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Abstract 

The Power Internet of Things (PIoT) is a significant technology for realizing the transformation of future energy systems, 
with the Integrated Energy System (IES) playing a crucial role in realizing the value of PIoT. Traditional IES planning 
methods typically focus on a single-stage planning approach and involve complex solution models, often resulting in 
inefficient equipment configurations and resource wastage. This study proposes a multi-stage IES planning method aimed 
at enhancing both energy efficiency and the economic performance of IES. The method models the IES based on electric, 
gas, and thermal buses, considering the coupling, storage, and conversion of multiple energy sources. A range of constraints, 
such as energy coupling, equipment capacity, and energy purchases, are considered. The planning cycle is divided into 
multiple stages, and an economic model is developed that accounts for both system investment and operating costs. Given 
the complexity of the multi-stage planning model, the Seagull Optimization Algorithm (SOA) is introduced to solve the 
problem. The SOA leverages its strong global and local search capabilities to determine the optimal capacity configuration 
at each stage. The comparison of the single-stage planning method by a calculation example proves the economic advantage 
of the multi-stage planning scheme and effectiveness of SOA. 
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1. Introduction

As the consumption of fossil fuels continues to rise, the 
challenge of low energy efficiency stemming from the 
independently planned supply structure of current energy 
systems has become increasingly pronounced. Effectively 
enhancing the energy efficiency within the power supply 
sector has emerged as a critical issue that global energy 
systems must address. [1], [2]. The development of PIoT 
technology is considered to be an effective means to alleviate 
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the energy dilemma. Based on Internet thinking, It facilitates 
the interconnection of devices and the interaction between 
humans and computers throughout all aspects of the power 
system, effectively integrating multi-energy systems and 
enabling hierarchical utilization of energy resources. [3]. 

IES is the core technology of PIoT technology. IES refers 
to the energy system that is tightly coupled in the links of 
energy development, storage, conversion, and utilization to 
meet the final demand of energy consumers. Different from 
the traditional energy structure, the reasonably planned IES 
can make up for the defects of independent planning and 
decentralized energy system by using the connecting 

EAI Endorsed Transactions  
on Energy Web Research Article 

EAI Endorsed Transactions 
 on Energy Web | 

| Volume 12 | 2025 |

https://creativecommons.org/licenses/by-nc-sa/4.0/


Peng Ye et al. 

2 

relationship among energy systems. As integrated energy 
technology continues to evolve, the diversity of primary 
energy supply equipment within Integrated Energy Systems 
(IES) is expected to increase. Through strategic planning, 
both energy efficiency and economic viability can be 
enhanced, while also elevating the level of renewable energy 
consumption. [4]-[6].  

Up till now, there are some works related to the planning 
of IES. In literature [7], the energy hub model was adopted in 
solving the above problem of uncertain IES planning 
structure. In literature [8], taking into account the coupling 
relationship between the demand side and the energy supply 
side, an Energy Conversion Interface (ECI) model was 
developed to streamline the multi-energy network. The 
Energy Hub model simplifies energy flow processes and 
provides a more abstract representation of energy transfer, 
making it suitable for large-scale networks with numerous 
coupling components. In literature [9], drawing upon the 
energy flow theory of Combined Cooling, Heating, and 
Power (CCHP) systems, an energy bus model for electricity 
and heat was developed to elucidate the energy transfer 
processes within the system. This bus model effectively 
illustrates the interconnections among various energy 
coupling devices and is particularly well-suited for modeling 
research in small-scale Integrated Energy Systems (IES). 

Building upon the established Integrated Energy Systems 
(IES) model, literature [10] explores the uncertainties 
associated with distributed renewable energy (DRE) 
consumption and IES load, investigating the potential for 
collaborative planning of demand response (DR), distributed 
generation (DG), and energy storage (ES). Literature [11], 
[12] for the future high-permeability IES, proposed an IES
planning model that considered the application of hydrogen
energy. To ensure the reliability of the system, the reliability
of key equipment constraints was considered in the planning
model. Literature [13] established a multi-objective function
model that considered carbon dioxide emissions investment
costs as well as the operating costs based on CHP and DG. In
literature [14], the improved adaptive genetic algorithm (GA)
is applied to provide a solution strategy for IES cross-time
scale and multi-dimensional optimization planning, which
improved the flexibility of planning scheme. Literature [15]
generalized the Benders decomposition (GBD) method and
applied it to the hierarchical planning model for optimal
multi-energy flow and optimal investment decision, which
improved the efficiency of model solving and economy of
IES. In literature [16], two meta-heuristic algorithms,
Harmony Search and Simulated Annealing, were integrated
to develop a hybrid simulated annealing algorithm aimed at
addressing the optimization planning problem of hybrid
solar/wind energy systems. Compared to the results obtained
from individual algorithms, the advantages of the hybrid
approach are clearly evident. Literature [17] considered the
uncertainty of IES load and DRE, established a staged model
using robust optimization ideas, and solved it with algorithm
of column and constraint generation.

The aforementioned research has significantly contributed 
to the advancement of IES planning from the perspectives of 
IES system modeling, planning methodologies, and solution 

strategies. But they all ignored the timeliness of IES planning. 
Most of them determined the load level of the planning area, 
and carried out one-time equipment planning on the basis of 
determining the load, ignoring the load changing level which 
considered the construction changing cycle. So far, many IES 
projects have been put into operation, but engineering 
practice shows that the effects of some IES during the 
operation phase do not reach the expected goals in the 
planning phase [18], and did not maximize the economic 
advantages and energy supply characteristics of IES. This is 
due to the unreasonable configuration of the planned 
equipment, resulting in a waste of IES overall resources. The 
reason for this problem is that the initial planning did not fully 
consider the rationality of the later operation. 

In response to above problems, referring to the mature 
power system planning theory [19]-[21], the idea of dynamic 
planning is introduced, the time axis factor is added to the 
planning, and the static planning is redefined as multi-stage 
planning through the segmentation of the planning cycle. 
Currently, there is a limited amount of research on the multi-
stage planning of IES. Some preliminary studies are as 
follows, literature [22] takes into account the changes in 
influencing factors at different stages, such as energy 
demand, equipment, technical prices, technological 
improvements, etc., based on long-term and effective flexible 
multi-stage investment strategies, and establishes a 
comprehensive energy system flexible multi-stage long-term 
planning optimization model. Literature [23] aiming at 
multiple uncertainties, considering the constraints of scenario 
coverage, cost investment, environment and other constraints 
of the planning plan, A collaborative stochastic planning 
model for the multi-stage energy hub and energy network of 
the IES has been proposed. 

Multi-stage planning that incorporates construction 
sequencing has increasingly emerged as a primary research 
focus in Integrated Energy Systems (IES) planning This 
paper establishes mathematical models of energy supply 
equipment by analyzing the coupling characteristics, 
including combined heat and power (CHP) systems, 
photovoltaics, electric boilers, and others. Energy storage 
equipment is configured in the planning scheme to improve 
the flexibility of IES to cope with load changes. The IES 
model is developed based on the principles of unified bus 
theory. A multi-stage planning model considering 
investment, operation and maintenance costs is constructed. 
By utilizing the algorithm's robust global and local search 
capabilities in conjunction with the operational safety 
constraints of IES, a Self-Organizing Algorithm (SOA) is 
introduced to enhance the efficiency and reliability of multi-
stage planning solutions. The optimal planning configuration 
scheme and system economy of each stage are obtained. 
Multi-stage planning scheme Comparing with single-stage 
planning scheme, has significant advantages, and the SOA is 
effective and reliable.  
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2. IES modelling 

2.1. Typical energy coupling unit model 

1) CHP 
The CHP system serves as the central component of energy 

coupling equipment within IES, converting natural gas into 
both electricity and thermal energy. The model and 
constraints are: 

 

 

,

,

CHP CHP Q CHP

st st

CHP CHP P CHP

st st

CHP CHP CHP

min st max

Q G

P G

Q Q Q
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=

=

 

 (1) 

 
Where CHP

stQ  is the heat supplying power of CHP planned 

in IES at time t  of scene S ; CHP

stP  is the electric supplying 
power of CHP planned in IES at time t  of scene S ; CHP

stG  is 
the natural gas supplying power of CHP planned in IES at 
time t of scene S ; ,Q CHP  is CHP conversion efficiency 
between gas and heat; ,P CHP  is CHP conversion efficiency 

between gas and electric; CHP

minQ  is lower limit of CHP 

operating power; CHP

maxQ  is upper limit of CHP operating 
power. 

2) photovoltaic 
Many factors related to photovoltaic (PV) power 

generation, including sunlight, temperature, and equipment 
operating status. This paper assumes that when PV adopts the 
MPPT control strategy, the model and constraints are: 
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Where PV

stP  is power supplying of PV planned in IES at 

time t  of scene S ; ,
STC

E CP  is the power supply under standard 
experimental conditions; ACG  is the illumination intensity; 

,
STC

E CG  represents the illumination under standardized 
experimental conditions.; The temperature coefficient is 
expressed by k ; CT  is operating temperature of PV; rT  is 

the reference value; PV

maxP  is the maximum output of PV. 
3) heat pump 
The heat pump (HP) system functions as a conversion 

device for electrothermal coupling within the system It 
consumes electric energy and upgrades the heat energy from 
low quality to high quality to meet the heating demand of IES. 
The model and constraints are: 

 

 
0

HP HP HP

st st

HP HP

st max

Q P COP

Q Q

=

 
 (3) 

Where HP

stQ  is the heat supplying power of HP planned in 

IES at time t  of scene S ; HP

stP  is the electric power supplied 
to HP planned in IES at time t  of scene S ; HPCOP  is HP 
conversion efficiency; HP

maxQ is upper limit of HP operating 
power. 

4) gas boiler 
The gas boiler (GB) burns externally purchased natural gas 

to supply heat to IES. The model and constraints are: 
 

 
0

GB GB GB

st st

GB GB

st max
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 
 (4) 

 
Where GB

stQ  is the heat supplying power of GB planned in 

IES at time t  of scene S ; GB

stG  is the natural gas supplied to 

GB planned in IES at time t of scene S ; GB  is the gas-to-

heat conversion efficiency of GB; GB

maxQ  is the upper limit of 
heating power for GB. 

5) electric boiler 
The electric boiler (EB) serves as an electric-heat 

conversion device within IES. The model and constraints are: 
 

 
0

EB EB EB

st st

EB EB

st st
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 (5) 

 
Where EB

stQ  is the heat supplying power of GB planned in 

IES at time t  of scene S ; EB

stP  is the electric power supplied 

to GB planned in IES at time t  of scene S ; EB  is EB 

conversion efficiency between electric and gas; EB

maxQ  is 
upper limit of EB operating power. 

6) energy storage device 
To strengthen flexibility of IES, thermal energy storage 

(HS) facility and electric energy storage (ES) facility are 
planned in this paper to cope with the load changes of IES. 
The two energy storage mechanisms are similar. All need to 
meet the following constraints: 

 

0
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 (6) 

Where chargeP is the charging input power of energy storage 

equipment; dischargeP  is the discharging output power of 

energy storage equipment; charge,maxP is upper operating limit 
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of energy storage power; discharge,maxP  is upper operating limit 

of discharge power; capacityW  is the planned capacity of energy 

storage equipment; charge  is the efficiency of the equipment 

when charging. discharge  is the efficiency of the equipment 

when discharging; ( )SOC t is the charging state of equipment 
at time t ; maxSOC  is the maximum state of charge; minSOC  
is the minimum state of charge; (0)SOC  and ( )SOC T  are 
the state of charge at the beginning and the end of operation. 

The models can be expressed as: 
ES model: 
 

 
,

( 1)

, , , ,

(1 )

( / )

ES loss ES ES

st s t

ES out ES out ES in ES in

W W

P P T



 

−= −

− − 
 (7) 

 
Where ES

stW  is the capacity of ES planned in IES at time 

t  of scene S ; ( 1)
ES

s tW −  is the capacity of ES planned in IES at 

time 1t − of scene S ; ,loss ES is ES self-discharge loss rate; 
,ES in is the input charging efficiency; ,ES out  is the output 

discharging efficiency; ,ES inP is the input charging of ES;
,ES outP  is the output discharging of ES. 

HS model: 
 

 
,
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Where HS

stW  is the capacity of HS planned in IES at time 

t  of scene S ; ( 1)
HS

s tW −  is the capacity of HS planned in IES at 

time 1t −  of scene S ; ,loss HS is HS self-heating loss rate; 
,HS in  is the input charging efficiency of heat; ,HS out  is the 

output discharging efficiency of heat; ,HS inQ is the input 

charging of HS; ,HS outQ is the output discharging of HS. 

2.2 IES model based on unified bus 

After analyzing and modeling the coupling unit model of IES, 
in order to describe the coupling relationship of each part 
more vividly, the unified bus modeling theory is adopted to 
model the IES as a whole, as shown in Figure 1. Taking the 
actual situation of IES and the coupling relationship of energy 
equipment as consideration factors, the mutual coupling 
connection is established through the thermal bus, the natural 
gas bus and the electric bus. "The constraints for power 
balance are outlined as follows: 

 

Figure 1. Unified bus-bar structure model of IES 

1) Constraint of Power Balance on Electric Bus 
 

 , ,grid CHP PV ES out ES in EB HP load

st st st st st st st stP P P P P P P P+ + + − − − = (9) 
 
Where grid

stP  is the power supplied by grid to IES at time 
t  of scene S ; ,ES in

stP  is the input charging power of ES 

planned in IES at time t  of scene S ;  ,ES out

stP  is the output 
discharging power of ES planned in IES at time t  of scene S

; load

stP  is electric load of IES at time t  of scene S . 
2) Constraint of Power Balance on thermal Bus 
 

 , ,HP CHP EB GB HS out HS in load

st st st st st st stQ Q Q Q Q Q Q+ + + + − =  (10) 
 
Where ,HS out

stQ  is the output discharging power of HS 

planned in IES at time t  of scene S ; ,HS in

stQ  is  the input 
charging power of HS planned in IES  at time t  of scene S ; 

load

stQ  is heat load of IES at time t  of scene S .[23] 
3)  Constraint of Power Balance on Gas Bus 
 

 gas GB CHP

st st stG G G= +  (11) 
 
Where gas

stG  is the natural gas supplying power from 
natural gas grid to IES at time t  of scene S . 

3.Multi-stage planning model of IES 

3.1 Multi-stage planning scheme of IES 

The IES planning method should be closely linked with the 
development of the planned area. Considering that the IES 
planning scheme has the characteristics of long cycle and the 
need for the overall development of the system, this paper 
introduces the idea of multi-stage planning into IES planning 
and divides IES planning into multiple stages according to the 
development mode of regional load. Through multi-stage 
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planning, the multi energy equipment coupling system in IES 
can match with the planned load development, so as to avoid 
excessive investment and idle equipment at the beginning of 
planning, insufficient equipment capacity and high external 
energy purchase cost at the end of planning. The 
comprehensive energy system multi-stage planning scheme 
comprehensively considers all the economic costs of each 
planning stage, and solves it through the seagull algorithm to 
obtain the most economical multi-stage planning 

configuration scheme. The planning process of the Integrated 
Energy Systems (IES) is segmented into multiple stages, 
referred to as S . 
 
 1 2[ , ,..., ,... ]i NS S S S S=  (12) 

 
Where iS  represents the i-th planning cycle. 
The specific planning ideas are illustrated in figure 2. 

 

 

Figure 2. Multi-stage IES planning scheme 

3.2 Objective Function 

Taking into account the configuration of heat, electricity, and 
gas coupling equipment within the system, this paper presents 
an economic model that encompasses the entire planning 
cycle According to the different thermal and electrical load 
ratios and the planning cycle operation conditions of the 
system, the seagull optimization algorithm is employed to 
determine the capacity of each coupling unit. aiming at the 
optimal planning cycle economy considering the annual 
investment, operation and maintenance costs. 
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 (18) 

 
Where N  is the quantity of planning stages; i

invC is 
investment equivalent cost of planned equipment in planning 
stage i ; i

opeC  is the cost for operation and maintenance of 

IES in planning stage i ; , / / / / / /
i

cap CHP PV HP GB EB ES HSP  is the 
planned capacity of CHP/PV/HP/GB/EB/ES/HS in planning 
stage i ; / / / / / /CHP PV HP GB EB ES HSC  is the unit capacity investment 
cost of CHP/PV/HP/GB/EB/ES/HS; The equipment present 
value coefficient is r ; The life of the planned equipment is 
represented by n ; k

sD  is the quantity of days in k  typical 

days in condition S ; ,fuel i

stC  is investment of IES in buying 

fuel in planning stage i  at moment t  of condition S ; ,ele i

stC  
is investment of IES in buying electricity in planning stage i  
at moment t  of condition S ; ,om i

stC  is the cost for operation 
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and maintenance of planned energy coupling equipment in 
planning stage i  at moment t  of condition S ; 

, / / / / / /
i

st CHP PV HP GB EB ES HSP  is the output power of 
CHP/PV/HP/GB/EB/ES/HS in planning stage i  at moment 
t of condition S ; ,gas i

stC is the price of natural gas consumed 
by IES in planning stage i  at moment t  of condition S ; 

,grid i

stC  is the price of electric consumed by IES in planning 
stage i  at moment t  of condition S . 

3.3 Constraints 

1) Power Constraint Balance
Overall, it is essential to adhere to the constraints of power

balance., such as equation (9), (10), (11). 
2) Equipment Operation Constraints
Each device needs to satisfy equation (1-6) and its own

operating constraints. 
3) External Energy Purchase Constraints
In IES, the purchase of electric energy and natural gas from

outside needs to meet the following constraints: 

,0 grid i grid

st maxP P  (19) 
,0 gas i gas

st maxG G  (20) 

Where grid

maxP  is the maximum power purchase between 

IES and grid. gas

maxG is the maximum gas purchase between 
IES and natural gas grid. 

4. Seagull optimization algorithm and
solution strategy

IES planning is a nonlinear and multi-constrained 
optimization problem. As a heuristic algorithm, the Seagull 
Optimization Algorithm (SOA) exhibits characteristics of 
rapid convergence., strong local search capability, and easy 
implementation [24]. The SOA continuously updates the 
positions of seagulls and records the optimal position by 
simulating the natural migration and foraging behaviors of 
seagulls, and searches for global and local optimal solutions 
through iterative calculations. 

Migration and aggressive behavior are the key 
characteristics of seagulls. Migration refers to the seasonal 
movement of seagulls from one location to another, obtaining 
energy by searching for abundant food. During migration, 
seagulls fly in groups to minimize the risk of collisions with 
one another., the initial positions of seagulls are different. In 
a group, seagulls keep changing positions, flying in the 
direction of the best-positioned seagull. When seagulls 
migrate, the seagull groups make a natural spiral movement 
to hunt fish and shrimp. 

The optimization criterion of this paper is to minimize the 
comprehensive objective function value of IES planning 
model, and to develop a rational combined configuration 
capacity for energy coupling equipment within the IES multi-

stage planning model established in this paper., the process of 
seagull migration corresponds to the process of finding the 
global search corresponding to the solution planning model 
1;the fitness function is employed to calculate the position of 
each individual seagull, which reflects the value of the 
objective function within the planning model; the attack 
process of the seagull corresponds to the local search 
procedure in solving the planning model. 

Figure 3. Schematic diagram of seagull migration and
attack mode

These two behavioral expressions are shown in figure 3 
[25], these correspond respectively to the global search 
capability and local search capability. By integrating the 
relationship between the algorithm and the planning model, 
the SOA is employed to address the multi-stage planning 
model. 

4.1 Definition of seagull population 

The planning capacity of each energy coupling facility is 
considered as the position of the individual seagull, provided 
that the output limits of each energy coupling facility are 
satisfied., the electric, heat, and gas power balance constraints 
of the operation in IES and system energy purchase 
constraints are satisfied. 

4.2 Migration (global search) 

The SOA simulates the migration process of seagull, which 
corresponds to the solution process of the optimal value of the 
objective function of IES planning model. And the migration 
process of seagull is shown in figure 4. In this process, 
seagulls need to meet the following conditions: 

Figure 4. The migration process of seagull 
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1) Avoid Collision: 
Variable A  is introduced to avoid the collision between 

each individual in the seagull population, to improve the 
accuracy of IES planning. Calculate new search agent 
location, that is, the possible optimal solution of the planning 
model. 

 
 ( ) ( )s sC t A P t=   (21) 

 
Where ( )sC t  suggests that the search agent positioned 

here does not encounter conflicts with other agents. ( )sP t  
specifies the position of the active search agent during the 
iteration and delineates its activities within the defined spatial 
search area. 

 
 [ ( / )]c c iterationA f t f Max= −   (22) 

 
Where the frequency of A is linearly regulated by , 

resulting in a linear decrease from 2 to 0; this defines the 
range for the number of iterations t  is 0 to iterationMax , with 
integer increments.  

2) Move towards the best position: 
Upon successfully avoiding collisions and conflicts with 

neighboring agents, the search agent advances toward the 
optimal position., that is, it starts looking for the optimal 
solution of the multi-stage planning model. 

 
 ( ) [ ( ) ( )]s bs sM t B P t P t=  −  (23) 

 
Where ( )sM t  represents the direction of moving from the 

search agent position to the best position; ( )bsP t  represents 
the best position for the seagull, that is, the optimal solution 
of the planning model. B  is a random quantity, used to 
balance the relationship between local and global. 

 
 22 dB A r=    (24) 

 
Where the value range of dr  is a random quantity from 0 

to 1. 
3) Close to the best location: 
Finally, seagulls will fly to the best position and reach a 

new position, which is the optimal solution of the model. 
 

 ( ) ( ) ( )s s sD t C t M t= −  (25) 
 
Where ( )sD t  is the new position of the seagull. 

4.3 Attack (local search) 

The angle and velocity of the seagull attacking prey 
correspond to the speed of solving the optimal value of IES 
planning model. During the migration process, the optimal 
height of the attack is maintained through the relationship 

between the movement of the wings and the weight of the 
body. Upon locating the prey, the seagull engages in a spiral 
attack by adjusting its angle and velocity. The motion 
behavior of seagulls in three-dimensional space is articulated 
as follows: 
 
 cosx r=   (26) 
 siny r=   (27) 
 z r=   (28) 
 vr e u=   (29) 

 
Where r  represents the radius of the seagulls’ attack 

spiral;  randomly takes an angle from 0 to 2π; u and v  are 
set constants. 

After calculation, the attack position of the seagull can be 
obtained as: 

 
 ( ) ( ) ( )s bs sP t P t D t x z y= +     (30) 

 
Where ( )sP t  is the attack position of seagull. 

4.4 Restriction condition processing when 
seagull population in updated 

This paper addresses the power constraints associated with 
the capacity allocation of planning cycle economic 
equipment, taking into account annual investment, 
operational, and maintenance costs. Due to the mutual 
restriction among the planned equipment capacity, system 
operating power and total load demand, the fitness value of 
seagull population should not only consider the output limit 
of the planned equipment operation, but also add the penalty 
function as a component. During the execution of SOA, the 
fitness value of seagull population is verified with the 
constraint conditions of the multi-objective programming 
model of IES. If it is not satisfied, the fitness value of the 
seagull population is given a larger value. 

4.5 Solution process 

1) Main Solution Steps 
For the multi-stage IES planning model established in 

section Ⅲ, the SOA is used for optimization calculations The 
specific steps are outlined as follows： 

(1) Configure the parameters A , iterationMax , B , u , cf  
and v  in SOA 

(2) Seagull population initialization, that is to meet all the 
constraints of the safe operation of IES 

(3) While (t < iterationMax ) 
(4) { 
(5) Use the established multi-stage IES planning model to 

calculate the possible solutions represented by each seagull 
(6) dr takes the random quantity in (0,1) 

(7)  takes the random quantity in [0, 2π] 
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(8) Calculate sD  using equation (25) 
(9) Use equation (30) to calculate sP   
(10) Introduce a penalty function to determine whether sP  

meets the constraints of the multi-objective planning model 
of IES 

(11) Update fitness value and the best seagull position 
(12) } 
(13) Obtain the optimal position of the seagull, output the 

optimal value of the planning model and the multi-stage 
planning scheme 

(14) End 
2) The process of calculating the possible optimal solution 

( ( )sP t ) of the model 
(1) for i=1 to n 
(2) { 
(3) Use the planning optimization model to calculate the 

possible optimal solution for each seagull 
(4) } 
(5) Update fitness value and the best seagull position 
(6) Output the best fitness value of seagull, that is, the 

optimal solution of the planning optimization model 
(7) End 
3) he procedure for updating the optimal position of the 

seagull and the corresponding solution of the planning model. 
(1) for i=1 to n 
(2) { 
(3) If the fitness value of seagull (i) is less than the optimal 

value of the planning model  
(4) { 
(5) Replace the optimal value of the planning model for the 

fitness value associated with the seagull. (i) 
(6) Replace the optimal value of the planning model with 

the position of the seagull (i) 
(7) } 
(8) } 
(9) Output model optimal value and optimal position 
(10) End the program 
The main solution steps are shown in Figure 5. 

 

Figure 5. Flow chart of seagull algorithm 

5 Case analysis 

This paper utilizes an industrial park in northern China as a 
case study for analysis. The energy consumption of users 
within the park is concentrated, primarily encompassing 
electric load demand, thermal load demand, and gas load 
demand. "It is presumed that the planning period extends over 
15 years, with a relatively rapid initial load growth rate, a 
moderate medium-term growth rate, and a gradual 
stabilization of the later load levels. The planning cycle is 
segmented into three stages: S1, S2, and S3, with durations of 
3 years, 5 years, and 7 years respectively. Planning 
information is illustrated in Figure 6. 

EAI Endorsed Transactions 
 on Energy Web | 

| Volume 12 | 2025 |



  
Research on multi-stage optimization planning of power internet of things based on seagull optimization algorithm 

 
 

9 

 

Figure 6. Electricity and heat load demand information 
diagram at various planning stages 

The candidate equipment types at each stage include PV, 
CHP, HP, EB, GB, ES and HS. The relevant parameters are 
shown in Table 1 [26],[27]. 

Table 1. Multi-Energy coupling equipment parameter 
information 

Equipment Parameters Value 

PV 
Investment cost 

Operation and maintenance 
cost 

9000￥/kW 
0.04￥/kW 

CHP 

Investment cost 
Maintenance cost/Operation 

cost 
Gas-heat conversion 

efficiency 
Gas-electric conversion 

efficiency 
Life 

8000￥/kW 
0.05￥/kW 

0.45 
0.3 

25Years 

HP 

Investment cost 
Maintenance cost/Operation 

cost 
Electric heating energy 

efficiency ratio 
Life 

3000￥/kW 
0.03￥/kW 

3.8 
25Years 

GB 

Investment cost 
Maintenance cost/Operation 

cost 
Gas-heat conversion 

efficiency 
Life 

1000￥/kW 
0.03￥/kW 

0.95 
25Years 

EB 

Investment cost 
Maintenance cost/Operation 

cost 
Electricity-heat conversion 

efficiency 
Life 

1000￥/kW 
0.04￥/kW 

0.95 
25Years 

ES Investment cost 750￥/kW 

Maintenance cost/Operation 
cost 

Maximum charging / 
discharging efficiency 

Life 

0.03￥/kW 
25% 

20Years 

HS 

Investment cost 
Maintenance cost/Operation 

cost 
Maximum charging / 
discharging efficiency 

Life 

40￥/kW 
0.03￥/kW 

40% 
20Years 

 
This paper utilizes data from typical days in summer, 

transitional seasons, and winter to accurately represent the 
actual conditions of the park. The 
electricity/heat/photovoltaic output curves of each typical day 
(take the standard unit value) are shown in Figures 7, 8, and 
9, respectively. The park implements a moment-of-use 
electricity pricing structure, as depicted in Figure 10. The 
fixed rate for natural gas is 2.75 ￥/m³, and its lower heating 
value is 9.7 kWh/m³.. After conversion, the natural gas price 
is 0.28￥/kWh. The discount rate is 8%. 

 

Figure 7. Typical days (summer) 

 

Figure 8. Typical days (winter) 
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Figure 9. Typical days of the transition season 

 

Figure 10. Moment-of-use electricity price curve 

Table 2. Configuration results of multi-energy coupling equipment in each planning stage 

Equipment/kW PV CHP HP ES HS GB EB 

Stage Ⅰ Ⅱ Ⅰ Ⅱ Ⅰ Ⅱ Ⅰ Ⅱ Ⅰ Ⅱ Ⅰ Ⅱ Ⅰ Ⅱ 

S1 1430 2150 755 1515 755 1270 2035 2855 1905 3645 0 50 0 50 

S2 830 0 555 0 565 0 700 0 1430 0 0 0 0 0 

S3 850 0 555 0 400 0 0 0 180 0 0 0 0 0 

Total 3110 2150 1865 1515 1720 1270 2735 2855 3575 3645 0 50 0 50 

To assess the efficacy of the multi-stage planning approach 
and the SOA strategy presented in this paper, a calculation 
example is established with two scenarios for comparison:  

Condition I: The IES planning is segmented into multiple 
stages, utilizing both the multi-stage planning model and 
SOA to derive the optimal configuration scheme for each 
stage. 

Condition II: In contrast, without employing multi-stage 
planning for IES, a general system planning scheme is 
derived solely from the initial phase of planning. The 
configuration results of multi-energy coupling equipment in 
each planning stage are shown in table 2. 

Set SOA according to the information provided in the 
following table: 

Table 3. SOA algorithm configuration information 

Parameters Value 
Population size 50 

iterations quantity(max) 1000 
cf  2 

u  1 
v  1 
A  Controlled by cf  
B  Randomly controlled by A 

5.1 Analysis of planning and configuration 
results 

The planning schemes of Condition I and Condition II are 
solved, and the configuration types and parameters of system 
equipment in each stage are obtained, as shown in Table 3. In 
terms of equipment selection, Condition I is not configured 
with EB and GB, while Condition II is configured with a 
small amount of EB and GB. Until the planning is completed, 
the capacity of PV, CHP, HP as well as other primary energy 
supply apparatus in Condition I is higher than that in 
Condition II, while the total configuration capacity of ES, HS 
and other energy storage equipment is lower than that in 
Condition II. 

5.2 Seagull algorithm and economic analysis 

As shown in Figure 11, it reflects the variation in the seagull 
population corresponding to the increase in the number of 
iterations. The Figure 11 shows that the SOA iteration can 
stabilize convergence after about 420 iterations. The 
convergence process is faster and the jitter is smaller. Figure 
12 presents a comparison of the full planning cycle 
economics between Condition I and Condition II. It is evident 
that the overall planning cycle cost for Condition I is lower 
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than that of Condition II, resulting in savings of 
approximately 5.7 million yuan in investment costs. 

 

Figure 11. Multi-stage objective function changes with 
iterations quantity 

 

Figure 12. Economic comparison of the whole 
planning cycle 

 

Figure 13. Typical daily energy purchase in S1 
summer 

 

Figure 14. Typical daily energy purchase in S3 
summer 

In stage S1, Condition I avoids the waste of capacity and 
idle equipment caused by advanced construction and large 
equipment capacity configuration in Condition II. At the 
same moment, as shown in Figure 13, Condition I needs to 
purchase more electric energy and natural gas from outside 
than Condition II, consequently, the annual operating cost is 
elevated. However, the increased annual operating cost in 
Condition I is counterbalanced by the savings in equipment 
investment costs, resulting in nearly equivalent annual 
operating costs for both Condition I and Condition II. 

In stage S3, as shown in Figure 14, Condition II purchase 
more electric energy and natural gas from the outside than 
Condition I, and the annual operating cost is greatly 
increased. This is because the equipment capacity planned in 
Condition II cannot meet the growing energy demand of IES 
at this moment. Although the equipment investment cost of 
Condition I is higher, it saves a relatively high annual 
operating cost, so the annual operating cost of Condition I is 
less than that of Condition II. 

In summary, Condition I has better operation economy 
than Condition II. Through multi-stage planning, it not only 
avoids the waste of resources caused by advanced investment, 
but also meets the growing load demand, and improves the 
economy of the whole planning cycle. 

5.3 Comparative analysis of equipment 
operation 

In stage S1, Condition II has the problem of redundant 
equipment capacity and low output of some equipment. 
Figures 15-18 illustrate the output diagrams of various power 
coupling equipment during typical summer and transitional 
season days, thereby reflecting the performance of these 
facilities as shown in Table 1, the CHP configuration capacity 
of Condition I is about one-half that of Condition II, and the 
ES configuration capacity is about two-thirds of Condition II. 
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However, on a typical summer day, the operating power of 
ES in Condition I is slightly smaller than in Condition II, and 
the CHP output is higher than in Condition II. On a typical 
day of the transition season, the energy charged and 
discharged by the ES system, as well as the output from the 
CHP system in Condition I, are greater than those observed 
in Condition II.; In addition, the GB and EB output of 
Condition II has always been 0, which has been abandoned. 
It shows that Condition II has the problem of idle equipment 
due to capacity redundancy. 

 

Figure 15. Part of the output diagram of power 
coupling equipment on a typical summer day in 

Condition I 

 

Figure 16. Part of the output diagram of power 
coupling equipment on a typical summer day in 

Condition II 

 

Figure 17. Part of the output diagram of power 
coupling equipment on a typical day during the 

transition season in Condition I 

 

Figure 18. Part of the output diagram of power 
coupling equipment on a typical day during the 

transition season in condition ii 

6. Conclusion 

This study proposes a multi-stage planning methodology for 
Integrated Energy Systems (IES) aimed at mitigating 
equipment idleness caused by premature investments and 
capacity redundancies during the initial phases of IES 
operation, as well as reducing elevated operational costs 
stemming from inadequate equipment capacity and increased 
external energy procurement in later stages. The multi-stage 
planning model segments the planning cycle into several 
distinct stages, establishing a series of constraints including 
multi-energy coupling, equipment capacity, and energy 
purchasing to derive economic indicators and capacity 
configuration data for each stage. Given the complexity 
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inherent in this multi-stage planning model, this paper 
employs a Self-Organizing Algorithm (SOA) with robust 
global and local optimization capabilities to address the 
formulated model. The findings substantiate the efficacy of 
both the proposed multi-stage planning approach and SOA. 
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