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Abstract 

A reliable supply of power systems is critical for industry, commerce, and residential life. Improving the accuracy and 

reliability of short-term electricity load forecasting plays a crucial role in ensuring the satisfaction of electricity demand and 

the stable operation of the power system. Therefore, to realize accurate and efficient prediction of short-term power loads, a 

short-term power load prediction method based on multi-intelligence deep reinforcement learning is proposed to address the 

complex nonlinear characteristics of load data. In this paper, we analyze the multi-intelligence application architecture in 

power load forecasting, and analyze the function of each intelligent unit applied to short-term power load forecasting; based 

on clarifying the interaction relationship of each intelligent unit in short-term power load forecasting, we model short-term 

power load forecasting as a distributed and partially observable Markov decision-making process, which is suitable for multi-

intelligence deep reinforcement learning; based on the MATD3 algorithm, a centralized training-distributed execution 

framework is used to train multiple intelligences within the model to achieve short-term power load forecasting. The 

experimental results show that in the August short-term electricity load forecasting using the design method, the obtained 

MAE value is 35.94 kW, MAPE value is 4.05%, and RMSE value is 32.71 kW. In the short-term power load forecasting 

evaluation conducted for December, the average absolute error (MAE) value obtained was 36.75 kilowatts, the average 

absolute percentage error (MAPE) value was 4.51%, and the root mean square error (RMSE) value was 34.82 kilowatts. 

These evaluation results fully demonstrate that the design method adopted has high prediction accuracy and forecast 

precision. This method has demonstrated good practical value and broad application prospects in practical applications due 

to its high-precision prediction performance and strong prediction stability. 

Keywords: Multi-intelligent body systems; deep reinforcement learning; Markov decision making; short-term power load forecasting 

Received on 14 August 2024, accepted on 20 September 2024, published on 14 April 2025 

Copyright © 2025 Tianyun Luo et al., licensed to EAI. This is an open access article distributed under the terms of the CC BY-NC-

SA 4.0, which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so long as the 

original work is properly cited. 

doi: 10.4108/ew.9086 

1. Introduction

In modern society, electricity plays a crucial role, playing an 

indispensable role in maintaining the smooth operation of the 

national economy and improving the quality of life for the 

people. Accurately estimating the load of the power system is 

the primary consideration for power generation planning and 

fuel demand arrangement by the power generation 
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department. It is also the core foundation for the power 

system dispatch center to ensure the safe and stable operation 

of the power grid. In addition, it is also an important reference 

for power planning agencies to coordinate the comprehensive 

development of the power system. In short, the importance of 

electricity is self-evident, and load forecasting is a key link in 

ensuring a balance between electricity supply and demand 

and promoting the healthy development of the power system 

[1-2]. With the continuous advancement of intelligent power 
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technology, short-term power load forecasting has received 

widespread attention 

Literature [3] is based on multi factor analysis and Long 

Short Term Memory (LSTM) neural network short-term 

power load forecasting model. The model first evaluated the 

correlation between various weather factors and power load 

using the Spearman coefficient method, and selected weather 

features that have a significant impact on power load. 

Subsequently, the sliding window technique was employed to 

reconstruct the original time series data. Finally, a prediction 

model was constructed using LSTM. However, it is worth 

noting that the overall accuracy of the model in load 

forecasting still needs to be improved; Literature [4] designed 

a correction function aimed at improving prediction accuracy 

by applying the Mann Kendall mutation detection algorithm. 

This function is used as a tool for identifying power system 

load mutations and conducting short-term power load 

forecasting. However, the predictive stability of this method 

still needs to be strengthened; Literature [5] proposes a 

method that integrates the orthogonal dimensionality 

reduction and improved gray wolf algorithm for power load 

prediction method, by combining principal component 

analysis and preservation projection techniques, utilizing 

their advantages in maintaining global consistency and local 

structure of data, it can reduce the complexity of the original 

high-dimensional data and transform it into a lower 

dimensional data form. Afterwards, these dimension reduced 

data are used as inputs for prediction algorithms to achieve 

accurate short-term power load forecasting goals. However, 

this method is not applicable when dealing with complex 

power load forecasting tasks; literature [6], the validity of 

real-time data of electric power companies based on fuzzy 

time series, artificial neural networks, and wavelet 

transforms, and predicts the power dispatch demand in a 

targeted way to realize the effective prediction of power load 

after detection, but the method's overall accuracy needs to be 

improved. 

The Multi Agent Double Delay Deep Deterministic Policy 

Gradient (MATD3) algorithm is a core algorithm in the field 

of deep reinforcement learning. It is based on the Twin 

Delayed Deep Deterministic Policy Gradient (TD3) 

algorithm to expand and optimize the processing problem of 

multi-intelligent systems. system processing problem. Based 

on the deep deterministic policy gradient (DDPG) algorithm, 

this algorithm effectively addresses the bias and variance 

issues caused by function approximation in a single agent 

environment by adopting truncated double-Q learning and 

delayed strategy updates. In a multi-intelligent body system, 

each intelligent body needs to consider the behaviors of the 

other intelligences and the state of the environment to achieve 

its own optimization goal. Therefore, the MATD3 algorithm 

adds a mechanism of multi-intelligence body collaboration 

and communication based on the TD3 algorithm. Power load 

forecasting involves multiple factors, such as historical load 

data, meteorological data, economic data, etc.. There are 

complex interactions and uncertainties among these factors. 

The multi-intelligentsia collaborative learning of the MATD3 

algorithm can effectively deal with such complexity and 

uncertainty, learn more accurate and effective prediction 

models through the interaction and collaboration among 

multiple intelligences, this process relies on historical and 

real-time data to continuously update and optimize the 

prediction model, in order to flexibly adapt to the constantly 

changing power load. Based on this, a short-term power load 

forecasting method based on deep reinforcement learning 

with multiple intelligences is proposed. 

2. Design of short-term electricity load
forecasting methods

2.1. Analysis of multi-intelligent body 
application architecture in power load 
forecasting 

Multiintelligent body systems are composed of multiple 

intelligences that can interact, communicate, collaborate, or 

compete in a shared environment to accomplish tasks or solve 

problems. Each intelligent body possesses a certain degree of 

autonomy and intelligence and is able to perceive, make 

decisions, and perform actions based on environmental 

information. In the process of short-term power load 

forecasting, the application of multi-agent relies on the power 

load forecasting system to achieve, where each intelligent 

body in the system is responsible for collecting and 

processing power load-related data, for example, real-time 

power load data, meteorological data, and historical data are 

used in short-term power load forecasting tasks, which are 

achieved through information sharing and collaborative work 

among intelligent agents [7-9]. The hierarchical structure of a 

multiintelligent body system is shown in Figure 1: 
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Figure 1. Multi-intelligent body system hierarchy 

As shown in Figure 1, the multi-agent system architecture 

applied in short-term power load forecasting mainly includes 

the overall system layer, subsystem functional layer, and 

functional entity layer. In terms of functional entity layer, 

detailed descriptions have been provided for various 

intelligent agent units used for short-term power load 

forecasting. Each intelligent body function is analyzed as 

follows: 

(1) Information communication intelligences that transimit

mutual information during the operation of each intelligent 

body and manage the operation information of each 

intelligent body. 

(2) Human-computer interaction intelligences, which

interact and synthesize the call commands entered manually 

with the call commands generated automatically by the 

prediction intelligences in a human-computer interaction 

environment [10-11]. This prediction system mainly 

synthesizes the call instructions entered manually with the 

call instructions generated automatically by the predictive 

intelligent body in the human-computer interaction 

environment. 

(3) The Predictive Intelligence Body, which is composed

of the sub-predictive intelligences of different prediction 

methods, and its specific prediction methods are realized 

through the calling instructions generated by the interactive 

intelligence body. It mainly has the function of building a 

prediction model to fulfill the task of predicting load under 

the calling instruction. 

(4) The environmental assessment intelligent body has the

function of calling real-time external environmental factor 

data in the database and making a fuzzy assessment of the 

degree of drastic changes in the external environment 

according to the model of fact and experience. 

(5) Rule updating an intelligent body with the function of

accepting the signal of updating the prediction rules, updating 

the inapplicable prediction rules, and passing the updated 

prediction rules to the prediction rule base for storage. 

(6) The operation control intelligent body, in the

information transfer process of communication coordination 

intelligent body, mainly scientific scheduling of the relevant 

sub-prediction intelligent body in the prediction intelligent 

body, to realize the synergistic prediction between each sub-

prediction intelligent body [12]. Simultaneously, monitor the 

operational procedures of each subordinate agent to guarantee 

the seamless functioning of the entire load forecasting system. 

(7) Information communication intelligent body, with the

function of transmitting mutual information communication 

during the operation of each intelligent body, and managing 

the operation information of each intelligent body. 

(8) The data acquisition intelligent body has the function

of real-time acquisition of data from the external environment 

that affects load changes in the forecast, and stores them in 

the database. 

(9) Data processing intelligent body, with online real-time

collection of all types of related data needed for load 

forecasting, testing, and proofreading through the data, 

filtering, correcting, and supplementing the problematic data, 

and the processed data will be saved in the database. 

2.2. Modeling of short-term power load 
forecasting based on deep reinforcement 
learning with multiple intelligences 

To clearly illustrate the interplay among various intelligent 

agent units in short-term power load forecasting, a model is 

constructed based on the multi-intelligent deep reinforcement 

learning algorithm. Initially, short-term electricity load 

forecasting is aimed at precisely predicting future electricity 

demand. [13-15]. It is evident that the goal of short-term 

power load forecasting is to minimize the discrepancy 

between the predicted load and the actual load to the fullest 

extent possible. Consequently, the objective function is 

established to reduce the prediction error to a minimum: 
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In Formula 1-2:  denotes the value of the objective

function, i.e., the mean square error of the prediction error;T

denotes the total number of time steps predicted; t denotes a

time step; ta
denotes the actual load of the smart body at a 

particular time step; ta
denotes the predicted load of the 

intelligence at a particular time step; N denotes the total

number of intelligences; b denotes an intelligent body;

1 2 3  、 、
denote the random error term, autoregressive 

coefficient and moving average coefficient, respectively, that 

represent the intelligences at a particular time step. 

Set the constraints as: 

(1) Load balancing constraint: the power system needs to

maintain load balancing, i.e., generation should be equal to 

the load demand plus transmission losses. Therefore, for each 

time step, the load balance constraint is set as: 

, 4

1

N

b t t

b

G a 
=

= +
(3) 

In Formula 3: ,b tG
denotes the amount of power generation 

control by the intelligence at a particular time step; 4

denotes the transmission loss coefficient. 

(2) Power generation resource constraint: the power

generation of each intelligent body is limited by its available 

power generation resources. For example, for renewable 

energy-based intelligences, their power generation may be 

affected by weather conditions [16-17], the power generation 

resource constraint is set as: 

, , ,b t b tG R b t   
(4) 

In Formula 4: ,b tR
denotes the amount of generation 

resource control available to the smart body at a given time 

step. 

(3) Power system stability constraints: Load changes

should be kept within a certain range to avoid severe 

fluctuations, so it is realized by introducing load change rate 

constraints: 

, 1 maxb t t tG a a t+ −   
(5) 

In Formula 5: max denotes the maximum allowable rate 

of load change. 

Given the dynamic variability and unpredictability of the 

prediction decision-making environment, ensuring prediction 

accuracy necessitates the adoption of a multi-agent deep 

reinforcement learning algorithm framework to refine 

prediction strategies, thereby enhancing the precision and 

efficiency of forecasts [18-20]. Multi-intelligent deep 

reinforcement learning constitutes a stochastic game process 

encompassing elements like the count of intelligences, state 

space, action space, reward for intelligent agents, and state 

transition function. It is discernible that the structure of multi-

agent deep reinforcement learning algorithms ultimately 

converges towards the steady state of Markov decision 

processes [21-23]. Therefore, in this research, short-term 

power load forecasting is formulated as a distributed partially 

observable Markov decision process (Dec-POMDP), which 

aligns well with multi-intelligent deep reinforcement learning 

(MADRL). Dec-POMDP is represented in the form of a tuple 

as: 

( ) ( )1 1 2, , , , , , , ,t t t t t t tN s a P s s a R s a  +=
(6) 

( )1 2 1 2, , , , ,t t

t t t t ns a a a  − − −=
(7) 

( ) ( )
2

,t t t tR s a a a= − −
(8) 

In Formula 6-8:  denotes the Dec-POMDP tuple; ts

denotes the state space; ta
denotes the action space;

( )1 ,t t tP s s a+
denotes the state transfer probability function;

( ),t tR s a
denotes the reward function; 1 2 、

denotes the 

joint observation information set and is the observation 

probability judgment threshold; n denotes the length of the

time window for historical load data; 1 2

t t 、
denotes the 

weather feature parameter and time feature parameter in the 

prediction state space. 

The basic process of reinforcement learning in a multi-

intelligentsia environment based on a Distributed Partially 

Observable Markov Decision Process (Dec-POMDP) with 

the corresponding multi-intelligentsia internal structure is 

shown in Figure 2: 

EAI Endorsed Transactions 
on Energy Web | 

| Volume 12 | 2025 |



Research on short-term power load forecasting based on deep reinforcement learning with multiple intelligences 

5 

intelligent body1

intelligent body2

Electricity Load Forecasting 

Environment

Reward 1

Action
Status Update

Status 1

Reward 2 Status 2

intelligent body

Internal Structure of Intelligent Bodies in Dec-POMDP

Environmental 

Perceptual State 

Collection

Actor Valuation 

Network

Actor Target 

Network

Information 

Interaction Output 

Value Letter 

Estimated Value

Critic Valuation 

Network

Critic Valuation 

Network

All the actions and 

states of the smart body 

in the given state

Figure 2. The basic process of deep reinforcement learning and the corresponding multi-intelligence internal 
structure 

As can be seen from Figure 2, the components that make 

up each intelligent agent include the Actor network and the 

Critic network, the intelligent body from the environment to 

perceive the state, the state set of inputs to the intelligent 

body's strategy network, through the neural network 

computation to obtain the intelligent body's strategy, and the 

output of the given state of the intelligent body's all actions. 

These behaviors will have an impact on the environment, 

triggering the generation of reward signals in the current state, 

strategy, and feedback to the intelligent body, after which the 

environment is transferred to the next state. Each intelligent 

body evaluates the strategy according to the reward signal 

obtained, and the process is repeated in a circular manner to 

obtain a strategy that maximizes the long-term reward. 

2.3. Load forecasting implementation based 
on MATD3 algorithm 

Based on the deep reinforcement learning process shown in 

Figure 2, it can be observed that when applying deep 

reinforcement learning algorithms in multi-agent 

environments, there may be an issue of overestimation of 

value. To address the issue of overestimation in deep 

reinforcement learning algorithms, the Dec-POMDP 

prediction model is trained utilizing the MATD3 algorithm. 

In particular, MATD3 employs a reinforcement learning 

algorithm with a deterministic policy, distinguished by three 

key aspects.  

Firstly, to mitigate the overestimation issue, the MATD3 

algorithm incorporates a dual Q-learning mechanism. This 

involves introducing two additional Critic networks to assess 

the Actor network's performance, supplementing the original 

network of the Multi Agent Deep Deterministic Policy 

Gradient (MADDPG) algorithm. This is done to prevent the 

original algorithm's overestimation of the Q value, which can 

result in policy failure. Secondly, the MATD3 algorithm 

delays the policy update process [24-25], so that the Critic 

network is updated slightly more frequently than the Actor 

network, avoiding the blind iteration of the Actor; third, target 

policy smoothing processing, the MATD3 algorithm 

introduces a target policy smoothing regularization strategy 

to smooth out the target policy. In general, the Critic network 

is updated twice and the Actor network is updated once; 

Third, the target policy smoothing process, the MATD3 

algorithm introduces the regularization strategy of target 

policy smoothing to smooth the Q-value, i.e., by adopting the 

target Q-value computation for the region around the action 

space ta
[26], and adopting the framework of centered 

training-distributed execution for the multi-intelligence 

model within the model. framework to train multiple 

intelligences within the model, and the specific training 

process is shown in Figure 3: 
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Figure 3. Training process of load forecasting model based on MATD3 algorithm 

3. Experimental analyses

3.1. Experimental environment setup 

To validate the effectiveness of the design method, this study 

utilizes a dataset consisting of 53,392 actual short-term power 

load data points collected from a region in northern China 

over a three-year period, from January 1, 2019, to January 1, 

2022, with a sampling interval of 40 minutes. The power load 

data is measured in megawatts (MW). The experimental 

dataset is divided into a training set, a validation set, and a 

test set in a ratio of 7:1.5:1.5. The training set serves as input 

to train the proposed model. By evaluating the model's 

predictions on the validation set, adjustments are made to the 

model's hyperparameters, the optimal model architecture is 

chosen, and the model is monitored for signs of overfitting. 

Subsequently, the trained model is employed to make 

predictions on the test set. The specific hardware and software 

configuration of the experimental environment is shown in 

Table 1: 

Table 1. Hardware and software configuration of the experimental environment 

Equipment name Model/Version Performance parameters 

High performance computer HPE ProLiant DL380 Gen10 2 Intel Xeon Silver 4214 2.2GHz 12-core processors, 

128GB DDR4-2666 RAM, 4TB NVMe SSD storage, 

supports RAID 0/1/5/6/10, dual 1GbE network interfaces 

Data acquisition system National Instruments cDAQ-9185 

CompactDAQ Chassis 

4-slot USB chassis, hot-swappable module support, built-

in 1.33 GHz ARM Cortex-A8 processor for data logging

and analysis, -20-50℃operating temperature range.

Network equipment Cisco Nexus 9396PX Switch 48 1/10G SFP+ ports, 6 40G QSFP+ ports, VXLAN and

EVPN support, advanced QoS and security features

Simulation platform MATLAB R2020a ——

Deep learning framework TensorFlow 2.3.0 ——

Database management system MySQL 8.0 ——

Visualization tools Tableau Desktop 2020.3 ——
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The algorithmic hyperparameters used in the design 

methodology to construct the predictive model are shown in 

Table 2: 

Table 2. Algorithm hyperparameter settings 

Parameter name Value 

Actor Network learning rate  0.0012 

Critic network learning rate 0.0026 

Maximum number of training rounds/each 450 

Batch size 62 

Total training steps 100000 

Experience playback pool size 12000 

Discount factor 0.98 

Soft update factor 0.0013 

3.2. Analysis of modeled power load 
forecasting effects under widely varying 
operating conditions 

To assess the practical effectiveness of the design 

approach, the power load data of August and December 2021, 

two representative months with seasonal and temperature 

variations (difference conditions) in the simulation example 

data set, the actual load data is selected for validation. In 

addition, this design method was used to predict the short-

term electricity load situation for the second week of August 

and the second week of December, and the results of the 

modeled power load prediction under the large difference 

conditions are shown in Figure 4: 
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Figure 4. Short-term electric load forecasting results of the model under large differences in operating conditions 
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As shown in Figure 4, under significant seasonal variations 

between August and December, the short-term power load 

predictions obtained by the design method during the second 

week align closely with the actual trends in power load 

changes, with predicted values closely mirroring actual short-

term power load fluctuations. This demonstrates that, in the 

context of short-term power load forecasting, the design 

method effectively aggregates prediction outputs from 

various agents to handle complex and dynamic power load 

data, exhibiting strong generalization capabilities. 

Consequently, the model maintains high prediction accuracy 

across different power load change scenarios. 

3.3. Comparative analysis of power load 
forecasting results of different methods under 
widely varying operating conditions 

This further confirms the effectiveness of the design method 

in practical applications, literature [3] method and literature 

[4] method are introduced as a comparison method, based on

the experimental environment in subsection 3.2 (two weeks

of short-term power load prediction environment in August

and December), short-term power load prediction, and the

results of power load prediction for the different methods

under the larger differences in working conditions are shown

in Figure 5:
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(a)Short-term power load forecast results of different methods in the second week of August
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Figure 5. Short-term electric load forecasting results of different methods under widely differing operating 
conditions 
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As can be seen from Figure 5, under the different working 

conditions in August and December with obvious differences 

in seasonal variations, the short-term power load prediction 

results obtained using the literature [3] method and the 

literature [4] method have a certain degree of fit with the 

actual short-term power load changes on the whole, but there 

is still a large discrepancy between the predicted and actual 

power loads in part of the time. Such as literature [3] method 

in the second week of August, the fourth day, the fifth day of 

the short-term power load prediction process, the power load 

aberration, and shows two changes in the peak, and the actual 

power load changes do not match, literature [4] method in the 

second week of December, the second day of the short-term 

power load prediction process, the prediction results show 

that the distribution of the power load in the period of time 

around the 11500 kW continuous upward fluctuations, while 

the actual power load changes around 9000 kW continuous 

downward fluctuations, the prediction results and the actual 

results have some differences. The short-term power load 

prediction results obtained by the design method in the 

second week of the month are highly compatible with the 

actual power load changes, and the prediction results are more 

in line with the actual short-term power load changes. 

In short-term power load prediction, the design method 

leverages deep reinforcement learning to automatically learn 

and adapt to the patterns of power load changes through 

iterative model parameter optimization. This results in 

prediction outcomes that closely approximate actual power 

load variations, achieving high prediction accuracy. Such 

accuracy ensures a balanced power supply and demand, 

thereby enhancing resource utilization efficiency. 

3.4. Comprehensive performance evaluation 
analysis of forecasting methods 
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In Formula 9-11: O denotes the total amount of data; j

denotes the data index; 
jv 、

jv denotes actual versus 

predicted values. 

Based on the experimental environment in subsection 3.3, 

the method of literature [3] and the method of literature [4] 

are introduced as the comparison methods, and the prediction 

method evaluation indexes, evaluate and analyze the 

prediction accuracy and stability of different methods using 

indicators such as Mean Absolute Error (MAE), Root Mean 

Square Error (RMSE), and Mean Absolute Percentage Error 

(MAPE). MAE and RMSE provide measures of prediction 

error in absolute terms, offering direct insights into prediction 

accuracy. Specifically, a high RMSE value indicates a 

significant discrepancy between predicted and actual values, 

suggesting instability in the prediction method and significant 

variations in predictions across different time points. 

Conversely, MAPE offers a relative measure that facilitates 

comparisons of prediction issues across different scales or 

units. The results of the metric evaluation of different 

forecasting methods are shown in Table 3: 

Table 3. Evaluation results of accuracy and stability 
indicators of different prediction methods 

Testing 

Cycle 

Testing 

Methods 

MAE/kW MAPE% RMSE/kW 

Second 

week of 

August 

Design 

Methods 

35.94 4.05 32.71 

Literature 

[3] method

39.72 5.53 36.33 

Literature

[4] method

44.03 6.08 39.17 

Second 

week of 

December 

Design 

Methods 

36.75 4.51 34.82 

Literature 

[3] method

41.65 5.97 40.36 

Literature

[4] method

48.95 6.14 47.12 

Table 3 reveals that for short-term power load prediction 

in August, the design method yields an MAE of 35.94 kW, a 

MAPE of 4.05%, and an RMSE of 32.71 kW. Similarly, in 

December, the corresponding values are 36.75 kW for MAE, 

4.51% for MAPE, and 34.82 kW for RMSE. These results 

suggest that the design method demonstrates high prediction 

accuracy, robust prediction stability, and a superior practical 

application effect.  

4. Concluding remarks

The multi-agent deep reinforcement learning-based approach 

for short-term power load forecasting introduced in this 

research efficiently achieves precise, effective, and stable 

predictions. The study delves into the hierarchical structure 

of a multi-intelligent system and models short-term power 

load prediction using a multi-intelligent deep reinforcement 

learning algorithm. A prediction model is trained with the 

MATD3 algorithm for short-term power load forecasting. 

Experimental findings indicate that this method can 

automatically learn and adapt to power load variations 

through continuous iteration and optimization of model 

parameters using deep reinforcement learning. Consequently, 

the predictions closely align with actual power load changes, 

achieving high accuracy. This ensures a balanced power 

supply and demand and enhances resource utilization 
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efficiency. In conclusion, the method presented in this paper 

addresses the timing, seasonality, and contingency challenges 

faced by power system load forecasting. It offers flexibility 

to adapt to various power system needs and provides a more 

dependable tool for short-term power load forecasting. 
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