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Abstract 

Accurate prediction of distributed photovoltaic (DPV) power generation is crucial for stable grid operation, yet existing 
methods struggle with the non-linear, intermittent nature of solar power, and traditional machine learning models face 
hyperparameter selection and overfitting challenges. This study developed a highly accurate DPV power prediction method 
by optimizing a Long Short-Term Memory (LSTM) network's hyperparameters using an improved Multi-Objective Particle 
Swarm Optimization (MO-PSO) algorithm. A hybrid LSTM-PSO model was created, where the LSTM network served as 
the core prediction model, and the improved MO-PSO algorithm optimized its hyperparameters, enhancing generalization 
and avoiding overfitting. The LSTM-PSO model significantly improved prediction accuracy compared to traditional 
methods. Key results from two power stations included a maximum deviation of 6.2 MW at Power Station A, a peak time 
deviation of less than 0.1 MW at Power Station B, and a prediction interval error controlled below 30 MW at an 80% 
confidence level. The optimized LSTM-PSO model effectively captures DPV power generation dynamics, and the superior 
performance metrics demonstrate its potential for intelligent grid management. However, limitations include prediction 
accuracy under extreme weather and computational efficiency for large datasets. Future work will focus on broader 
applicability and more efficient algorithm variants. 
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1. Introduction

With the transformation of the global energy structure and
the increasing awareness of environmental protection, the 
utilization of renewable energy, especially solar energy, has 
received unprecedented attention [1]. As a clean and 
pollution-free energy source, the development and utilization 
of solar energy are of great significance for reducing 
greenhouse gas emissions and alleviating energy crises [2-3]. 
Distributed Photovoltaic Power Generation (DPPG) systems 

play an important role in solar energy utilization due to their 
flexibility and reliability [4]. However, the intermittency and 
instability of Solar Power Generation (SPG) pose challenges 
to the stable operation of the power grid. Accurately 
predicting photovoltaic power generation has become the key 
to achieving effective grid connection and optimizing 
scheduling. In traditional research, photovoltaic power 
prediction methods mainly include physical models, 
statistical models, and Machine Learning (ML) methods [5]. 
Physical models rely on meteorological parameters such as 
solar radiation and temperature, but are often limited by 
parameter simplification and the complexity of actual 
meteorological conditions. Statistical methods such as Auto-
Regressive Integrated Moving Average (ARIMA) models, 
although less dependent on historical data, are difficult to 
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capture complex nonlinear relationships. ML, especially 
neural networks, performs well in handling nonlinear 
problems, but traditional algorithms still have shortcomings 
in hyperparameter selection and overfitting problems [6]. In 
response to the above shortcomings, this study proposes an 
innovative prediction method, namely a hybrid model 
(LSTM-PSO) based on Long Short-Term Memory Network 
(LSTM) and improved Multi-objective Particle Swarm 
Optimization (MO-PSO). The innovation lies in combining 
advanced deep learning techniques with intelligent 
optimization algorithms to achieve breakthroughs in the 
accuracy of photovoltaic power prediction. 

2. Literature Review

Many experts have conducted research on the improved
MO-PSO algorithm. Hu et al. developed an improved 
algorithm called FCAN-MOPSO, which significantly 
improves the performance of complex network graph 
clustering through instance frequency weighting and MO-
PSO [7]. Suresh M et al. utilized an enhanced MO-PSO 
algorithm to optimize hybrid energy systems, aiming to 
reduce energy costs and improve the reliability of household 
applications in remote areas [8]. Kahhal et al. combined 
response surface methodology and MO-PSO to optimize the 
friction stir welding process of AH12 1050 aluminum alloy, 
and found that low speed and high feed rate help improve the 
mechanical properties of the material [9]. Rahimi et al. 
explored the evolutionary algorithms of single objective PSO 
and MO-PSO under constrained conditions through literature 
review and econometric analysis methods. Compared with 
single objective optimization, constraint handling techniques 
in Multi-Objective Optimization (MOO) have received less 
attention. The most promising algorithms included genetic 
algorithm, differential evolution algorithm, and particle 
swarm intelligence. It was expected that future research 
would further increase in engineering, computer science, and 
mathematics [10]. 

With the increasing demand for renewable energy, the 
prediction and optimization technology of solar photovoltaic 
power generation has become crucial. Ge L et al. reviewed the 
virtual acquisition technology of Distributed Photovoltaic 
Systems (DPVS) and proposed application methods such as 
similarity analysis, providing development references for the 
DPVS industry [11]. Iheanetu K J focused on SPG prediction 
technology, especially the analysis of data-driven methods, 

laying the foundation for improving model accuracy [12]. 
Akhter et al. used the RNN-LSTM model in deep learning to 
predict photovoltaic power plants with different technologies 
and found that it outperformed other methods in accuracy and 
robustness [13]. AlKandari et al. designed a fusion model 
combining ML and statistical methods, which improves the 
accuracy of SPG prediction through structural and data 
diversity techniques, as well as different ensemble methods, 
and performs well on real datasets. These studies provided 
new perspectives and methods for efficient prediction and 
management of SPG [14]. 

In summary, many experts have conducted research on 
complex network graph clustering, hybrid energy system 
optimization, MOO of mechanical performance, constrained 
optimization algorithms, DPVS virtual acquisition 
technology, SPG prediction technology, and SPG prediction 
hybrid models. However, current research still has 
shortcomings such as limited model generalization ability, 
low algorithm computational efficiency, weak adaptability to 
practical application scenarios, and the need to improve 
prediction accuracy and stability. Therefore, this study further 
proposes optimization algorithms to enhance model 
robustness, improve prediction accuracy, and explore more 
practical application scenarios. 

3. Application of Improved PSO in DPPG
System

3.1 DPPG Energy System Based on PSO 

DPPG is a technology that combines photovoltaic 
systems with power systems to convert solar energy into 
electrical energy. It converts solar energy into direct 
current by setting up an inverter between the photovoltaic 
array and the power grid, and then the inverter converts it 
into alternating current that matches the power grid, which 
is used by the power grid or directly supplied to users [15]. 
Compared with traditional centralized photovoltaic power 
generation systems, DPPG systems have higher energy 
utilization efficiency and power quality, while improving 
the reliability of power supply [16]. Its working principle 
is based on the photovoltaic effect, where solar radiation 
acts on silicon solar panels to generate current, as shown 
in Figure 1.
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Figure 1 Schematic diagram of DPPG system operation
The DPPG system mainly consists of solar 

photovoltaic module arrays and distributed inverters. The 
photovoltaic module array converts solar energy into 
direct current, while the inverter converts direct current 
into alternating current for user use or transmission to the 
power grid. The system automatically runs when there is 

sufficient sunlight, and stops immediately when there is 
insufficient solar radiation or abnormal power grid to 
ensure safety and stability. The performance of the system 
is affected by internal and external factors such as 
photovoltaic materials, construction management, and 
solar radiation intensity, as shown in Figure 2.

Factors affecting grid connected 
photovoltaic power generation

Internal influencing factors External 
influencing factors

Construction mode 
of power 

generation system

Day and night 
alternation

Power generation 
system 

management mode

Land occupation 
of photovoltaic 

base

Solar energy 
conversion 

efficiency of 
materials

Seasons and 
Climate Change

Geographical 
position

Figure 2 Factors affecting grid-connected photovoltaic power generation 

The photoelectric conversion efficiency of the DPPG 
system under ideal conditions is approximately 15%. 
Although there is room for improvement in this efficiency 
compared to traditional power generation methods, the 
advancement of technology and deepening of research and 
development indicate that breakthroughs in photovoltaic 
conversion efficiency are expected in the future. This not 
only means the improvement of energy utilization 
efficiency, but also represents the optimization of energy 
structure and the diversification of energy supply. The 
development of DPPG system is not only related to energy 
acquisition, but also to the sustainable utilization of energy. 
The MO-PSO simulates the hunting behavior of bird 
flocks. It can balance the search for local and global 
optimal solutions when solving problems, and the 
parameter settings of the algorithm are relatively simple. 
In the DPPG system, the idea of MO-PSO can be borrowed 
to optimize system design and operation. In the DPPG 
system, each photovoltaic module can be regarded as a 
"particle" that performs a "search" in an n-dimensional 
parameter space to find the optimal working state, and has 
a certain motion speed that can be adjusted based on flight 
experience. Assuming there is a particle swarm in the 

search space of dimension S , which contains m  particles. 
Particle i  specifically represents a S -dimensional vector, 
and its flight velocity is also an S  -dimensional vector 

1 2( , ,..., )i i i iSV V V V=


 . Among them, 1, 2,...,i m=  , the 
position of particles also represents the potential solution 
of the optimization problem, and the fitness value is 
calculated by substituting ix  into the objective function.
Assuming that the current optimal solution or position 
searched by the particle swarm is vector 

1 2( , ,..., )gS g g gSP P P P=


, and the current optimal solution 

of a single particle i   is 1 2( , ,..., )iS i i iSP P P P=


 . The 
objective function that PSO algorithm should minimize is 

( )f x  , and the formula for the current optimal solution 
( 1)ip t +   of particle i   can be obtained as shown in 

equation (1). 

{ ( ) ( ( 1)) ( ( ))( 1) ( 1) ( ( 1)) ( ( ))
i i i

i
i i i

p t f x t f p tp t X t f x t f p t
+ ≥+ = + + <

（1） 
In equation (1), the value range of i  is [1, ]m , and 
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the current velocity ( 1)isv t +  of particle i  is equation (2). 

1 1

2 2

( 1) ( ) ( )[ ( ) ( )]
( )[ ( ) ( )]

is is s is is

s gs is

v t v t c r t p t x t
c r t p t x t

+ = + −
+ −

 （2） 

In equation (2), the range of values for s  is [1, ]S . 

1r  and 2r  are continuous variables that follow a uniform 

distribution of [0,1]  . 1c   and 2c   are both non negative 

constants. The range of values for velocity isv   is 

max max[ , ]v v−  , where maxv   is the maximum value of 

particle velocity. The position ( 1)isx t +   of particle i   is 
updated as shown in equation (3). 

( 1) ( ) ( 1)is is isx t x t v t+ = + + （3） 
If the search space is within the range of 

max max[ , ]x x−  , there is max maxv kx=  , where 
[0.1,1.0]k∈  represents the elastic modulus. In equation 

(4), a control factor is introduced to limit the current speed 
from being affected by the speed of the previous moment. 

1 1

2 2

( 1) ( ) ( )[ ( ) ( )]
( )[ ( ) ( )]

is is s is is

s gs is

v t ωv t c r t p t x t
c r t p t x t

+ = + −
+ −

  （4） 

In equation (4), ω   is a non negative coefficient. 
When the value is high, the current speed is more affected 
by the speed of the previous moment, which enhances the 
global search ability of the algorithm. On the contrary, 
when the value is low, the current speed is less affected by 
the speed of the previous moment, thereby enhancing the 
local search ability of the algorithm. Therefore, this study 
introduces the MO-PSO, and Figure 3 shows the 
calculation process. 

Generate and set initial conditions for a swarm of 
particles

Evaluate the performance metric for each particle

Determine the personal and collective best fitness 
values

Refresh the data for all particles in the swarm

Reassess the performance of each particle

Revise the personal and global best fitness records 
accordingly

End

Start

Whether the termination 
conditions are met?

N

Y

Figure 3 Calculation flow chart of PSO algorithm 

Based on Figure 3, the process for calculating PSO is 
as follows: the first is to create an initial particle swarm 
containing particles m  , each with a random initial 
position and velocity. Next is to calculate the fitness of 
each particle, which is the key to evaluating its 
performance. Then, the historical optimal position isp  of 
each particle is compared and updated, and if the current 
fitness is better, it is replaced with the new optimal position 

isp . Subsequently, according to the algorithm formula, the 
positions and velocities of all particles are determined, and 
the fitness is re-evaluated, while determining the optimal 
fitness values for individuals and populations. Finally, to 
determine whether the termination condition is met. If it is 
met, to output the optima and stop. Otherwise, to return to 
the fitness calculation step to continue iterating. Algorithm 
initialization includes setting the number of particles m , 
generating corresponding positions isx  and corresponding 

velocities isv   for all i s、   within the range of 

max max[ , ]x x−   and max max[ , ]v v−   according to a uniform 

distribution rule. The third step is to set rule i iy x=  , 
where 1, 2,...,i m= . 

3.2 DPPG Prediction Technology Based on 
LSTM and MO-PSO Algorithms 
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With economic growth, energy consumption has 
intensified environmental pressure, prompting the country 
to promote clean energy, among which photovoltaic power 
generation is becoming increasingly important due to its 
clean characteristics [17]. Although DPPG systems face 
challenges in power prediction due to variables such as 
weather and holidays, especially in densely populated 
residential areas, the application of LSTM models can 
improve the accuracy and efficiency of predictions by 
solving the gradient problem of long sequence data [18]. 
Figure 2 shows the unit structure of LSTM. 

Ct-1

Cell state

σ
σ σ

Figure 4 LSTM unit structure 

In Figure 4, at a given moment, the input information 
of LSTM includes cell state, hidden layer output, and input 
sequence. In LSTM, input, forget, and output gates can be 
obtained through concatenation. The output value of the 
input gate ti  is calculated as shown in equation (5). 

[ ]( )1, T
t i t t ii W x h bσ −= + （5）

In equation (5), σ   is the activation function. W  
represents the input gate Weight Matrix (WM). tx  is the 
input sequence at time t  . h   is the output of the hidden 
layer. T  is the transpose matrix. ib  is the input gate Bias 

Matrix (BM). The output value of the forget gate tf   is 
calculated as equation (6). 

[ ]( )1, T
t f t t ff W x h bσ −= + （6）

In equation (6), fW  and fb  are the forgetting gate’s 

WM and BM. The output value of the output gate to is
calculated is equation (7). 

[ ]( )1, T
t o t t oo W x h bσ −= + （7）

In equation (7), oW  and ob  are the output gate’s WM 
and BM. To optimize the hyperparameters of the LSTM 
algorithm for power prediction, this study uses the MO-
PSO algorithm for hyperparameter optimization to 
improve the accuracy of the algorithm. When optimizing, 
a multidimensional space is established and the positions 
and velocities of particles in the space are represented to 
extract the individual optimal positions of particles, as 
shown in equation (8). 

( )1 2, ,...,  1, 2,...,k
i i i iDH h h h i N= =  （8） 

In equation (8), k
iH   is the individual optimal 

position of the i  -th particle. iDh   is the individual best 
position parameter. The expression for extracting the 
global optimal position of particles is equation (9). 

( )1 2, ,...,k
i DG g g g=  （9） 

In equation (9), k
iG  is the global optimum location 

of the i  -th particle. Dg   is the global optimal position 
parameter. The velocity update calculation of particles is 
equation (10). 

( ) ( )1
1 1 2 2

k k k k k k
i i i i iV V c r H X c r G Xω+ = + − + −

（10） 
In equation (10), 1k

iV +   and k
iV   are the particle 

velocities after and before the update. ω   is the inertia 
factor. c  is the acceleration factor. r  is a random number 
between 0 and 1. k   is the current iteration count. The 
position update calculation of particles is equation (11). 

1 1k k k
i i iX X V+ += +  （11） 

In equation (11), k
iX   and 1k

iX +   are the particle 
positions before and after the update. Through continuous 
iteration and optimal fitness calculation, the global optimal 
position and fitness are obtained. After data preprocessing, 
an LSTM prediction model is constructed. Through 
experiments, it is determined that the model uses 40 
historical data points per day, each with 39 features, 
resulting in an input layer dimension of 40*39. The output 
layer is single dimensional and corresponds to the 
predicted power generation. Appropriate activation 
functions are selected to avoid gradient vanishing, and 
backpropagation is used to adjust parameters during 
training to optimize model performance. The loss function 
design can reflect the error between the predicted and real 
data during training in real time, and the relevant 
expression is equation (12). 

1

1arg min ( , ( , ) ( )
N

i i
i

L y f x
Nθ

θ θ λ θ∗

=

= + Φ∑   （12） 

In equation (12), the loss function is L  . The 
empirical risk function is set to θ , the predicted value is 
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( )f x  , and the true value is y  . N   is a quantity, and
( )Φ   is a function. The Root Mean Square Error (RMSE) 

is taken as the assessment index for prediction 
performance, as shown in equation (13). 

2

1

ˆ1 ( ) ( )[ ]
n

RMSE
i i

P i p i
n Cap

ε
=

−
= ∑  （13） 

In equation (13), RMSEε  represents the training 

performance of the model. ( )p i  and ˆ( )P i  are the actual

and predicted values of power generation. n is the number 
of predicted validation data. i is the predicted point 
sequence number. The maximum value of the output 
sequence of ˆ ( )P i , and iCap  is the maximum value of 
the predicted sequence power. This study will name the 
optimized algorithm LSTM-PSO algorithm. The functions 
of the constructed photovoltaic power generation 
prediction platform are shown in Figure 5.

Real time 
monitoring

Photovoltaic 
prediction

Information 
Display

Optimize 
scheduling

Predicting power 
generation based on 

collected information

Display meteorological 
data and forecast results

Provide improvement 
suggestions for the 
optimization and 

scheduling of power 
stations

Photovoltaic power generation 
prediction platform

Real time collection of 
meteorological information, 

irradiance data, and equipment 
parameter information

Check if there are any 
abnormalities in the 

operation of the power 
station

Information 
acquisition 

Figure 5 Functions of photovoltaic prediction platform 

Figure 5 shows an integrated platform with five core 
functions: real-time monitoring, data collection, load 
forecasting, information display, and optimized scheduling. 
Among them, load forecasting, as the core component of 
the platform, uses the LSTM deep learning framework to 
process the received data and construct a model for 
prediction. The predicted results are then stored in a 
database for other applications to access and use. 

4. Algorithm Validation of Photovoltaic
Prediction and Positioning Accuracy

A detailed analysis is conducted on the parameters of 
the constructed LSTM model, especially the setting of the 
hidden layer. By selecting different numbers of hidden 
layers, namely 9, 10, and 11 layers, the impact of the 
hidden layers on the predictive performance of the model 
are studied. Table 1 summarizes these analysis results and 
demonstrates the specific impact of layer changes on 
prediction performance. 

Table 1 The Influence of Hidden Layers on 
Training Results 

Numbe
r of 

hidden 
layers 

Iteratio
n 

number 

Learnin
g rate 

Ste
p 

Trainin
g block 

size 
RMSE 
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9 

2000 0.0006 40 50 

0.011-
0.014 

10 
0.0011

-
0.0040 

11 
0.013-
0.021 

In Table 1, all models run under fixed training 
parameters, with the only variable being the number of 
hidden layers. When the hidden layer is 10, the model 
reaches the lowest RMSE, thus determining 10 layers as 
the optimal hidden layer. The variation of model training 
loss under different learning rates is shown in Figure 6. 
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(a) Model training loss when the learning rate is 0.06
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(c) Model training loss when the learning rate is 0.0006
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Figure 6 Model training loss values at different 
learning rates 

In Figure 6 (a), when the learning rate is 0.06, the 
model has a high loss value after 2000 iterations and 
significant oscillations during the training process, 
indicating that the training effect is not ideal. In Figure 6 
(b), the learning rate decreases to 0.0061, and the 
oscillation amplitude decreases after the model loss value 
decreased. Although it still does not fully converge after 
2000 iterations, the error is reduced to some extent. In 
Figure 6 (c), the learning rate is further reduces to 0.0006, 
and the model quickly converges after 45 iterations, 
demonstrating good training performance. In Figure 6 (d), 
when the learning rate drops to 0.00006, the model 
converges faster, but requires more iterations to reach a 
stable state, with a convergence iteration of 75, which is 
30 more than Figure 6 (c). This indicates that higher 
learning leads to poor model training performance, while 
lower learning rates result in better training performance. 
Considering training efficiency, a learning rate of 0.0006 
is more suitable as the final model parameter. Node 
distribution is carried out within a 100×100 area, with 70 
target nodes, 30 Anchor Nodes (ANs), and a 
communication radius of 30. The experiment is simulated 
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using 40 populations. Orthogonal Projection Algorithm 
(OPA) is used as the benchmark for comparison. Three 
PSO algorithms are tested, namely LSTM-PSO, 
Backtracking Control PSO (BCS-PSO), and ordinary PSO 
algorithm. The impact of different anchor node numbers 
on the number of nodes that can be located and the 
Relative Positioning Error (RPE) of each algorithm is 
displayed in Figure 7. 

(a) Locatable points under various anchor nodes
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(b) RPE among anchor nodes

Figure 7 The locatability and positioning accuracy of 
various algorithms with varying numbers of Ans 

In Figure 7 (a), as the ANs increase, the locatable 
nodes of the three PSO algorithms initially increase slowly, 
then accelerate, and eventually stabilize, showing a high 
degree of consistency. Meanwhile, the locatable nodes in 
OPA tend to stabilize after increasing and remain lower 
than that in PSO. Specifically, when the anchor node is 25, 
the locatable node in LSTM-PSO is 68, which is 23 
superior than OPA, and the maximum amount of locatable 
nodes in LSTM-PSO reaches 70, significantly higher than 
OPA algorithm. Figure 7 (b) shows that as the ANs grows, 
the RPEs of the four algorithms gradually decrease. Under 
the same quantity of ANs, PSO has the highest RPE, 
followed by OPA, while LSTM-PSO has the lowest error. 
Especially when the anchor node reaches 40, the RPE of 

LSTM-PSO is minimized to 3.4%. The results of 
predicting the daily photovoltaic power are shown in 
Figure 8. 
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Figure 8 Daily photovoltaic power prediction results 

Figure 8 shows the performance of different methods 
in predicting daily photovoltaic power. In Figure 8 (a), at 
Power Station A, the predicted value of BSC-PSO is 
significantly lower than the actual value from 7:00 to 
14:00, with a maximum deviation of 10.1 MW. The 
predicted values of PSO are generally lower than the actual 
values, with a maximum deviation of 19.8 MW. In contrast, 
the predicted values of LSTM-PSO are more next to the 
actual values, with a maximum deviation controlled within 
6.2 MW. At power station B (Figure 8b), the predicted 
values of BSC-PSO are mostly higher than the actual 
values, especially at peak times where significant 
deviations occur, with a maximum deviation of 200.3 MW. 
The predicted value of PSO is close to the actual value 
most of the time, but there is a significant deviation around 
17:00, with a maximum deviation of 299.96MW. The 
predicted values of the LSTM-PSO algorithm have a small 
deviation at the peak time, staying within 0.1MW. The 
comparison of the analysis of prediction residuals for 
different methods is shown in Figure 9. 
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Figure 9 Residual fluctuations of different prediction 
methods at power station A and power station B 
In Figure 9 (a), at power station A, BSC-PSO records 

the maximum positive residual (18.1MW) at 17:00 and the 
maximum negative residual (-10.1MW) at 16.7. LSTM-
PSO records the maximum positive residual (5.0MW) at 
time 16.4 and the maximum negative residual (-4.8MW) 
at time 11.2, showing small fluctuations. In Figure 9 (b), 
at power station B, the maximum positive residual of BSC-
PSO at time 17.2 reaches 259.5 MW, while the maximum 
negative residual at time 17.0 is -317.2 MW. The 
maximum positive residual of PSO at time 17.5 is 
296.2MW, and the maximum negative residual at time 
17.0 is -236.4MW. The maximum positive residual of 
LSTM-PSO at time 17.5 is 108MW, and the maximum 
negative residual at time 17.0:00 is -56.2MW, with 
relatively small fluctuations compared to other methods. 
Figure 10 analyzes the prediction intervals of different 
methods at 80% confidence level.
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Figure 10 Interval fluctuations of different prediction methods 

Figure 10 shows the interval fluctuations of different 
prediction methods at 300 15-minute sampling points. 
Although BSC-PSO has small fluctuations in the predicted 
interval, it fails to cover the actual values at more than 30 
sampling points. The prediction interval of PSO is 
relatively wide, with a maximum difference of 50MW 
between its upper/lower limits, and the actual values 
exceed the prediction interval at more than 50 sampling 
points. In contrast, the difference between the upper/lower 
limits of the prediction interval of LSTM-PSO is 
controlled within 30MW, and there is no situation where 

the actual value exceeds the prediction interval. The model 
predicted the photovoltaic power generation on weekdays 
and non-working days, as shown in Figure 11. 
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Figure 11 Comparison between model prediction 
results and actual values 

In Figure 11 (a), on non-working days, the model's 
predicted values closely match the actual value curve, and 
in some time periods, they are consistent with the actual 
values. For example, on the 20th day, the predicted power 
generation is slightly lower than the actual value of 
1.17kWh. On the 26th day, both are completely consistent 
at 22.78 kWh. The predicted value on the 70th day is 
slightly higher, exceeding the actual value by 1.54kWh. In 
Figure 11 (b), the predicted curve remains close to the 
actual value and the overall trend is consistent. On the 37th 
day, the predicted power generation exceeds the actual 
value by 9.15 kWh. On the 20th day, the predicted value is 
7.42kWh higher than the actual value. The predicted value 
on the 40th day decreases by 10.61kWh compared to the 
20th day. 

5. Conclusions

This study proposed a prediction method that combines
LSTM and an improved MO-PSO algorithm to handle the 
challenges of DPPG power prediction. By optimizing the 
LSTM hyperparameters, this study significantly improved the 

prediction accuracy. The results indicated that the proposed 
LSTM-PSO algorithm significantly outperformed other 
traditional algorithms in terms of prediction accuracy. The 
specific values showed that the maximum deviation of A 
power station was controlled within 6.2MW, the predicted 
deviation at the peak time of B power station remained within 
0.1MW, and the prediction interval error was controlled 
within 30MW at 80% confidence level. Despite significant 
research achievements, there are still some shortcomings in 
this study. For example, the predictive ability of the current 
model for extreme weather conditions still needs to be further 
improved, and the computational efficiency of the algorithm 
needs to be optimized for application on large-scale datasets. 
Future research will extend the model to a wider range of 
regions and different types of photovoltaic power generation 
systems, while exploring more efficient algorithm variants to 
meet larger scale data processing needs. 
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