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Abstract 

INTRODUCTION: With the development of large foundation models, power grid inspection is transmitting from traditional 

deep learning to multimodal foundation models. 

OBJECTIVES: This paper aims to boost the application of multimodal foundation models for power grid inspection. 

METHODS: Current research on foundation models and multimodal large language models (LLMs) is introduced 

respectively. Three application forms of multimodal foundation models in power grid inspection are explored. The reliability 

of these models is discussed as well. 

RESULTS: These techniques can significantly reduce the time and cost of inspection by automating the analysis of large 

amounts of sensor data. They can also improve the accuracy and reliability of inspection by leveraging the understanding 

and reasoning abilities of LLMs. 

CONCLUSION: These advanced techniques have shown great application potential in power grid inspection. But it is 

important to note that they should not entirely replace human inspectors who can validate automatic findings and address 

possible issues not captured by these models alone. 
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1. Introduction

Power grid equipment plays a critical role in ensuring the 

reliable and efficient distribution of electricity. Due to the 

essential nature of power grids, the devices equipped in the 

infrastructure have high reliability requirements. Sudden 

failures of power grid equipment may have a severe impact 

on the society causing economic losses and posing threats to 

the safety of the people’s lives and property [1]. In view of 

this, power grid inspection is indeed a meaningful task for the 

regular inspection of the power grid to ensure its normal 

operation and safety. Specifically, it involves the inspection 

of transmission lines, substations, switchgears, insulators, 
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grounding systems, protection devices and more in order to 

identify potential problems and prevent power grid failures 

and accidents. 

A power grid inspection system consists of three parts: 

platforms, sensors and methods. The platforms include 

climbing robots, helicopters, unmanned aerial vehicles 

(UAVs) and hybrid platforms, while the sensors include 

thermal sensors, vision sensors, radar sensors and multi-

sensors [2]. Currently inspection methods are primarily based 

on deep learning. However, deep learning-based techniques 

often struggle with overall perception and reasoning abilities, 

which leads to increased instances of wrong results. And 

recently there has been a growing tendency on integrating 

vision encoders with large language models (LLMs) to 

address the issue [3, 4]. LLMs have attracted significant 
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interest due to their impressive abilities in processing human 

languages and performing generic tasks. For the power 

industry, LLMs hold great potential since they can understand 

sophisticated prompts and reduce sensory overload [5]. 

Inspired by the excellent transferability of LLMs as language 

foundation models, much attention has also been paid to 

vision foundation models (VFMs) for generic vision tasks [6]. 

With the development of large foundation models, power 

grid inspection is at a juncture of transition from traditional 

deep learning to these models [7]. This paper aims to boost 

the application of multimodal foundation models for power 

grid inspection. Current research on foundation models and 

multimodal LLMs is introduced in Section 2 and 3 

respectively. Three application forms of multimodal 

foundation models in power grid inspection are presented in 

Section 4. The reliability discussion is held in Section 5. 

Finally, the conclusion is drawn. 

2. Foundation Models

The foundation model is an important paradigm shift from 

traditional feature engineering to base models that are pre-

trained on massive data and subsequently fine-tuned for 

various downstream tasks [8]. 

2.1. Language foundation models 

Language foundation models are revolutionizing the field of 

natural language processing (NLP) and becoming a part of the 

majority of NLP systems. The introduction of the 

Transformer architecture has brought about a significant 

transformation in language modeling. The Transformer's 

powerful strength in parallel computation and self-attention 

will make it possible to effectively integrate huge amounts of 

data. This capability has laid the groundwork for the 

advancement of LLMs. 

Compared to traditional deep learning models, the 

advantages of LLMs are listed as follows: stronger learning 

ability adapting to complex and diverse scenarios; stronger 

generalization ability enabling good design reutilization; 

stronger creativity producing more intelligent behaviours; 

stronger effectiveness with higher accuracy. 

Figure 1. Capabilities of LLMs [9]. 

As shown in Figure 1, LLMs not only possess basic 

understanding and generation capabilities, but also exhibit 

emergent capabilities that traditional deep learning models 

lack. The emergent capabilities include in-context learning, 

Instruction following and step-by-step reasoning [9]. In 

addition, LLMs can be augmented through supplementary 

techniques, e.g. retrieval-augmented generation (RAG). 

2.2. Vision foundation models 

VFMs are used for converting images obtained from different 

sources into visual knowledge which is fit for multiple 

downstream tasks including image recognition, object 

detection and image segmentation. 

The Recognize Anything Model (RAM) is a VFM 

presented for image recognition with Swin Transformer as its 

image encoder [10]. It showcases the remarkable zero-shot 

capability to accurately identify commonsensible objects and 

scenes. 

GLEE is a VFM designed for object detection, visual 

grounding and image segmentation [11]. The model mainly 

consists of a text encoder, an image encoder, a visual 

prompter and an object decoder. 

The Segment Anything Model (SAM) is proposed by Meta 

as a VFM for promptable image segmentation [12]. It actually 

defines a novel segmentation task and the model is primarily 

composed of an image encoder, a prompt encoder and a mask 

decoder. 

The fusion of language models and vision models has led 

to the emergence of vision-language models (VLMs) which 
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combine image encoders and language models to implement 

visual understanding and semantic reasoning simultaneously. 

These models have achieved significant success in many 

tasks, such as image captioning, visual question answering 

and visual reasoning. VLMs can be divided into four types: 

contrastive-based, masking-based, generative-based and 

LLM-based [13]. Within the last two years, LLM-based 

VLMs have shown high effectiveness by the aid of the 

reasoning and generalization abilities of open-source LLMs. 

3. Multimodal LLMs

The multimodal LLM is defined as the LLM-based model 

which can input, process and output multimodal data that is a 

combination of diverse data types including images, text, 

audio, time series or composite data structures. 

A multimodal LLM usually comprises of three layers: 

modality layer, alignment layer and LLM layer as shown in 

Figure 2. The modality layer is utilized to extract the features 

of specific modality data. The alignment layer is employed to 

align various modality features with the LLM encoding space. 

The LLM layer is used for the execution of a pre-trained LLM. 

At present prevailing multimodal LLMs are mainly LLM-

based VLMs since visual tasks are in the highest demand 

among all kinds of tasks applicable to multimodal LLMs. 

Figure 2. Typical architecture of a multimodal LLM. 

3.1. Image encoders 

The performance of a multimodal LLM is significantly 

influenced by the design of the image encoder as well as 

image resolution. The image encoder accepts image input and 

extracts visual feature vectors. These features will act as the 

input to the alignment connector. 

Many recent studies have demonstrated empirically that 

employing higher image resolution can lead to impressive 

performance improvement. The methods used to scale up 

input resolution can be classified into two categories: direct 

scaling methods and patch-division methods [14]. The direct 

scaling method requires feeding higher resolution images into 

the encoder, which usually require additional adjustment to 

the encoder or the replacement of an encoder of a higher 

resolution version. The patch-division method divides a high-

resolution image into small patches and then utilizes the low-

resolution encoder for processing. 

3.2. Alignment connectors 

The alignment connector is responsible for the information 

alignment from both the textual and visual modalities and 

produces joint embeddings with shared semantics. The 

alignment connector is indispensable, but it possesses less 

importance compared to other system components. 

For multimodal information fusion which is essential in 

alignment connectors, there are mainly two ways: token-level 

fusion and feature-level fusion [14]. Token-level fusion 

involves transforming the encoder's output vectors into 

tokens which are then joined together with text tokens before 

going into the LLM. To achieve this, a well-used solution is 

to employ a set of learnable queries to generate tokens in a 

query-based manner. On the other hand, feature-level fusion 

incorporates additional modules in order to facilitate deep 

feature fusion between textual and visual data. 

3.3. Pre-trained LLMs 

Pre-trained LLMs refer to large models that have been trained 

on a vast corpus of text data to learn the statistical patterns 

and linguistic structures of languages. They are typically 

trained using unsupervised learning techniques, such as 

masked language modeling or next sentence prediction, on 

tasks like predicting missing words in a sentence or 

determining if two sentences are coherent. Once pre-trained, 

LLMs can be fine-tuned on specific downstream tasks, such 

as text classification, sentiment analysis, or machine 
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translation, by adding task-specific layers on top of the pre-

trained model and training them on task-specific labelled data. 

This fine-tuning process helps the model adapt its knowledge 

to a specific task, improving its performance and 

generalization ability. 

Pre-trained LLMs have gained significant popularity and 

success due to the ability to get contextual information and 

semantic representations. Nowadays they have become a 

crucial component in various applications including 

multimodal LLM systems. 

4. Applications in Power Grid Inspection

Power grid inspection refers to the process of evaluating the 

condition and functionality of the electrical power grid 

infrastructure. Its purpose is to ensure the safe and reliable 

operation of the grid by identifying any potential issues or 

vulnerabilities. During the power grid inspection, various 

components, such as power lines, transformers, substations, 

and switchgears, should be examined visually. 

4.1. SAM-based inspection 

Manual annotation of the training data for infrared image 

segmentation is time-consuming and labour-intensive. Lin et 

al. [15] proposed to utilize the pre-trained foundation model 

SAM as shown in Figure 3 to control segmentation results by 

iteratively clicking on desired areas until ideal segmentation 

results are achieved. This approach facilitates the fast and 

accurate annotation of power equipment in infrared images 

and obviously reduces required manpower and time costs. 

Figure 3. Segment Anything Model. 

Current deep learning-based approaches for the image 

segmentation of power equipment are often struggling due to 

the poor generalization ability of feature extraction. Guo et al. 

[16] proposed SAMPE which leverages the excellent feature

extraction capability of SAM through incorporating tailored

adapters to facilitate effective feature transfer in power

equipment image segmentation. In essence SAMPE utilizes

adapters to fine-tune the learned features of SAM specifically

for power scenarios. Specifically, it employs a convolutional

neural network (CNN) encoder to enhance local features and

an auto-prompting encoder to enable the seamless end-to-end

functionality.

SAM can achieve accurate segmentation of multiple 

substations in an image without relying on any cues as shown 

in Figure 4 (a). However, compared to small deep learning 

models, large foundation models require massive data to 

leverage their advantages. The poor performance of large 

models in power scenarios is often due to a lack of high-

quality training data rather than insufficient model designs. 

Due to the limited scale of data, the segmentation result of 

SAM on the insulator strings in an infrared image is not very 

ideal as shown in Figure 4 (b) [7]. 

Figure 4. Segmentation examples of SAM [7]. 

4.2. VLM-based inspection 

Existing object detection models usually struggle with 

holistic understanding and reasoning abilities, leading to 

increased occurrences of false and missed detection results. 

Gao et al. [3] designed a VLM named Grid-Blip focusing on 

the detection of wildfires in grid inspection. Grid-Blip adopts 

the BLIP architecture [17] with a high-resolution image 

encoder and a Baichuan-13B-Chat model fine-tuned with 

power industry data. On that basis, it can produce alarm 

notifications based on the detected target information as 

shown in Figure 5. 

Figure 5. Detection examples of Grid-Blip [3]. 
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Similarly, Wang et al. [4] presented Power-LLaVA that is 

well designed to provide a professional and dependable 

service for power transmission line inspection and capable of 

interacting naturally with humans as shown in Figure 6. It 

comprises a pre-trained ViT-L/14 model as the image encoder 

and a fine-tuned Vicuna-7B model as the LLM. 

Figure 6. Detection examples of Power-LLaVA [4]. 

In practise, Shenzhen Power Supply Bureau released the 

Zhurong 2.0 model by which the hidden dangers and risk 

levels to power grid equipment can be accurately described 

without the need for further manual investigation [18]. In 

addition, China Southern Power Grid Company released a 

power large model which is proficient in chatting, querying, 

diagramming and writing, and has been applied in multiple 

provinces across the country [19]. 

4.3. UAV-based inspection 

UAV inspection of power grids is becoming an important and 

efficient maintenance approach, and integrating the abilities 

of artificial intelligence (AI) gradually. Through the 

empowerment of large foundation models, UAV inspection 

has made big progress thus far. 

Large models enable automatic analysis of multimodal 

data, such as UAV flight trajectories, inspection targets and 

equipment status, improving the accuracy, efficiency, and 

safety of UAV inspection. The application of large models in 

UAV inspection primarily focuses on image recognition and 

data analysis. Utilizing the general reasoning ability of large 

models, high definition images captured by UAVs can be 

intelligently analysed to accurately identify minor damage, 

corrosion, foreign object suspensions and other abnormal 

conditions in key components. Leveraging the scene 

understanding and path planning abilities of large models, 

UAVs can skillfully make flight route planning, avoid 

obstacles and increase inspection frequency in key areas or 

historical fault points, which can thereby optimize inspection 

efficiency and coverage. Combining UAVs with AI models 

enables real-time monitoring of the power grid’s operational 

status. Once an anomaly is detected, the UAV will issue an 

alert and conduct focused investigation in the identified area. 

The powerful semantic processing ability of large models 

allows for efficient filtering of irrelevant information and 

focusing on key data, providing timely and effective 

information support for backend analysis. This will shorten 

the cycle from data collection to decision-making markedly. 

5. Reliability Discussion

In critical application areas like medicine and electricity, 

there is usually a high demand for the reliability of 

computation models including adversarial robustness and 

model interpretability. Researchers strive to improve the 

accuracy of models all the time and these models even 

surpassed human performance in many cases. However, 

adversarial robustness and model interpretability have not yet 

received enough attention. 

5.1. Adversarial robustness 

Szegedy et al. [20] proposed the concept of adversarial 

examples referring to input samples crafted by artificially 

adding subtle perturbations to original data. Adversarial 

examples may lead to wrong predictions from the attacked 

model with high confidence and deep learning models are 

generally vulnerable to adversarial examples. In many cases, 

models with different structures trained on different datasets 

will still make incorrect predictions on the same adversarial 

example, meaning that adversarial examples have become a 

blind spot in the application of deep neural networks. Some 

research shows that the vulnerability to adversarial examples 

is not unique to deep learning models and exists in many 

machine learning models. Adversarial robustness represents 

a model's ability to resist adversarial examples, i.e., the ability 

to produce correct predictions on adversarial examples. 

Adversarial attacks on power grids can be categorized into 

evasion attacks and poisoning attacks. The former 

manipulates input samples in order to evade the detection of 

a built model and the latter tries to pollute training data with 

malicious intent to corrupt the development of a new model. 

Furthermore, these attacks can also be categorized as either 

white-box attacks or black-box attacks. The former is applied 

with the understanding that the complete knowledge of the 

target model is available. On the other hand, the latter is 

conducted under the assumption that any information about 

the target model is unavailable. 

The most common white-box evasion attack is generally 

defined as an optimization problem [21]: 

uele ,..),,L(argmax
e

xxxxxtsWyx
d

e
x

−   (1) 

where x is the original sample with the label y and xe is the 

generated adversarial example. For the attacked model, W is 

the parameter weights and L is its loss function. ||.||d 

represents the Ld norm operation. ε is a small value used to 

limit the perturbation scale, and xl and xu fix the upper and 

lower bounds of an adversarial example. 

Cui et al. [22] made an extensive study on the robustness 

of multimodal LLMs against adversarial attacks across 
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various tasks. They found that on the whole multimodal 

LLMs are vulnerable to adversarial examples. But they also 

indicated that when prompts are given to the model, the 

context will contribute to alleviating the impact of those 

adversarial examples. 

5.2. Model interpretability 

Model interpretability is defined as the degree to which 

humans can consistently predict the output of a model. Deep 

learning models have shown excellent performance in many 

domains and the performance is largely dependent on the 

highly non-linear nature and massive number of parameters 

of the models. People cannot understand what knowledge a 

model has learned from mass data and how it makes final 

decisions as the end-to-end decision-making process leads to 

weak interpretability. The US Department of Defense put 

forward the idea of eXplainable Artificial Intelligence (XAI) 

firstly. It is essentially a set of concepts, methods, and 

processes that help the developer insert a transparency layer 

to a deep learning model to assess the reasonability of the 

model's output [23]. Cambria et al. [24] pointed out that so 

far there was only a scarcity of research dedicated to the XAI 

techniques specifically designed for LLMs. They suggested 

that developing XAI methods for LLMs is not only crucial 

from a technical point but also an important step to promote 

responsible computation. 

5.3. Other consideration 

In the context of LLMs, hallucination is defined as the 

generation of information that is either inconsistent with facts 

or meaningless. As for multimodal LLMs, model output is 

sometimes inconsistent with corresponding visual input, 

which will present significant hurdles to practical 

implementation and raises concerns about reliability [25]. 

Ensuring the safety of multimodal LLMs is a complex task 

due to several reasons which include the challenges posed by 

different data modalities, the access of black-box APIs, the 

reliance on unknown data sources and the emergence of 

unpredictable events like hallucination, data leakage and 

adversarial attacks [26]. 

6. Conclusion

Power grid inspection techniques are evolving into the age of 

multimodal foundation models. These techniques can 

significantly reduce the time and cost of inspection by 

automating the analysis of large amounts of sensor data. They 

can also improve the accuracy and reliability of inspection by 

leveraging the understanding and reasoning abilities of 

LLMs. However, it is important to note that these techniques 

should not replace physical inspection entirely. They should 

be used as complementary tools to assist human inspectors in 

decision-making. Physical inspection is still necessary to 

validate automatic findings and to address any issues that may 

not be captured by these models alone. 
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