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Abstract

This paper exploits the performance of the particle swarm optimization (PSO) algorithm for a photovoltaic
system under partial shading condition (PSC). Essentially our main contribution consists on analyzing the
hyper-parameters adjustment of the PSO algorithm to determine the minimum particle numbers, such that
the assertiveness to identify the Global Maximum Power Point (GMPP) be higher than 99%. The database was
obtained throughout 5760 simulations based on different test cases. From these test cases, the PSC was applied
in 2880 simulations. In the previous work, it was shown the best results based on 5 particles. In this update
version, it is also shown the best results for 3, 7 and 9 particles, together with a comparison among them.
Furthermore, this paper also presents the simulation results to evaluate the performance of the developed
algorithm under transient- and steady-state conditions.
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1. Introduction
The growing concern on environmental issues caused
by the lack of fossil fuels in the near future has
settled the ground for the widespread of the so-called
green energy sources. Among them, photovoltaic (PV)
systems stands out due to the possibility of turning
any household into a micro power-plant, contributing
to the distributed energy concept [1]. In this context,
countries such as Germany, China and Japan have
taken the lead, powered either from environmental
or commercial aims, on the movement of PV-energy
spreading [2, 3].

From the technical point of view, it is important
to highlight that, in addition to PV panels, there is
a power-electronic converter controlled by maximum
power point tracking (MPPT) algorithm, such that the
Photovoltaic array be able to produce its maximum
energy. In fact, the lack of such controllers can even
turn the effective power generation impracticable. In
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short, the amount of power harvested from a panel
depends on the voltage across its terminals, and this
relationship varies with environmental variables, such
as solar irradiance and temperature. In the literature
there are different proposals for MPPT algorithms.
It is worthwhile noticing that methods such as
Perturb and Observe (P&O), Hill Climbing, Incremental
Conductance, and plenty of others based on artificial
intelligence (AI) have already been extensively tested
and are considered to be reliable for this purpose [4–7].
Nonetheless, these methods are prone to fail in face of
partial shading condition (PSC), once they are not able
to identify, correctly, the Global Maximum Power Point
(GMPP).

Regarding the operation under PSC, a couple of other
methods have already been proposed for MPPT [8],
among which particle swarm optimization (PSO) [9].
This method belongs to the AI branch and is based
on the behavior of flock of animals. Its characteristic
makes it possible to search for the GMPP without
being trapped into local maxima, which possible
would reduce the amount of energy harvested. A brief
review of the literature shows that researchers have

1

EAI Endorsed Transactions  
on Energy Web Research Article 

EAI Endorsed Transactions on 
Energy Web 

10 2019 - 01 2020 | Volume 7 | Issue 25 | e3

http://creativecommons.org/licenses/by/3.0/
mailto:<cleiton.freitas@uerj.br>


A. L. M. Leopoldino et al.

widely used different forms of PSO algorithms in
different configurations of PV generation systems. Some
authors have used PSO-MPPT for reducing steady-
state oscillations [10] in a single-converter system,
while others have developed algorithms for multi-
converter distributed systems [11]. Besides that, it is
also found in the literature PSO-MPPT applied to grid-
tied systems [12]. Furthermore, some researchers have
combined PSO with other techniques [13] or modified
the basic concept of PSO with intention to cut off the
random characteristic of the algorithm [14].

Although some of the authors previously cited have
studied the influence of some parameters over the
PSO-algorithm performance, there are some issues that
were not deeply analyzed, such as how the number of
particles chosen and the settings of the constants relates
to the success rate in finding the GMPP. In views of
that, this work presents a methodology to analyse the
influence of the hyper-parameters (number of particles
and other constants used in the algorithm) adjustment
and, besides that, to determine the minimum number
of particles necessary to assure assertiveness higher
than 99% in identifying the GMPP. For this matter,
it was considered a system comprised of a PV array
represented by three series-connected solar panels, a
boost converter and a 96V battery. The data from
which the analysis is backed on were obtained from
simulations of the system considering different number
of particles — three, five, seven and nine — and
different settings of the three constants used in the
PSO-MPPT algorithm. Besides that, the simulation
cases encompassed different irradiation conditions and
different patterns o partial shading. It is important
to mention that this paper complements the results
presented in a previews paper [15], presenting the full
set of results and discussing deeply the effects of the
hyper-parameters in the performance of the PSO-MPPT.
Moreover, in this update version, it is also presented
simulation results on the time domain to evaluate the
performance of the PSO-MPPT, set with the hyper-
parameter adjustment that led to the best performance,
under transient- and steady-state conditions for. Apart
from these analyses, it is also in the scope of this article
to present a detailed description of the PSO-MPPT
algorithm.

This work is organized in nine sections as follows:
Section 2 presents a review on how the PV panel
is modeled and the effects of the PSC on the
power vs voltage (P-V) relationship. In sequence, a
fully description of the modelled circuit used to the
test-case is presented in Section 3. After that, an
introductory discussion on PSO algorithm is carried
out in Section 4 and, in the sequence, the PSO-
MPPT algorithm analyzed in this work is detailed
in Section 5. Section 6 presents the methodology
employed to analyze the PSO-MPPT and Section 7

presents a detailed statistical analysis of the hyper-
parameters adjustment to three, five, seven and nine
particle numbers. Section 8, on the other hand, presents
the simulation results from the developed test case,
with different PSC. One must note that PSO algorithm
was carried out with the hyper-parameters adjusted to
five particles, once it resulted on the best performance
of the PSO algorithm as observed in Section 6. Finally,
conclusions are drawn in Section 9.

2. PV Panels
This section presents the mathematical model used for
representing the PV panels, along with a description of
its behavior under different irradiance and temperature
levels. Besides that, it is also explained the effects of PSC
on the P-V curve.

2.1. PV Panel Modeling
The single diode model approach [16] was used to
represent the PV panel. It corresponds to a current
source, Iph, paralleled with direct biased diode and a
shunt resistor, Rsh, as it is presented in Figure 1. Besides
that, a series resistor, Rs, is also inserted in the circuital
model. As the shunt resistance tends to assume high
values [17], the current flowing out of the PV panel may
be expressed by:

Ipv = Iph − Id (1)

where Id is the current flowing through the diode.
Basically, the current source, Iph, models the panel

response in function of the solar irradiation (G) and,
moreover, of the environment temperature (T ). Based
on those parameters, Iph is given by:

Iph =
G
Gref

Isc,ref + CT
(
T − Tref

)
(2)

whereG and T are, respectively, the irradiance inW/m2

and temperature in K which the panel is submitted,
whereas Gref and Tref are the reference values of these
variables for which the short-circuit current Isc,ref was
measured. Regarding to the parameters Gref , Tref and
Isc,ref , they, generally, are empirically determined by

Rsh

Rs

VpvIph

Ipv
Ideal PV cell

Id
+

−

Vd

+

−

Figure 1. Single-diode equivalent circuit of a PV cell.
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the manufacturer. As for the constant CT , it is simply
a temperature coefficient that accounts the effect of this
variable into the short circuit current.

The diode current, on the other hand, can be
expressed by:

Id = Io

(
e
Vd
aVt − 1

)
(3)

where Io is the saturation current of the cell, Vt is
the thermal voltage of the PV and a is a factor which
depends on the doping of the silicon used in the
panel [18]. Different from Io and a, which are constants
provided by the manufacturer in the data-sheet, Vt is
computed by means of the following formula:

Vt =
kT
q

(4)

where k is the Boltzmann constant, 1.38 × 10−23J/K
and q is the electron charge, 1.6 × 10−19C. The main
data of the panel considered throughout this work is
summarized in Table 1.

Considering the PV panel, for which the technical
parameters are presented in Table 1, one may find
out the I-V and P-V characteristic curves displayed in
Figure 2. The highlighted dots on Figure 2 indicate
the corresponding maximum power to the I-V curve
and P-V curve under constant temperature or constant
irradiance. It is possible to notice from Figures 2(b)
and 2(d) how the MPP changes in function to the
different levels of irradiance and temperature.

2.2. Characteristics of the PV Panel under PSC
The PSC occurs when a PV panel or an array of
panels is submitted to non-homogeneous distribution
of irradiance. It means that, due to some external factors
such as clouds, leaves or even birds and others animals
covering part of the panels, each panel is submitted to
different equivalent irradiance levels. Such situations
are known as PSC. When in PSC, either cells or even
full panels turn into loads for those associated to them,
which requires the use of bypass diodes for enhancing

Table 1. Parameters of the used panel.

Parameter Symbol Value
Referential irradiance Gref 1000W/m2

Referential temperature Tref 298.15K(25◦C)
Short-circuit current Ish,ref 3.8A
Saturation current Io 2.16 × 10−8A
Diode coefficient a 1.12
Thermal constant CT 0.0024A/K
Rated power - 60.53W
Rated voltage - 17.04V
Number of cells - 36

power generation [19]. Nonetheless, the result of having
bypassed panels under PSC is the presence of local
and global maximum power-points in the P-V curve,
as illustrated in Figure 3. It must be pointed out
that the position of the MPPs and quantity of them
depends on factors such as number of cells/panels
shaded and unshaded, irradiance and temperature. It
is also important to realize that the peak value of each
maximum not necessarily matches the others and that
there is no straightforward rule to identify the GMPP.
Hence, MPPT algorithms can be confined into local
maxima rather than the global, such that, in this case,
the MPPT algorithm must be able to identify the GMPP.
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Figure 2. I-V and P-V curves of a PV panel. (a) and (b) presents
the I-V and P-V curves for different values of irradiance keeping
temperature constant at 25◦C. (c) and (d) presents the I-V and
P-V curves for different values of temperature keeping irradiance
level at 1000W/m2.
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Figure 3. P-V curve shapes for an array of three series-connected
panels under PSC. The vector [G1 G2 G3], placed on each
upper left corner, represents the irradiance distribution in the
panels for that case and the diamond-shaped mark spot the
GMPP.
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3. Proposed Scenario and Methodology

Figure 4 presents the scenario considered for evaluation
of the PSO-based MPPT. Basically, an array of three
series-connected PV panels supply a bank of batteries
through a boost converter. It is important to notice
that an input capacitor, Cin, is paralleled with the PV
array just on the input of the converter. This capacitor
plays an important role in the circuit because it is
the storage element responsible to sustain the voltage
across the PV array, vpv . It is also important to notice
that it is possible to change vpv throughout the duty
cycle, d, of the converter. One last point must be
addressed about the converter which drives the panel:
its operational characteristic does not exactly matches
the characteristic of the conventional boost converter.
First because the terminal which the higher voltage is
obtained is kept constant (the 96V battery does that)
and second because the low-voltage terminal is fed by
a current source (the PV panel). The main outcome of
these changes the that unitary duty cycle is not a threat
for the system. In fact, when the duty cycle tends to 1,
vpv tends to zero. On the other hand, when the duty
cycle tends to zero, vph tends to Vdc.

Still on the Figure 4, there is control block labelled
as Control Algorithms, which contains the PSO-MPPT
algorithm. As it can be seen, both voltage vpv and
current ipv of the panels are the inputs of the control
algorithm and, through them, the produced power by
the PV array is calculated in real time. The output of
this block is the duty cycle d, which is used to drive
the converter. Table 2 presents the parameters used
during this paper. One may note that Cin is 10 times
more smaller than the filter capacitor (Cf ), once, in this
case, such capacitor at the input of the dc-dc converter
is only necessary to avoid sudden voltage variations
that might compromise the PSO-MPPT performance.
Furthermore, the passive elements Lf and Cf were
chosen for a 10kHz switching frequency, with the dc-
dc converter under continuous mode of operation for
a duty-cycle no lower than 0.4, under steady-state
condition.

It is worthwhile noticing that, as the considered
system comprises three PV panels externally bypassed
by three diodes, such as in Figure Figure 4, there may
be up to three MPPs. In this regard, if one of the panels

Table 2. Reference for parameters used throughout simulations.

Parameter Symbol Value
Input capacitor Cin 30nF
Filter Inductor Lf 0.5mH
Filter capacitor Cf 50µF
Battery Voltage Vdc 96V
Switching Frequency f 10kHz

is under PSC, is equivalent radiance level will differ
from the others and the system will present two MPPs.
Moreover, if each of the panels presents a different
irradiance level, the system will present three MPPs.

The presented system was simulated in PSIM
considering the switches (transistor and diodes) and
the battery as ideal devices. Besides that, each PV
panel was modeled as described in the section 2.1
and the MPPT was set to run in a realistic update
frequency (10kHz). In a general way, the model
represents the main characteristic of the real-world
system, and only a single point is not covered:
the influence of measurement noise. Nevertheless,
despite not representing the measurement noise in the
simulation, the algorithm was designed to deal with
it, as it will be shown in section 5. In a nutshell,
the presented algorithm is ready for a real-world
implementation.

4. PSO

Basically, the PSO is an AI-based method, similar to
genetic algorithms, based on the behavior of flock of
birds and others animals [20]. It was observed that the
individuals of such groups take advantage of the so call
group intelligence to achieve their collective goal, as
finding shelter or food for instance. Therefore, if the
objective is to find food, rather than concentrating all
the individuals together, the flock is spread over a large
area and, as the members communicate with each other,
all of them converge to the place which is supposed
to have more food available. In the same way, a group
of individuals, in this case called particles, is part
and parcel of the PSO method. Indeed, a predefined
number of particles are spread all over the domain
of the problem, and they are programmed to gather
information and to interact with each other to find
the solution, which, in general, is the point in the
domain function which corresponds to the maximum or
minimum of the cost function. As the cost function may
present local minimum, finding the global inflection
point requires well setting of the PSO algorithm,
besides the widespread placement of particles.

Thus, one may note that the PSO is implemented
through an iterative algorithm. Each particle is initially
placed at different hyperspaces and, after each iteration
(season), they move around, with an update speed
factor, towards the solution of the problem [21]. It
is important to notice that all of the hyperspaces are
mapped on the domain of the problem and, as it has
already been stated, the problem itself is to find the
minimum point of a user-defined cost function. The
velocity ui with which a certain particle moves is given

4 EAI Endorsed Transactions on 
Energy Web 

10 2019 - 01 2020 | Volume 7 | Issue 25 | e3



Control
Algorithms

ipv

Cf Vdc

Cin

Lf

vpv d

PV Array

G1

G2

G3
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by:

ui[k] = w ui[k − 1]

+ C1r1(pbesti − x[k − 1])︸                       ︷︷                       ︸
cognitive component

+ C2r2(gbest − x[k − 1])︸                      ︷︷                      ︸
social component

(5)

The number of the particles is represented by the i
parameter, k is the number of the iteration, w is the
inertia weight, C1 and C2 are positive constants, r1 and
r2 are random numbers ranging from 0 to 1, and x is the
position of the particle. Besides that, the variables pbest
and gbest correspond to the best positions (positions
which returned the best results) achieved, respectively,
by this particle and by the whole group, accounting all
of the previous iterations.

As it can be seen in (5), the velocity of a particle
changes with two main components named cognitive
and social. The former is intended to draw upon the
own experience of each particle, whereas the later
focus on the group acquired knowledge. It is worth
noticing that the chosen values of the constants C1
and C2 are straightforwardly linked with the dynamic
of the algorithm and because of that, these values
must be adequately tuned according to the objective.
As for the random variables r1 and r2, they play an
important role in the searching process, avoiding the
particles to rapidly settle on an unchanging direction
of movement [20]. Other point noteworthy is the role
of inertia weight w. The greater this coefficient is, the
wider the domain is explored. In other words, higher
values of w promotes better the searching for global
minimum of the cost function [21]. Nonetheless, there
are a couple of issues that can arise from choosing
huge values of ω. Firstly, as the ω grows the speed of
convergence of the particles is slowed and a tread-off

between the quality and the speed of the searching is
raised. Secondly, and probably more important, huge
values of ω can make the particles move to the edge of
the domain, causing exactly the contrary of the desired
effect. Consequently, the value of ω must be great
enough for spreading the search all over the domain,
yet not too big because it would make them concentrate
on the edge of the domain. Finally, the position of the
particle i in the kth iteration is update as follows:

xi[k] = xi[k − 1] + ui[k] (6)

After that the current season is finished and a new
season starts, if the stop criteria were not achieved.
Further information of how the PSO algorithm was
implanted was described in sequence.

5. PSO-MPPT

As the voltage across the panels can be controlled by
means of changing the duty cycle, d, this parameter was
chosen to represent the domain of the problem. Thus,
the position of each particle, this last being referred as
qi in some graphs, represents a duty cycle and it was
updated as follows:

di[k] = di[k − 1] + ui[k − 1] (7)

It should be borne in mind that di[k] must be bounded
within the interval [0, 1], otherwise the PSO algorithm
may command a searching outside of the domain
problem. In this work, it was decided to simply force
di = 0 or di = 1 whenever they reach values lower than
zero or greater than one, respectively. Once the domain
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problem was defined, (5) can be rewritten as:

ui[k] = w ui[k − 1]

+ C1r1(dbest,i − d[k − 1])︸                      ︷︷                      ︸
cognitive component

+ C2r2(dbest,g − d[k − 1])︸                       ︷︷                       ︸
social component

(8)

In this case, u is the change rate of the duty cycle,
which consists on the particle speed, with dbest,i and
dbest,g corresponding, respectively, to the pbest and
gbest variables that were described in (5). Although
they are not used in (8) it is important to point that the
values of associated power to dbest,i and dbest,g shall be
stored, respectively, in Pmax,i and Pmax,g . Unfortunately
(8) has no bounds and must not be used in this form,
otherwise it could threaten the performance of the
algorithm. Among different methods for limiting the
rate of changing of the duty cycle, it was chosen the
trigonometric approach used in [22]. Thus, (8) was
rewritten as:

ui[k] =
2
π
tg−1

(
wui[k − 1]

+ C1r1(dbest,i − di[k − 1])

+ C2r2(dbest,g − di[k − 1])
)

(9)

As the image of the inverse tangent corresponds
to [−π/2, π/2] and it only returns ±π/2 in case the
argument reaches ±∞, this formula bounds the velocity
within the interval (−1, 1).

When it comes to the cost function, the approach
presented in (4) was changed according to the current
objective so as to achieve the MPP. Hence, the algorithm
was arranged to search for a maximum instead of a
minimum of a function, and its output corresponds to
the produced power by the PV arrays.

Once explained how the position and velocity of
each particle are computed, it is time to present the
PSO-MPPT algorithm. Firstly, all particles have to be
initialized, and this takes an important role in the
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Figure 5. Particle swarm convergence for three particles, q0, q1
and q2. The arrows sizes are proportional to the particles speeds
and the graphs show the paths from (a) 1st to 2nd , (b) 2nd to
3rd , and (c) 3rd to 4th iterations.

process. For proper convergence it is necessary not
only a certain minimum number of particles, but also
that these are properly spread throughout the domain
of the problem. To better understand this process,
Figure 5 exemplifies the desired behavior for a case
with three particles. In the leftmost square is presented
the particles in their initial position. Note that rather
than displaying actually the position (duty cycle) it was
chosen to spot the point into the P-V curve associated
to it. After a couple of turns, the particles move to
the positions shown on the central graph and latter on
they converge to the GMPP, as shown in the graph on
the right. In order to have a faster and more accurate
convergence process it was assigned different ranges for
the initialization of each particle. It means that in case
of having n particles, their initial positions might be a
random number within specific intervals, as follows:

d1[0] = rand
((

0, 1
n

])
d2[0] = rand

((
1
n ,

2
n

])
...

dn[0] = rand
((
n−1
n , 1

])
(10)

In this case, rand( · ) is a function which returns
a random number within the interval given. This
approach guarantees the widespread placement of the
particles in the first turn (season). It was also chosen
ui[0] = 0 as initial velocity for each particle.

After setting the initial states of the particles, the
iterative process goes off. Every cycle k, the positions
di[k] of all n particles are updated according to
equation (7) and, then, the converter is driven with
each value in sequence to compute the generated power
Pi[k], from vpv and ipv , associated to each particle.
Notice that whenever the duty cycle is changed the
circuit undergoes a transient. That is why there is a
delay of 4.5ms to avoid a wrong interpretation of the
current power produced by the PV string. In addition
to that, instead of using the instantaneous power, it was
chosen to be used the average power computed over
50 samples (covering a period of 0.5ms) to guarantee
that any oscillation or noise in the signals do not
compromise the proper work of the algorithm. Once
the sampling frequency of the algorithm corresponds
to 20kHz, the average component of Pi[k] is calculated
with 10 samples. In case the Pi[k] surpass the maximum
power, Pmax,i , achieved by the particle so far, di[k] is
assigned to dbest,i , and Pi[k] to Pmax,i . Before finishing the
iteration, after all particles have been tested, Pmax,g and
dbest,g are updated, case any Pmax,i surpass its previous
value, and the velocities ui[k] are computed. Attention
has to be raised to the fact that even after converging to
the MPP, the particles still continue changing position
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due to the random characteristic of the process and it
can cause oscillations on the power generated. Thus, it
was chosen to halt the algorithm and drive the converter
with dbest,g , whenever the particles crowd each other
in a small neighborhood. To infer if the particles are
next to each other is used the standard deviation of the
average point of Pi[k], given by:

σ [k] =

√√
1
n

n∑
i=1

(Pi[k] − µ[k])2 (11)

where

µ[k] =
1
n

n∑
i=1

Pi[k] (12)

is the average power of all particles after the kth

iteration. The halt loop is commanded to arise whenever
σ [k] < 0.8 is satisfied. The flowchart in Figure 6
summarizes the algorithm. Notice that once halt,
the searching process only restarts if the average
component of the active power, calculated in the
current iteration, presents an oscillation higher than
5%, in comparison to the calculated in the previous one.
This approach prevents that measurement noise spark a
new search.

6. Methodology Applied to Analyze the
Hyper-parameters Influence on the Performance of
the System
This section aims at analyzing the performance of the
PSO-MPPT under different setting conditions, it means,

di[0] = rand(Rangei)

ui[0] = 0

k = i = 1

Pmax,i = Pmax,g = 0

dbest,i = dbest,g = 0

Start

i > n

NO

YES

di[k] = di[k − 1] + ui[k − 1]

Drive the converter with

Delay

Compute

Pi[k] > Pmax,i
NO

YES

Pmax,i = Pi[k]

dbest,i = di[k]

i = i+ 1

YES

Pmax,g = Pmax,i

dbest,g = dbest,i

any

Pmax,i > Pmax,g

NO

σ[k] < 0.8YES

k = k + 1

Drive the converter with

Compute

|P̄ − Pmax,g|

YES

Update

Swarm loop

NO

NO

Halt loop

Initializating

di[k]

Pi[k]

ui[k]

dbest,g

P̄

> 5%

µ[k] =
1

n

n∑
i=1

Pi[k]

σ[k] =

√√√√ 1

n

n∑
i=1

(Pi[k]− µ[k])2

i = 1

Figure 6. Particle swarm algorithm flowchart for n particles. The swarm loop represents the process of going from particle to particle
testing the power response. The halt loop goes off whenever the particles converge to GMPP. It was decided not to show the limiter
of di in this diagram for the sake of space.
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different number of particles, values of the constants
w, C1 and C2. Firstly, it was defined a set of values of
the parameters for which the PSO algorithm was to be
analyzed. The number of particles, for instance, was set
for three, five, seven and nine. The constants C1 and C2,
on the other hand, were varied from 1 to 2 with steps of
0.2 and, the inertia constant, w, was varied from 0.2 to
1.0 with the same step size (0.2), totaling 720 different
combinations of setting points. Table 3 summarizes the
ranges in which each variable of the simulations was
varied.

Considering this space, a set of eight simulations
were carried out for each combination to assess
the performance of the algorithm under different
conditions. In half of them the PSC was considered,
each one with a different pattern, and the other half full
coverage of the sun, with different levels of irradiance.
The temperature was held constant at 25◦C for all
the simulations. In summary, it was carried out 5760
simulations, 2880 of which the PSC was considered.

7. Analysis of the Results

For the sake of classifying the results, they were
binarily classified into group A, for those which reached
accuracy higher than 99% (virtually 100% accuracy),
and group B, for all the other results. In this context,
accuracy represents the per unit value of the power
produced by the converter taking as reference the
theoretical MPP for each case. The global results of
simulations and classification are shown in histogram in
Figure 7. As expected, 100% of accuracy was obtained
when the PSC was not considered. Meanwhile, under
PSC, the tests unveiled that only 87.67% (2525) were
classified into the group A. Here it is important do state
that among those nearly 12% which were classified into
the group B, some ended up in a local maxima and
others did not converged.

In sequence, to compare the algorithm performance
with the corresponding set of parameters it was defined

Table 3. PSO search range parameters.

Parameter Range Step Unit
w (0.2, 1) 0.2 −
C1 (1, 2) 0.2 −
C2 (1, 2) 0.2 −
n (3, 9) 2 −
G1,G2,G3 (400, 1000) 200 Wm−2

Tenv 25 0 ◦C

the success rate, SR, of the MPPT as follows:

SR(i, j, m, l) =
|A|

|A| + |B|

∣∣∣∣∣
C1(i),C2(j),w(m),n(l)


i, j ∈ N∗ | i, j < 7
m ∈ N∗ | m < 6
l ∈ N∗ | l < 5

(13)
In this case, |A| and |B| represents, respectively, the

number of cases classified in groups A and B for
a specific combination or parameters n, C1, C2 and
w. In short, SR(i, j, m, l) informs the percentage of
cases which were classified in the group A for each
combination of parameters.

Since the swarm size n is the principal hyper-
parameter in the algorithm, we partitioned the SR using
this metric. For each number of particles, we tested 720
scenarios and the success rate SR for them is shown in
Figure 8. In these graphs, the colors blue and yellow
represent the extremities of the results: the lowest and
the highest levels of SR, respectively. Thus, one must
note from Figure 8 (b) that there are 13 combinations
of C1 and C2 regarding the case with n = 5 which the
success rate achieved 100%, indicating that all these
tests (260) converged to the GMPP. Notice that the
inertia constant varies among all these tests and it is
going to be analyzed in the sequence.

Looking into the charts of the Figure 8 is possible to
notice that the higher values of success rate occurred
for five particles in a region bounded by C1 < 1.8 and
C2 > 1.4. On the other hand, the worst results came
out of the case with nine particles, where an average
of roughly 85% success rate was basically observed
for most of the combinations of C1 and C2. The other
two cases, that is, n = 3 and n = 7, show themselves
as intermediary results when it comes to the success
rate. Putting the results into the context, our problem
comprises three maxima at most. Thus, three particles

Accuracy
>99%

(Class A)

Accuracy 
≤99% 

(Class B)
Without shade 2880

PSC 2525 355

2880
2525

355

0
500

1000
1500
2000
2500
3000
3500

Sw
ar

m
 s

iz
e 

[n
]

CHEGOU_NO_MPP

Count of FAIXA_RASTREAMENTO

NUMER_EPOCH_ESTAB

Figure 7. Accuracy and classification of simulation results
independently of the settings.
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Figure 8. Success rate mapping for different number of particles
(a) n = 3:5 pairs with SR = 100%. (b) n = 5:13 pairs with
SR = 100%. (c) n = 7:7 pairs with SR = 100%. (d) n = 9:2
pairs with SR = 100%.

may be a small number and could lead to blind points
in the searching range and reduce the success rate. On
the other extremity, nine particles may exceed the limit
for good results, as it could facilitate the concentration
of articles around local maxima. This can be retrieved
from the Figure 8 by noticing that the constant related
to the social parcel, C2, of the algorithm is inherently
linked with the bad results. This is logical because
the greater the number of particles, the greater is the
number of particles located nearby local maxima at
the beginning of the search. This makes the social
component a source for disrupting the particles moving
toward the GMPP. Although seven particles may seem
to present more homogeneous results, with five particle
numbers a success rate close to 100% was obtained for
a certain range of C1 and C2.

Concerning the convergence elapsed-time, the influ-
ence of the hyper-parameters can be analyzed through
the Tables 4-7. They present the average time spent
during the searching based on the results in group A
only, that is, those which reach at least 99% theoretical
GMPP. Before staring the analysis, it is important to
notice that the range of colors are not the same for
different tables due to aesthetic issues. Thus, the color
which represents a certain value of elapsed time for one
table may not be the same for others. Nevertheless, it
was decided to use cold colors for the best results and
warm ones for the worst of each number of particles.

Analyzing each table individually one may notice a
convergence time strongly influenced by the number of
particles. This is better illustrated in the distribution
chart presented in Figure 9. It is also correct to consider

this hyper-parameter as the one that most influence
the convergence time. Indeed, the lower the number
of particles, the faster is the searching for the GMPP
and the difference stands out. While it could be pointed
out an average convergence time of roughly 200ms
for the case with three particles, this average rapidly
grows toward 900ms for the case with nine particles.
Besides that, as it is possible to observe in Figure 9,
the cases with greater number of particles presented
more disperse distribution. In this respect, the standard
deviation assume the values of 0.13, 0.18, 0.20, 0.40
for n = 3, 5, 7, 9 respectively. This observation can
be explained by the amount of time spent in each
iteration of the swarm loop. For instance, being ∆t the
necessary time period for assessing the power produced
by each particle, and considering it far way greater
than any computational delay, the elapsed time for one
iteration of the swarm loop for three particles would be
3∆t. Meanwhile, for the cases of five, seven and nine
particles, it is expected elapsed-times of 5∆t, 7∆t and
9∆t and this relationship can somehow noticed in the
results presented in Tables 4-7. Thus, it is fair to state
that, in general, the number of cycles for reaching the
GMPP is nearly the same for all the different particle
numbers.

The second hyper-parameter to influence the conver-
gence dynamics is the inertia weight (w). For any num-
ber of particles, the greater this variable is, the worse is
the algorithm performance. This result is also consistent
with the definition of w itself. As it represents the
inertia of the particles, great values of it can slow them
down when either the social or the cognitive parcels
of (9) face fast changes. Notice that in any moment
the statement of the previous clauses suggest that w
may be chosen as zero to fasten up the process. In fact,
this parameter commands the ability to move forward
into the best point, and its total disabling would only
give the algorithm an 100% random characteristic. As
consequence, the convergence toward the MPP would
be barely possible.
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C
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Figure 9. Convergence time of the cases classified in group A.
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Table 4. Average convergence time in seconds for three particles.

C1 1 1.2 1.4 1.6 1.8 2
1 0.151 0.136 0.121 0.091 0.486 0.125

1.2 0.151 0.136 0.121 0.091 0.241 0.136
1.4 0.151 0.136 0.121 0.091 0.091 0.121
1.6 0.251 0.136 0.121 0.106 0.189 0.159
1.8 0.241 0.136 0.121 0.106 0.114 0.121
2 0.302 0.146 0.121 0.106 0.114 0.121

C1 1 1.2 1.4 1.6 1.8 2
1 0.132 0.196 0.131 0.125 0.125 0.140

1.2 0.132 0.256 0.131 0.200 0.125 0.163
1.4 0.144 0.211 0.131 0.121 0.125 0.151
1.6 0.144 0.211 0.131 0.178 0.136 0.211
1.8 0.144 0.211 0.354 0.148 0.136 0.174
2 0.144 0.114 0.131 0.196 0.189 0.185

  w = 0.6    (c)  
C1 1 1.2 1.4 1.6 1.8 2

1 0.136 0.211 0.170 0.151 0.136 0.159
1.2 0.151 0.151 0.166 0.151 0.136 0.125
1.4 0.200 0.294 0.151 0.151 0.136 0.136
1.6 0.189 0.121 0.148 0.136 0.148 0.148
1.8 0.211 0.136 0.148 0.151 0.189 0.148
2 0.260 0.136 0.159 0.151 0.159 0.148

C1 1 1.2 1.4 1.6 1.8 2
1 0.298 0.189 0.170 0.193 0.226 0.193

1.2 0.161 0.181 0.170 0.223 0.283 0.181
1.4 0.166 0.181 0.279 0.170 0.170 0.181
1.6 0.176 0.287 0.148 0.148 0.136 0.181
1.8 0.178 0.347 0.159 0.170 0.159 0.159
2 0.155 0.396 0.148 0.170 0.170 0.170

C1 1 1.2 1.4 1.6 1.8 2
1 0.204 0.350 0.256 0.260 0.260 0.226

1.2 0.193 0.238 0.238 0.238 0.380 0.215
1.4 0.294 0.215 0.238 0.249 0.238 0.268
1.6 0.193 0.215 0.241 0.365 0.260 0.372
1.8 0.215 0.347 0.226 0.260 0.352 0.253
2 0.249 0.332 0.200 0.302 0.241 0.251

  w = 0.2    (a)  

  w = 0.4    (b)  

C
2

  w = 0.8    (d)  

C
2

  w = 1.0    (e)  

C
2

C
2

C
2

Table 5. Average convergence time in seconds for five particles.

C1 1 1.2 1.4 1.6 1.8 2
1 0.345 0.251 0.251 0.251 0.251 0.251

1.2 0.471 0.251 0.251 0.251 0.251 0.251
1.4 0.439 0.251 0.251 0.251 0.251 0.251
1.6 0.408 0.251 0.251 0.251 0.283 0.251
1.8 0.439 0.251 0.251 0.251 0.283 0.251
2 0.377 0.251 0.251 0.251 0.314 0.251

C1 1 1.2 1.4 1.6 1.8 2
1 0.283 0.911 0.251 0.377 0.345 0.377

1.2 0.314 0.251 0.251 0.377 0.314 0.377
1.4 0.314 0.314 0.251 0.377 0.314 0.345
1.6 0.314 0.314 0.314 0.408 0.377 0.377
1.8 0.283 0.314 0.314 1.003 0.377 0.439
2 0.283 0.314 0.345 0.377 0.377 0.377

  w = 0.6    (c)  
C1 1 1.2 1.4 1.6 1.8 2

1 0.314 0.377 0.418 0.377 0.439 0.439
1.2 0.283 0.544 0.418 0.377 0.377 0.439
1.4 0.345 0.377 0.418 0.345 0.408 0.439
1.6 0.377 0.314 0.418 0.345 0.439 0.408
1.8 0.377 0.377 0.418 0.377 0.439 0.408
2 0.377 0.377 0.377 0.408 0.408 0.533

C1 1 1.2 1.4 1.6 1.8 2
1 0.418 0.408 0.533 0.502 0.533 0.502

1.2 0.377 0.377 0.533 0.439 0.565 0.471
1.4 0.418 0.439 0.565 0.439 0.502 0.471
1.6 0.418 0.408 0.533 0.471 0.659 0.471
1.8 0.377 0.377 0.460 0.460 0.953 0.471
2 0.439 0.439 0.439 0.533 0.596 0.471

C1 1 1.2 1.4 1.6 1.8 2
1 0.502 0.502 0.502 0.502 0.502 0.533

1.2 0.502 0.502 0.471 0.471 0.502 0.471
1.4 0.471 0.544 0.502 0.471 0.471 0.502
1.6 0.471 0.585 0.533 0.502 0.439 0.558
1.8 0.502 0.565 0.565 0.502 0.533 0.502
2 0.533 0.565 0.502 0.533 0.565 0.621

  w = 1.0    (e)  

C
2

C
2

C
2

C
2

  w = 0.2    (a)  

  w = 0.4    (b)  

C
2

  w = 0.8    (d)  

Table 6. Average convergence time in seconds for seven particles.

C1 1 1.2 1.4 1.6 1.8 2
1 0.676 0.492 0.492 0.574 0.615 0.615

1.2 0.676 0.492 0.492 0.790 0.615 0.615
1.4 0.676 0.492 0.492 0.790 0.615 0.615
1.6 0.676 0.492 0.492 0.799 0.615 0.615
1.8 0.676 0.492 0.492 0.799 0.615 0.615
2 0.676 0.492 0.764 0.790 0.615 0.615

C1 1 1.2 1.4 1.6 1.8 2
1 0.676 0.615 0.615 0.746 0.574 0.574

1.2 0.676 0.676 0.615 0.737 0.574 0.667
1.4 0.676 0.676 0.615 0.851 0.574 0.656
1.6 0.615 0.615 0.615 1.018 0.574 0.492
1.8 0.676 0.615 0.615 0.574 0.492 0.492
2 0.615 0.615 0.615 0.574 0.492 0.492

  w = 0.6    (c)  
C1 1 1.2 1.4 1.6 1.8 2

1 0.492 0.553 0.615 0.574 0.574 0.615
1.2 0.615 0.492 0.676 0.492 0.746 0.492
1.4 0.553 0.492 0.615 0.492 0.492 0.492
1.6 0.676 0.492 0.615 0.492 0.574 0.492
1.8 0.676 0.492 0.615 0.492 0.492 0.553
2 0.656 0.492 0.492 0.492 0.574 0.553

  w = 0.8    (d)  
C1 1 1.2 1.4 1.6 1.8 2

1 0.615 0.737 0.737 0.737 0.737 0.737
1.2 0.615 0.737 0.737 0.737 0.737 0.737
1.4 0.737 0.737 0.737 0.737 0.676 0.737
1.6 0.676 0.737 0.737 0.737 0.737 0.676
1.8 0.737 0.737 0.799 0.737 0.676 0.676
2 0.615 0.737 0.860 0.737 0.737 0.737

C1 1 1.2 1.4 1.6 1.8 2
1 0.799 0.983 0.922 0.983 0.983 0.922

1.2 0.860 1.044 0.983 0.983 0.922 0.983
1.4 0.799 0.983 0.983 0.983 0.860 0.860
1.6 0.860 1.044 1.106 0.922 0.860 0.983
1.8 0.922 0.922 0.983 0.860 0.860 0.860
2 0.922 0.860 0.860 0.737 0.860 0.983

  w = 1.0    (e)  

C
2

  w = 0.2    (a)  

  w = 0.4    (b)  

C
2

C
2

C
2

C
2

Table 7. Average convergence time in seconds for nine particles.

C1 1 1.2 1.4 1.6 1.8 2
1 1.016 0.813 1.016 0.813 0.813 0.813

1.2 1.016 0.813 0.813 0.813 0.813 0.813
1.4 1.016 0.813 0.813 0.813 0.813 0.813
1.6 1.016 0.813 0.813 0.813 0.813 0.813
1.8 1.016 0.813 0.813 0.813 0.813 0.813
2 1.016 0.813 0.813 0.813 0.813 0.813

C1 1 1.2 1.4 1.6 1.8 2
1 0.813 0.813 0.813 0.813 0.813 0.813

1.2 0.813 0.813 1.203 0.813 0.813 0.813
1.4 0.813 0.813 0.813 0.813 0.813 0.813
1.6 0.813 0.813 0.813 0.813 0.813 0.813
1.8 1.117 0.813 0.813 0.813 0.813 0.813
2 0.813 1.218 0.813 1.128 0.813 0.813

  w = 0.6    (c)  
C1 1 1.2 1.4 1.6 1.8 2

1 0.813 0.813 0.813 0.813 0.813 1.354
1.2 0.813 0.813 0.813 0.813 1.016 0.813
1.4 0.813 0.813 0.813 1.016 1.016 0.813
1.6 0.813 0.813 0.813 0.813 1.016 0.813
1.8 0.813 0.813 1.113 0.813 0.813 0.813
2 0.813 1.117 0.813 0.813 0.813 0.813

  w = 0.8    (d)  
C1 1 1.2 1.4 1.6 1.8 2

1 0.813 1.016 1.016 1.218 1.218 1.624
1.2 0.813 1.421 1.117 1.218 1.421 1.117
1.4 0.813 1.016 1.117 1.218 1.421 1.117
1.6 0.813 0.914 1.320 1.016 1.320 1.117
1.8 0.813 0.813 1.354 1.016 0.813 1.016
2 0.813 0.813 1.016 0.813 1.455 1.016

C1 1 1.2 1.4 1.6 1.8 2
1 1.523 1.929 1.827 1.827 1.218 1.421

1.2 1.523 1.827 1.624 1.624 1.218 1.421
1.4 1.726 1.624 1.624 1.624 1.421 1.320
1.6 1.354 1.218 1.726 1.726 1.624 1.929
1.8 1.624 1.218 1.218 1.320 1.624 1.827
2 1.218 1.218 1.726 1.523 1.016 1.421

  w = 0.2    (a)  

  w = 0.4    (b)  

C
2

  w = 1.0    (e)  

C
2

C
2

C
2

C
2
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As for C1 and C2 they did not had an important
role into the convergence dynamics. In fact, it was
not noticed influence of them in such a clear way as
the other two hyper-parameters. However, it was not
possible to rule them out from the group of parameters
that influence the dynamic performance of the MPPT.
For example, consider the result for the case with n = 3,
w = 0.2,C1 = 1.0 andC2 = 1.6. This point is surrounded
by the fastest cases obtained throughout the scenarios
and still presented the slowest convergence for three
particles. Special cases such as those were found in
all four tables and they somehow flag a small, yet not
null, influence of theses constants into the convergence
dynamics. Nonetheless, this influence may not be as
linear as the influence of number of particles and the
weight (w). Here is fair to point out that C1 and C2
appears in the cognitive and social parcels of (9) and
those are also influenced by random numbers r1 and r2,
and chances are that the atypical results discussed in
the beginning of this paragraph come out of aleatory
events. These could be better addressed by means of
increasing significantly the number of test cases so as
to reduce the weight of aleatory events into the global
result.

Considering the detailed analysis presented in this
section is possible to point out the case with five
particles, cognitive and social components, C1 and C2,
equal to 1.6, and the inertia weight w equal to 0.2 as the
best set for the algorithm. Of course the convergence
time is important, by here the leading factor for this
conclusion was the success rate.

It is important to notice that, in having more series-
associated panels, the number of possible multiple
MPPs grows and for this reason it is not possible to
assure that a five-particle PSO-MPPT will lead to the
best performance in these new scenarios.

8. Simulation Results
The objective of this section is to observe the
PSO algorithm, with the hyper-parameters adjusted
according to the previous analysis, acting on the
simulated circuit represented in Figure 4. For this
matter, it was considered only the best case spotted in
the previous section, that is, the PSO was conceived
with five particles, w = 0.2, C1 = 1.6 and C2 = 1.6.

In Figure 10 there are the obtained results with
the simulated circuit. It was considered five different
patterns for the P-V curve, each one remaining for one
full minute. The changing of patterns in a roll aims at
observing the behaviour of the proposed MPPT both
in transient- and steady-state conditions. Figure 10(a),
for instance presents the produced power and the
theoretical GMPP respectively in red and gray lines,
whereas Figure 10(b) shows the corresponding duty-
cycle of the dc-dc converter. For making it more

comprehensive, the used patterns for the P-V curve,
along with particles loci, are presented in Figures 10(c),
precisely displayed so as to indicate at which time
interval they correspond to. In each of these graphs,
the diamond-shaped parks indicate the GMPP, whereas
the circles indicate the particles loci. Besides that, the
temperature was held constant in 25ºC and Table 8
presents the average irradiation in each panel that
produces the aforementioned P-V patters.

In the first test case, it was considered the panels
without PSC and facing the maximum irradiation
considered in the simulations. Thus, the power
produced in the first minute was barely close to 420W ,
which corresponds to the highest produced power of
the entire simulation. The graph in the Figure 10(a)
shows that the algorithm presented no difficult to reach
the single MPP or to reach the newer GMPP when
the the panels started presenting PSC in t = 1min. At
t = 2min the shading pattern changed again and once
more the PSO-MPPT reached the new GMPP. Here it is
important to notice the significant difference between
this new maximum and the previous one. The algorithm
was only able to reach the new maximum because after
leaving the halt loop, the particles are spread over the
entire domain before starting the searching. At t = 3min
it was carefully chosen a pattern which would not cause
a changing in the produced power enough for starting
a new swarm loop in the algorithm. Thus, the PSO-
MPP remained in the halt loop and the system did
not find the new GMPP, what can be confirmed by
seeing the particles loci in the corresponding segment
of Figure 10(c). In this case, however, there was no
significant loss in the generation because the difference
between the local and the global maxima is roughly
0.14%, what can be observed in Table 8. It is importance
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Figure 10. Simulation results for different transient events
considering n = 5, w = 0.2, C1 = 1.6 and C2 = 1.6. (a)
Produced power (b) Duty cycle. (c) P-V pattern adopted in each
time interval. The colors blue, red were used respectively for
the instantaneous duty-cycle and power and the gray for the
theoretical GMPP. In (c) the diamond-shaped marks indicate the
GMPP and the red circles the particle loci.
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Table 8. Evaluation of the effectiveness of the MPPT for each P-V curve in the simulation

Time Interval G1 G2 G3 GMPP Ppso Efficiency Convergence time
From 0 to 1min 1000W/m2 1000W/m2 1000W/m2 419.97W 419.45W 99.88% 251.5ms
From 1 to 2min 400W/m2 600W/m2 1000W/m2 191.73W 190.61W 99.42% 228.4ms
From 2 to 3min 1000W/m2 1000W/m2 500W/m2 279.98W 279.49W 99.82% 355.7ms
From 3 to 4min 1000W/m2 600W/m2 1000W/m2 285.77W 279.49W 97.80% -
From 4 to 5min 1000W/m2 500W/m2 500W/m2 225.32W 224.75W 99.75% 234.4ms

to notice that the percent of change in the measured
power considered for sparking the swarm loop (5% in
this work) plays a key role at the higher divergence
from the GMPP the system may face. Of course it is
possible to narrow this band reducing the mentioned
percentage, yet it can make the system prone to chatter
due noises in the measurements (in this case the noise
could be misinterpreted as a variation in the power and
the searching for the GMPP restarted). Thus, here we
have a tread off between noise immunity and capacity
to converge to the GMPP in all the cases. Finally, at
t = 4min the last P-V pattern started and, as the MPPT
once more converged to the GMPP. All in all, the
MPPT allowed the system to reach the GMPP in all
simulated P-V patterns in no more than 360ms and this
is registered in Table 8.

Still on Table 8, it is worthwhile noticing that the
steady-state power matches the theoretical GMPP with
nearly 100% precision, reinforcing the effectiveness of
the used PSO-MPPT with the introduced way to adjust
the hyper-parameters.

An other point to be noted in the Figure 10 is
the chattered pattern observed in the duty cycle and,
consequently, in the produced power just after each
changing of the P-V characteristic. This can be better
observed in Figure 11 and is basically caused by
assessment of the power produced by each particle.
In other words, when the system faces a change in
the produced power great enough for the enabling the
swarm loop in the algorithm, the MPPT drives the
converter with the duty cycle of each particle, season
over season of the swarm loop, causing this chattered
characteristic in d and P . Once the particles converge
to the MPP, the halt loop takes place and both the
duty cycle and the produced power remain constants
at dbest,g and Pmax,g , respectively.

9. Conclusions
This paper presented a general review of the use of
PSO in MPPT with a methodology to adjust the hyper-
parameters such that the implemented algorithm was
capable of identifying, correctly, the GMPP in more
than 99% of the cases. In a nutshell, it has been
presented a grid search over a space of 5760 scenarios
for the best combination of parameters, number of
particles, C1, C2 and w, for the proposed algorithm.

From the results, it was possible to conclude that the
algorithm is effective and reached the GMPP in almost
88% of proposed cases independently of the settings
(number of particles and chosen values for C1, C2 and
w). It was also noticed that the rate of non-convergence,
which in fact, for this analysis, means not reaching the
GMPP before t = 3s, was low with only 39 out of 5760
cases reporting this behavior. Of course, the algorithm
was able to reach the GMPP nearly 100% of the cases for
n = 5, C1 = C2 = 1.6 (best setting arrangement). It was
also spotted that the best performances, when it comes
to the convergence time, led the algorithm to reach
GMPP in about 0.25s. Besides that, it is also possible to
draw some conclusions about the relationship between
parameter adjustment and tracking performance:

• Swarm size (n): large number of particles leads to
a slower convergence time.

• Inertia coefficient (w): larger value can slow the
convergence time since it might require more
cycles for all particles get closer to the GMPP.

• Cognitive and social components: inside the
algorithm C1 and C2 contributes either for local
and global maximum searching.
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Figure 11. Characteristic chartering observed in PSO. The colors
blue, red were used respectively for the instantaneous duty-cycle
and power and the gray for the theoretical GMPP.
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One last point to be made concerns the effect of the
general configuration on the results achieved. Since in
the present analysis was considered only cases with
one, two or three local maxima, it is not possible to
guarantee that the performance will be the same for
the cases where more than three maxima occurs. In this
case a novel database of different simulation test cases
must be considered to perform the hyper-parameters
adjustment.
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