitting:
based on a well-known algorithm, it has been
determined how long to train by using the
validation error, then retraining up to the detected
appropriate level.

5. Optimizer: The stochastic optimizer Adam [39]
was used to train the network in 500 epochs
with a base learning rate α = 0.001. The optimizer
algorithm is based on adaptive estimates of
lower-order moments for first-order gradient
optimization; this makes it suitable for non-
stationary objectives as those in this work.

3. Results on direct speech-to-speech translation
As stated before, the normalized and vectorized
spectrogram of each sample is employed for training.
Normalization guarantees they all consist in 70200
points and the maximum intensity is the same;
Fig. 4 shows a normalized spectrogram just before
vectorization: it is a data matrix of dimensions 300 ×
234. The input signals belonging to each digit share
some common characteristics, though some of them
(specifically, number 8 whose pronunciation has a
widely varying phoneme range in Northwest Mexico)
are more inclined to exhibit important variations than
others (for instance, number 1 is nearly the same
for every speaker); the LSTM network is capable of
avoiding these variations due to their specialization on
sequences (i.e., detecting patterns despite their time
variance).

For this experiment we employed audio samples
recorded from 6 participants (5 men and 1 women).
Each participant recorded 30 samples in Spanish
and 30 translations in English, 3 samples per digit.
The samples were recorded with AudacityTM, all the
samples were recorded using the same software and
microphone to guarantee uniformity. Table 1 briefs
the information about the experimental data. All
the preprocessing operations were implemented in
MATLABTM; filtering and silence removal were the first

Figure 4. Normalized spectrogram corresponding to the Spanish
audio “cero” (0) before vectorization.
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Table 1. Experimental and participants data.

Experimental Data
Participants 6 (5M - 1W)

Audio samples per digit 18/language
Audio samples per participant 30/language

Training samples 150/language
Validation samples 30/language

Total samples 180/language

steps, then spectrogram analysis and normalization,
after which the resulting spectrograms were vectorized
to feed the network. The trained neural network
produced a vectorized spectrogram as an output for
each test sample; these outputs were reshaped into
matrices, and then, output audios were obtained
using the Fast Griffin-Lim Algorithm [40] which is an
spectrogram decoder. Fig. 5 shows a flow map of these
steps.

The training settings employed for the network were
selected in order to keep it as simple as possible;
MATLABTM was employed for the implementation of
the network due to its DeepLearning toolbox that allow
us to easily implement a variety of neural networks in a
flexible way. The network consists in a input sequence
layer of 70200, 4-layer LSTM of 500 neurons each,
followed by a fully connected layer, we implemented
a dropout of 0.3 on each LSTM layer. The optimizer
used for the training was Adam with a learning factor
of 0.001; the networks were trained during 300 epochs
with a validation each 5 epochs.

As Fig. 6 shows, the training error of the neural
network drops almost continually with the exception of
a series of peaks. These correspond to the regularization
steps where 30% of the neurons are dropped out,
a technique which is known to avoid overfitting.
The plot shows that, effectively, after these random
eliminations take place the error keeps diminishing
as expected. Recall that lower training error can be
achieved from the point of view of optimization, though
this is undesirable as the generalization capabilities

Figure 5. Flow map of the experiment.
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Figure 6. Neural network training error.

of the network will be affected: this is clear from
comparison of the training error in Fig. 6 with that of
the validation error in Fig. 7, which is examined every
5 epochs, thus resulting in a 100-sample scale instead
of a 500 one: while the former keeps diminishing, the
latter rises. Importantly, the plot in Fig. 6 covers the
whole first training phase as to be compared with the
validation error in Fig. 7 for the early-stopping-like
algorithm: it retrains the network up to 300 as this is
approximately the number of epochs that have passed
for the validation error to rise up again (300/5 = 60,
which coincides with the increasing of the validation
error in Fig. 7. Note that there is a temporary increase
in the validation error right before 50 (corresponding
to 250 epochs): the early-stopping-like algorithm did
not took this as the stop mark because it went down
before completing the decision window which is about
10 (correspondingly, 50 epochs).

In https://github.com/cope-quintana/Spanish_

English_Translation_Dataset_and_Results test sig-
nals which do not belong to the training set are trans-
lated. Validation of direct speech-to-speech translations
is a challenging task as there is no standard way to
establish the “right” pronunciation. A way to overcome
this difficulty is to use an automatic speech recognition
(ASR) algorithm which produces a text output from
an audio source [2, 3]; nevertheless, this approach is
obviously questionable as evaluation may include the
ASR algorithm itself, i.e., if the ASR algorithm performs
poor it is hard to establish whether it has been because
of the ASR or because of a poor audio source. Naturally,
researchers have also relied on users to validate audio
translations [2]; again, objections can be raised as this
affects the objectivity of the test with many users pro-
viding the “missing” elements by interpretation. Native
English-spoken users may check the translations in the
webpage above. Since this is only a very short proof
of concept, no better validation has been made except
for the human assessment shown in Table 3 under the
conditions in Table 2.
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Table 2. Human assessment settings.

Evaluation settings
Participants 10 (8M - 2W)

Audio samples per digit 3
Total samples 30/language

Evaluation range {0, 1, ..., 10}

Table 3. Human assessment of results.

Evaluated digit Average evaluation
Zero 7.20 (1.72)
One 9.03 (0.29)
Two 8.47 (0.52)

Three 7.70 (0.80)
Four 5.53 (1.25)
Five 7.53 (1.28)
Six 6.63 (1.57)

Seven 7.57 (1.14)
Eight 7.73 (0.96)
Nine 7.90 (1.04)

4. Discussion

The individuals making the assessment are all Spanish-
spoken with a TOEFL certificate of a minimum of 500
points; their appreciation ranges from 0 (which means
a digit has not been identified) to 10 (implying that
the digit has been distinctively clearly identified); each
individual heard 3 translations of each digit; each time
she/he heard a digit, she/he provided a mark (0-10).
The average per person per digit has been obtained for
each individual; then the final average per digit in Table
3 has been obtained by averaging the 10 individuals
per digit. Without distinguishing digits, the average
is 7.52, which means a rate of 75% of recognition is
achieved. This is, nevertheless, not uniform: in 4 cases
the individual was unable to identify the digit; 4 is the
poorest identified number as the utterances is barely
recognized by the individuals (2 of them were actually
unable to identify it). Other sounds (with less complex
phonetics) such as the digit 1 are very well evaluated.

20 40 60 80 100
1.5

2

2.5
106

Figure 7. Neural network validation error.

Though on the good side, these results may seem
mixed. Nevertheless, it should be taken into account
that no text-to-text translation has been used in the
process, which makes the task notably more complex.
Resources for achieving this performance were scarce:
25 hours of training and 15 hours of re-training (after
the early-stopping-like comparison and rerun), within a
MATLAB 2019a version running on an iCore 7 3.40GHz
terminal with Windows 7 OS and 8 GB RAM; this
makes us consider that the methodology has a good
potential provided bigger resources are put forward.
Increasing the processing capabilities will not only
speed up the training process, but more importantly
will help us achieving the next goals towards a full
speech-to-speech translation without any dictionary or
text representation in between. It is our contention
that grammar reordering or sense ambiguity can be
overcome automatically with the proper training when
longer statements are subject to translation, i.e., the
neural network and the training algorithm should be
able to mimic the way a human being learns grammar:
by trial-and-error as well as implicit inference of the
underlying structures.

5. Conclusions
A novel direct speech-to-speech methodology based
on an LSTM neural network has been proposed for
Spanish-English translation. The proof of concept has
been made on a digit translation which has been
implemented and assessed by human speakers. Thanks
to the results (available on a public webpage), it
has been established that, in contrast with traditional
approaches, direct translation without text representa-
tion is possible and might better correspond to the way
languages are learned by humans.
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