
EAI Endorsed Transactions
on Energy Web Research Article

1

Resubmission Based Fault Tolerance Approach to

Schedule Jobs in GRID Environment

Ravinder Ahuja
1,

* and Alisha Banga
2

1
Computer Science and Engineering department, Jaypee Institute of Information Technology Noida-201304, Uttar Pradesh,

India
2
Electrical and Electronics Engineering department, Satyug Darshan Institute of Engineering and Technology, Faridabad-

121003, Haryana, India

Abstract

Grids are the type of distributed machines in which aggregation of resources is done to provide services. Grid environment

needs to be fault tolerance so as to obtain maximum performance of the tasks that are being processed on it. A novel fault

tolerance approach is designed by us. Fault tolerance approaches mainly lie into two categories, Replica Based approach,

and Check-Pointing approach. The main limitation of Replica Based Approach (RBA) is its non-applicability to cost-based

resources whereas Check-Pointing Approach (CPA) suffers from the inherent disadvantages of taking Check-Point which

incur overhead and wastage of time. In our approach, the large task is divided into various subtasks on the basis of data

flow and control flow dependencies. The experimental results show that the proposed approach is efficient than a Check-

Point approach in terms of various parameters like the number of Grid lets successfully completed an average execution

time of a task. GridSim ToolKit 4.0 is used for simulation.

Keywords: Check-Point Approach, Dependency Graph, Grid Computing, Job Scheduling, Replica-based Approach.

Received on 13 September 2019, accepted on 13 July 2019, published on 17 July 2019

Copyright © 2019 Ravinder Ahuja et al., licensed to EAI. This is an open access article distributed under the terms of the
Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use,

distribution and reproduction in any medium so long as the original work is properly cited.

doi: 10.4108//eai.11-6-2019.159603

*Corresponding author. Email:ahujaravinder022@gmail.com

1. Introduction

The grid is "A type of parallel and distributed system that

enables the sharing, selection, and aggregation of

geographically distributed autonomous and heterogeneous

resources dynamically at runtime depending on their

availability, capability, performance, cost and users’

quality-of-service requirements”[1]. Grid computing

enables aggregation and sharing of geographically

distributed resources and data into a single virtual

machine for solving the large-scale problems, which

requires more computational power. The grid can be used

for many applications like medical imaging and diagnosis,

biometrics, satellite image processing. The grid has many

design issues like scheduling, data management, resource

management, security, load balancing and fault tolerance

[2, 3]. Grid jobs are very large and many grid

environments are most likely to fail, so fault management

becomes more important to give desired Quality of

Service (QoS) to grid user. Due to the large size of jobs,

the cost and difficulty of finding and recovering from

faults in Grid applications are higher than normal

applications. In grid environment resources may enter and

leave at any time which may cause a fault.

There are two approaches of fault tolerance in a grid

environment: proactive and reactive [4, 5]. Proactive fault

tolerance approach considers the failure of resources

before scheduling jobs, like replica approach. On the

other hand, the reactive mechanism takes appropriate

action after the job failure, like check pointing approach.

Our approach will prove several advantages over two

main approaches, one is a failure of one subtask does not

EAI Endorsed Transactions on
Energy Web and Information Technologies

06 2019 - 10 2019 | Volume 6 | Issue 24 | e1

http://creativecommons.org/licenses/by/3.0/

R. Ahuja and A. Banga

2

affect the other independent tasks, only failed task need to

be resubmitted not the complete task.

Section 2 contains literature review, section 3 contains

proposed approach, section 4 contains simulation

parameters, section 5 contains results and discussions, and

section 6 contains conclusions and future scope.

2. Literature Survey

2.1. Replica-Based Approach

In this approach [6] multiple copies of the task are

created, which increases the probability of success. If a

replica fails then it does not restart and success depends

upon success on other tasks. Obviously, it creates

overhead in workload due to multiple executions of the

task. If n copies of w workload then the total workload is

wxn. But due to its good performance, it is used in many

grid solutions.

Communication between replicas is important in this

approach for that it uses TOM (Total order multicast) [7]

protocol for communication. The grid is divided into

clusters. Clusters are controlled by a head node called

coordinator. Coordinators act as an interface between

internal nodes and external nodes in other clusters. Group

membership services are used to manage processes. The

basic operations provided are joined, leave and, execute.

Two primitives operations are used for communication

send_multicast and receive_multicast. The number of

replicas required can be calculated by using a fuzzy

approach. Some algorithms use a fixed number of replicas

and increase workload whenever a new job arrives for

execution. So an optimal approach can be used for

deciding number of replicas required to give the optimal

result at any given time.

2.2. Check-Pointing Approach

In Check-pointing Approach [8] running state of the

process is saved to an image file and program is restarted

from that file. Address space and register set of a process

are saved. Fault tolerance can be done with a high level

and low-level check pointing which are available in the

market. Each provides different services and interfaces

and due to technical reasons are application dependents. A

low-level check pointing has various components like

low-level check pointer, execution manager, local

resource manager, GRB. Adaptive check pointing

approach [9] is used for economy based Grid due to

various limitation of economy based grid-like, If a fault

occurs at grid resource then job is rescheduled and failed

to satisfy the QoS requirements like budget and deadline

because resubmitted job takes more time and more budget

and In such environment there are resources that fulfill the

criteria of QoS but have more tendencies toward fault.

But GRB again and again selects these resources which

makes the scenario worst. Faults mainly affect the

resource management strategy. The main aim of this

approach is to optimize the user-centric metrics (like a

number of the task executed within and with exceeding

deadline and budget) in the presence of a fault. Here fault

occur means a grid resource is unable to complete the task

within given time and budget. When such a fault is

detected by the Grid Resource Broker (GRB), the fault

occurrence information of that resource is updated. This

fault occurrence information is used during decision

making in allocating the resources to the job. This is

implemented as a fault index. Fault index is maintained

and updated when an allocated job completes [1, 10]. This

fault index indicates the resource vulnerability to fault i.e.

higher the fault index is, the higher the failure rate. The

fault index of a resource increases every time when the

resource fails to complete the assigned task within

deadline and budget. Similarly, the fault index decreases

every time when resource successfully completes the

assigned job within deadline and budget.

This approach has the same components as in low-level

check-pointing packages [11], but with some additional

one. The components are Grid Resource, Fault Tolerance

Schedule Manager, Grid Resource Broker, Grid

Information Service (GIS) etc. When GRB receive a grid

job from the user, it gets the contact information of

available grid recourse from the GIS and then contacts

with resources and tells them to send their current

workload condition. Based on current workload condition

of the resources, it prepares a list of resources that can

execute the task with user required QoS[11]. Then GRB

collects the fault index of selected resources from the

Fault Tolerance schedule manager. Depending on the

fault index of the resources GRB implements the

following Algorithm to take the appropriate decision. In

paper [12] authors proposed an efficient persistent state

restoration approach. Previous approaches only

considered volatile state. In paper [13], authors have

analyzed nine fault tolerance job scheduling algorithms

and different faults.

3. Proposed Approach
A process is said to be successfully executed on a

resource if and only if it starts when the resource is up and

finishes before resource goes down. If a process finish

time is greater than resource failure start time, then the

process is called as failed as shown in table 1. The Grid

jobs (Gridlet) are large in size, so they require more

computing time, which increases the probability of failure

of the job. As the execution time of a process is large,

larger is the probability that its finish time is greater than

resource failure start time as shown in figure 1.

Figure 1. Resource

lifetime

Resource Working

Time

Resource

Working

Time

Resource

Failure Time

T

2

T

3

T

4

T

1

EAI Endorsed Transactions on
Energy Web and Information Technologies

06 2019 - 10 2019 | Volume 6 | Issue 24 | e1

Resubmission Based Fault Tolerance Approach to Schedule Jobs in GRID Environment

3

Table 1. Relationship between Job status
and Resource Life Time

The Resubmission Based approach divides a large task

into a number of small size subtasks, which can be

executed on grid resources and execution of all the

subtasks have a similar effect as execution of the large

task. Some of the subtasks are independent of each other,

can be executed in parallel to decrease turnaround time

which helps in achieving deadline QoS factor.

3.1. System Model

Various Components of System Model are shown in

figure 2:

3.1.1 Grid User (GU): This component submits Grid jobs

(Grid lets) into the grid environment. The Grid is

constructed to fulfil the requirement of grid user. GU is

the key component for which grid is constructed. Grid

looks like a supercomputer to the grid user. GU thinks he

is the only user which is using the grid so that each user is

not aware of the existence of another user. GU directly

communicates to Grid Resource Broker for executing its

large size jobs. Grid Broker returns the results of jobs

after the execution of the job.

3.1.2 Grid Resources Broker (GRB): This is the main

component, which is responsible for providing a virtual

image of a supercomputer to grid the user by hiding

internal details. It receives Grid lets from grid user and

executes them on grid infrastructure and returns back the

result of Gridless. Grid Resource Broker first

Communicates to Grid Information Service to get the

information of grid resources in the grid. Grid Information

Service contains all static information of all resources

which may be local or global to it after getting the

information about all resources. GRB selects one of them

on the basis of scheduling algorithm used, and assigns the

grid job to that resource and uses heartbeat detection

approach to detect failure of a resource. Grid resource

returns the result of the job after execution completed and

GRB hands over the results to Grid user.

Subtask Generator (SG): It is a part of Grid Resource

Broker who deals with dividing the large size task into

small size subtasks and constructs the flow graph for

subtasks. It also gives a guarantee that execution of all

subtasks results in the same effect as execution of large

size task. SG first divides the task into the basic block on

the basis of control flow dependency. Then it starts

picking up each basic block and divides them into

subtasks on the basis of data flow dependency. Subtask

size checker is one part of SG. Subtask size is an

important factor, which must be considered in this

approach. If the subtask size is too large then it does not

fulfil the working principle and if the subtask size is too

small then most of the time is spent in scheduling the

subtask, which increases the overhead as well as the

execution time of the task. Subtask upper size limit and

lower size limit are two metrics which are used to decide

the subtask size. If subtask size is less then subtask lower

limit then small subtasks at the same level of flow graph

are merged to make a subtask whose size lies between the

limits. If the subtask size is larger than the subtask upper

limit then subtask is divided into smaller and equal size

sub-subtasks so that each sub-subtask's size lies between

the limits. All this functionality is done inside subtask size

checker.

Subtask Manager(SM): It is also a part of Grid Resource

Broker which manages execution of subtasks. It decides

which subtask has to execute on which resource and at

what time. It also maintains the sequence of execution of

subtasks in such a way that execution of all subtasks

results in the same effect as execution of large size task.

In short, this part works as the scheduler of subtasks. It

schedules the subtasks on the basis of the flow graph. It is

also responsible for the generation of output after all

subtasks successfully executed. If a particular resource

fails, it resubmits all the currently executing subtasks on

that resource to some other available resource

Figure 2. System Architecture

Job Status Job Start Time(St) Job End Time(Et)

Success

T1 < St <T2 Et<T2

Failure

T1<St Et>T2

Success

T3<St<T4 Et<T4

Subtask 1

Subtask n Subtask 4

Grid

User

Grid Resource Broker

Large Task

Subtask Generator

Subtask Manager

Resource

1

Resource

2

Resource

3

Resource

4

Resource

n

Subtasask

1

Subtask

n
Subtask 2

EAI Endorsed Transactions on
Energy Web and Information Technologies

06 2019 - 10 2019 | Volume 6 | Issue 24 | e1

4

Grid Resource (GR): This is the component, on

which tasks are executed. A GR consists of multiple

processing elements. GRs are geographically

distributed. Each GR is connected with a Grid

Information Service. When a new grid resource is

connected or a failed resource is recovered, first of

all, it communicates with the Grid Resource

Information Service to register itself. It provides its

static information like a number of processing

elements, the speed of processing elements, cost of

resource etc. Static information of a resource is such

information regarding a resource which does not

change over a short time of period. Grid Resource

Broker directly communicates to GR and assigns

grid jobs on them and takes back the result which

Grid Resource Broker hands over to grid user. Figure

3 shows the interaction between different

components of the model. It tells the order in which

different components interact with each other when a

grid job is submitted in the grid.

Figure 3. Interaction of different components in the
proposed approach

The explanation of the interaction of different components

is as follows:

1. Each resource registers itself to the designated GIS

to inform its availability and its current static information.

2. Grid user sends a job, deadline time and initial

budget to the Grid Resource Broker.

3. Grid Resource Broker queries GIS for the available

list of resources.

4. Then Grid Resource Broker calls its Subtask

Generator to divide the large task into small subtask

depending on the control and data flow dependency.

5. Then Grid Resource Broker calls its Subtask

Manager to schedule the subtasks.

6. Subtasks are submitted to grid resource for

execution.

7. Resource executes the subtasks and results are sent

back to the Grid Resource Broker.

8. Grid Resource Broker hand-over the results to Grid

User.

Algorithm Subtask Generator

Step 1: Large tasks are divided into basic blocks

depending on the control flow dependency.

Step 2: Repeat step3 to step6 for each instruction in every

basic block.

Step 3: Compare the input variables with input set and

output variables with output set of each subtask generated

for the basic block in the system till now.

Step 4: If no match is found then the instruction does not

depend on any existing subtask, so a new subtask is

created with that instruction and input set is initialized

with input variables of the instruction and output set is

initialized with output variables of the instruction.

Step 5: If only one match is found then it means the

instruction depends upon the instruction of matched

subtask so that instruction is appended in matched subtask

and input variables and output variables are added in an

input set an output set of the matched subtask.

Step 6: If more than one match is found then it means

instruction depends upon more than one subtask and a

common child node is found in flow graph and instruction

is added in that node.

Step 7: Flow graph and input and an output set of

subtasks are returned.

Subtask Manager

Step 1: Repeat the step 2 to step 9 until all subtasks are

executed.

Step 2: Find the subtasks in the flow graph that does not

depend on any of other subtasks.

Step 3: Repeat step 4 to step 6 until all independent

subtasks are scheduled.

Step 4: Find the resources which can satisfy the budget

and deadline factor for the subtask.

Step 5: If no such resource is found then set the status of

the job as cancel and return.

Step 6: Among the shortlisted resources, find the lightly

loaded resource and schedule the subtask to that particular

resource.

Step 7: Wait for the subtask to be completed.

Step 8: If the subtask is successfully executed than

remove it from the flow graph and go to step 2.

Step 9: If subtask fails due to resource failure then

reschedule the subtask to any other available resource.

Step 10: Check the total execution time of the job, if it is

less than a deadline then set its status as successful

otherwise set its status as failed.

Grid Resource Broker

Step1: Grid Job (Gridlet) is submitted by grid user to grid

resource broker (GRB).

Step2: GRB divides the large task into small subtasks.

Step3: GRB schedules all independent subtasks to

different resources and waits for them to complete and

2
1

3
Regional

GIS

Grid

Resource

Grid User

5

Grid

Resource

Broker

4

Subtask

Manager

6

7

8

Subtask

Generator

1

R. Ahuja and A. Banga

EAI Endorsed Transactions on
Energy Web and Information Technologies

06 2019 - 10 2019 | Volume 6 | Issue 24 | e1

5

then submits rest of the subtasks according to dependency

sequence.

Step4: Failure of a subtask leads to resubmitting the

failed subtask on another resource.

Step5: GRB maintains all the information about the

subtasks of a task and when all of the subtasks are

executed then GRB returns the result of the task back to

the grid user.

The main strength of our approach lies in step2. In this

step, first, the jobs are submitted to the subtask generator.

The subtask generator first constructs basic blocks of the

given task on the basis of control dependencies. Then it

divides each basic block into subtasks according to their

data dependency. Finally, all the constructed subtasks are

passed to subtask size checker. Here we have defined two

thresholds for subtask size. If subtask size is small, it will

degrade the performance of the grid a lot of

communication overhead is associated with the execution

of subtask. Hence to alleviate this problem, the size

checker

Combines different subtasks on the same level of data

dependency graph until size becomes within the threshold

limit. If the size of the subtask is greater than the upper

threshold, it divides that subtask into continuous sub-

subtasks. Finally, all the subtasks are submitted to the

subtask manager (Step 3). Subtask manager schedules the

subtasks of each basic block according to their data

dependency graph. If any of the subtasks fails, then we

have to resubmit only that particular subtask on another

available resource. The benefit in Resubmission Based

approach is that the subtask size is small, so we have a

less computational loss and also no need to have check-

pointing as tasks are already sub-divided.

4. Simulation Parameters

The Grid consists of eleven resources. Their capabilities,

mean time to failure and cost are given in Table 2. Cost of

the resources is in cost per million of instructions. During

simulation 20 Users submit 10 jobs per user. Job size is

uniformly distributed in [700,000 to 800,000] Million of

instruction (MI) units. Its input and out file size are also

uniformly distributed in [300 to 500] kilobytes. Resource

failure is exponentially distributed with a mean time of

failure of each resource. Recovery of the failed resource is

also simulated using exponential distribution with a mean

time of 3 minutes. In the experiment, there are three

virtual organizations and each having a GIS.

5. Results and Discussions

Subtask generator component receives a large task as

input and returns a set of subtasks. It also returns

precedence constraints directed acyclic flow graph, input

and output set of subtasks. Precedence constraints

directed acyclic flow graph is created by considering

control dependency and data dependency of each block.

Subtask generator first converts large task into three

address instruction format and then these three address

instructions are provided to dependency calculating unit

for further processing. The output provided by this unit is

shown below:

===========Subtask

0

Adjacency List is: 3 4

Parents List is:

Input Set is: h m

Output Set is: c

===========Subtask

1

Adjacency List is: 4

Parents List is:

Input Set is: b f

Output Set is: g

===========Subtask

2

Adjacency List is: 3

Parents List is:

Input Set is: h i

Output Set is: d

===========Subtask

3

Adjacency List is: 6 8

Parents List is: 0 2

Input Set is: a d f k l

Output Set is: h m

===========Subtask

4

Adjacency List is: 6 8

Parents List is: 0 1

Input Set is: a c f n

Output Set is: b c

===========Subtask

 5

Adjacency List is: 8

Parents List is:

Input Set is: f i

Output Set is: j

===========Subtask

6

Adjacency List is:

Parents List is: 3 4

Input Set is: b i n o

Output Set is: a h

===========Subtask

7

Adjacency List is:

Parents List is:

Input Set is: k n

Output Set is: e

===========Subtask

8

Adjacency List is:

Parents List is: 3 4 5

Input Set is: b c d f j l n o

Output Set is: d f g

Resubmission Based Fault Tolerance Approach to Schedule Jobs in GRID Environment

EAI Endorsed Transactions on
Energy Web and Information Technologies

06 2019 - 10 2019 | Volume 6 | Issue 24 | e1

6

The output of the dependency calculating unit contains

Adjacency List, Parents List, Input Set and Output Set of

subtasks. Initially, the subtasks which are having no

parents in Parents List are independent and are scheduled

in parallel. After successfully executing a subtask, it is

removed from Parents List of the other subtasks which are

dependent on this subtask and then a subtask is searched

in a system which is having empty Parents List.

Figure 4 shows the flow graph created by subtask

generator unit. The node represents the subtask and a

directed edge from ith node to jth node represents that jth

subtask is dependent on ith subtask and jth subtask can

only be scheduled after the completion of the ith subtask.

Comparison of Check-Pointing approach and

Resubmission Based approach.

Figure 4. Precedence constraints Directed Acyclic
Flow Graph.

The system models of Check-Point and Resubmission

Based approach are designed and tested in GridSim

Toolkit-4.0 [14]. The GridSim libraries are added to

Eclipse. Eclipse is an integrated development

environment (IDE) for Java. The GridSim libraries are

available freely as java runtime environment (JRE), and

they are linked to the Eclipse platform as an external JRE.

A number of resources with different characteristics like

cost. CPU rating is used to design grid infrastructure for

simulation purpose as mentioned in the World Wide Grid

(WWG testbed). Different numbers of Grid lets are

created to evaluate these approaches. Gridlet is defined in

terms of a number of instruction (in Million), input file

size (in kilobyte), and output file size (in kilobytes). In the

experiment, 200 Grid lets are submitted for different

values of budget and deadline for measuring the

performance. Grid lets are assigned to two different grids,

one in which Check-Point fault tolerance approach is used

and to another in which Resubmission Based fault

tolerance approach is used. In both the scenarios, the first

aim is to fulfill the budget and deadline QoS parameter. In

Check-Point approach, we take Check-Point at regular

intervals.

Different values of budget Figure 5 shows the comparison

on the basis of successfully executed grid lets in

resubmission based and check-point approach for

different values of budget varying from 5000 to 17000 ,

and deadline time is fixed to 120 seconds. Check-Point

approach takes Check-Points at regular intervals, which is

a time-consuming task

Figure 6 shows the number of jobs failed due to deadline

time in both approaches. A number of jobs failed to finish

within the deadline is plotted and it is observed that in

resubmission based approach very few jobs failed to

finish within deadline time as compared to the check-

point approach. The check-point consumes time in saving

status at each check-point at regular interval which is an

overhead in the execution of the job. Let assume that 1

second is consumed in saving status at each check-point

and average 10 check-points are taken during execution of

a job then overall 10 seconds (1 * 10) of extra time is

consumed in check-point approach. Another reason for

the better performance of resubmission based approach is

that it divides a large task into small subtasks which can

be executed in parallel. Due to this parallelism between

different subtasks, the execution time of a job is lesser as

compared to execution time in check-point approach

which helps the jobs to finish within deadline time. So

some of the tasks do not achieve deadline and are

considered as unsuccessful.

Figure 5. Number of job success for different
values of budget

Figure 6. Number of jobs fails to achieve
the deadline

0 1 2

3 4

5

6

7

8

R. Ahuja and A. Banga

EAI Endorsed Transactions on
Energy Web and Information Technologies

06 2019 - 10 2019 | Volume 6 | Issue 24 | e1

http://en.wikipedia.org/wiki/File:Indian_Rupee_symbol.svg

7

But in resubmission based approach no Check-Pointing is

done and independent subtasks can run in parallel, which

helps in achieving deadline hence more jobs are

successfully executed in resubmission based approach as

compared to Check-Point approach as shown in figure 7.

At the initial stage of the experiment near about 30 jobs

get the resources. Rest of 170 jobs fail to satisfy QoS

parameters like deadline and budgets, so these 170 jobs

are considered as cancelled jobs. Out of 30 jobs in

checkpoint approach near about 20 jobs successfully

executed and rest of the 10 jobs failed to complete within

deadline time. In resubmission based approach

independent subtasks can execute in parallel so all 30 jobs

are successfully executed. It also reduces average

execution time in resubmission based approach.

Figure 7. Number of job success for different values
of the deadline

Figure 7 shows the comparison in a number of gridlet

successfully executed in resubmission based and check-

point based approach for different values of deadline time

which varies from 20 to 150 second and budget is fixed to

12000 . Some time is consumed in check-pointing which

lead to failing a task to complete within the deadline. The

graph shows that more jobs are completed within deadline

time in resubmission based approach as compared to

check-point based approach. At the initial stage of the

experiment near about 40 jobs get the resources and rest

of 160 jobs are failed to satisfy QoS parameters like

deadline and budgets, so these 160 jobs are considered as

a canceled job. Out of 40 jobs in checkpoint approach

near about 20 jobs successfully executed and rest of the

20 jobs failed to complete within deadline time but in

resubmission based approach 30 jobs are successfully

executed due to independent subtasks can execute in

parallel. 10 jobs are failed in resubmission based approach

to finish within deadline time because deadline time is

small in an initial stage of the experiment.

References

[1] Kim, Y. (2012). A Fault-tolerant Mutual Exclusion

Algorithm in Asynchronous Distributed

Systems. International Journal of Contents, 8(4), 1-6.

[2] J Baker, M., Buyya, R., & Laforenza, D. (2002). Grids and

Grid technologies for wide‐area distributed

computing. Software: Practice and Experience, 32(15),

1437-1466.

[3] Foster, I., Kesselman, C., & Tuecke, S. (2001). The

anatomy of the grid: Enabling scalable virtual

organizations. The International Journal of High-

Performance Computing Applications, 15(3), 200-222.

[4] Krauter, K., Buyya, R., & Maheswaran, M. (2002). A

taxonomy and survey of grid resource management

systems for distributed computing. Software: Practice and

Experience, 32(2), 135-164.

[5] Medeiros, R., Cirne, W., Brasileiro, F., & Sauvé, J. (2003,

November). Faults in Grids: Why are they so bad and

What can be done about it?. In Grid Computing, 2003.

Proceedings. Fourth International Workshop on (pp. 18-

24). IEEE.

[6] Litke, A., Tserpes, K., Dolkas, K., & Varvarigou, T. (2005,

February). A task replication and fair resource

management scheme for fault-tolerant grids. In European

Grid Conference(pp. 1022-1031). Springer, Berlin,

Heidelberg.

[7] Erciyes, K. (2006, December). A replication-based fault

tolerance protocol using group communication for the grid.

In International Symposium on Parallel and Distributed

Processing and Applications (pp. 672-681). Springer,

Berlin, Heidelberg.

[8] Mandal, P. S., & Mukhopadhyaya, K. (2006). Performance

analysis of different checkpointing and recovery schemes

using stochastic models.

[9] Nazir, B., Qureshi, K., & Manuel, P. (2009). Adaptive

checkpointing strategy to tolerate faults in the economy

based grid. The Journal of Supercomputing, 50(1), 1-18.

[10] Jiang, C., Wang, C., Liu, X., & Zhao, Y. (2007, July). A

fuzzy logic approach for secure and fault-tolerant grid job

scheduling. In International Conference on Autonomic and

Trusted Computing (pp. 549-558). Springer, Berlin,

Heidelberg.

[11] Riteau, P., Lebre, A., & Morin, C. (2009, May). Handling

persistent states in process checkpoint/restart mechanisms

for HPC systems. In Cluster Computing and the Grid,

2009. CCGRID'09. 9th IEEE/ACM International

Symposium on (pp. 404-411). IEEE.

[12] Jankowski, G., Januszewski, R., Mikolajczak, R., &

Kovacs, J. (2008). Improving the fault tolerance level

within the GRID computing environment-integration with

the low-level checkpointing packages. Core Grid TR-0158

June, 16.

[13] Balpande, M., & Shrawankar, U. (2014, April). Robust

fault tolerant job scheduling approach in a Grid

environment. In Circuits, Systems, Communication and

Information Technology Applications (CSCITA), 2014

International Conference on (pp. 259-264). IEEE.

[14] GridSim toolkit. [Online] Available:

http://www.gridbus.org/gridsim/

Resubmission Based Fault Tolerance Approach to Schedule Jobs in GRID Environment

EAI Endorsed Transactions on
Energy Web and Information Technologies

06 2019 - 10 2019 | Volume 6 | Issue 24 | e1

http://en.wikipedia.org/wiki/File:Indian_Rupee_symbol.svg

8

Table 2. Simulation Parameters

Resource

Name

(Location) Nodes Rating Policy GIS Cost() Mean

Time to

Failure

RAL (UK) 41 4900 Space-

Shared

2 490 60

Imp. College 52 6200 Space-

Shared

2 620 100

NorduGrid (Norway) 17 2000 Space-

Shared

2 200 340

NIKHEF (Netherlands) 18 2100 Space-

Shared

0 210 340

Lyon (France) 12 1400 Space-

Shared

0 140 450

CERN (Switzerland) 59 7000 Space-

Shared

0 700 75

Milano (Italy) 5 7000 Space-

Shared

1 700 55

Torino (Italy) 2 300 Time-

Shared

1 30 130

Rome (Italy) 5 600 Space-

Shared

1 60 110

Padova (Italy) 1 100 Time-

Shared

1 10 150

Bologna (Italy) 67 8000 Space-

Shared

1 80 150

R. Ahuja and A. Banga

EAI Endorsed Transactions on
Energy Web and Information Technologies

06 2019 - 10 2019 | Volume 6 | Issue 24 | e1

http://en.wikipedia.org/wiki/File:Indian_Rupee_symbol.svg

