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Abstract

INTRODUCTION: Efficient monitoring of power transmission lines is paramount to grid safety, clearance violation
prevention, and uninterrupted supply of electricity. Classic inspection approaches like ground surveys by manual methods
and visual inspections by drones are time-consuming, costly, and susceptible to human error.

OBJECTIVES: Current LiDAR-based approaches are limited in automation, with extensive post-processing based on
manual intervention. Additionally, most existing models are not scalable and fail under changing environmental conditions
because of a lack of generalization. In this research, a spatial monitoring platform that combines LiDAR point clouds with
high-resolution imagery through RandLA-Net is presented for semantic segmentation and hazard detection.

METHODS: Combining geometric information (LiDAR) and visual features (images) with an optimized RandLA-Net
architecture allows for accurate, real-time infrastructure features and hazard detection in dense or cluttered scenarios.
RESULTS: The system presented here attained a semantic segmentation accuracy of 99.1% and a mean Intersection over
Union (mloU) of 93.2%. Spatial distance estimation had a low Mean Absolute Error (MAE) of 0.16 meters and Root Mean
Square Error (RMSE) of 0.23 meters. The rate of safety violations detected never exceeded 4% among all object pairs.
Compared to alternative techniques the proposed approach offers higher segmentation accuracy and more comprehensive
hazard detection.

CONCLUSION: It uniquely combines LiDAR and image data with advanced algorithms for precise, real-time distance
measurement and monitoring. This study provides a cost-effective, scalable, and real-time-enabled monitoring solution,
lessening reliance on human inspections and hugely enhancing hazard detection accuracy for power transmission
infrastructure.
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1. Introduction owing to the extensive geographical span and susceptibility

L . . to environmental influences like vegetation growth, weather
Power transmission lines are key infrastructure elements that patterns, and structural deterioration, inspection of these

provide reliable power delivery from power generation
plants to end-users [1]. The safety and efficiency of power
transmission systems depend on proper monitoring and
maintenance to avoid faults, reduce downtime [2], and
promote overall reliability in the grid [3]. Nonetheless,
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systems can prove to be a labor-intensive and taxing
endeavor [4]. Conventional inspection means, such as
manual surveys and aerial reconnaissance with helicopters
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or drones, though effective, are time-consuming, costly, and
subject to human mistakes [5].

As the need for more intelligent, more efficient grid
networks grows, the need for real-time, automated solutions
to monitor power transmission lines better is a growing
imperative [6]. New developments in LiDAR (Light
Detection and Ranging) [7] technology have made dramatic
advancements in the ability to detect and monitor power
lines. LiDAR technology emits laser pulses that determine
distances to objects and construct highly precise 3D point
clouds of the environment [8]. Our proposed work adopts
the approach outlined by Mohan Reddy Sareddy (2025),
integrating LiDAR and reinforcement learning for real-time
monitoring. By leveraging this strategy, we utilize LiDAR
point clouds and Al to monitor power transmission lines,
enhancing automated decision-making, and improving
efficiency in power line management[9]. These point clouds
have the potential to reveal in-depth information about the
spatial interrelationships between transmission lines, towers,
vegetation, and other structures [10] within the vicinity [11].
The incorporation of Al-powered swarm robotics, LiDAR
mapping, TSN, and energy-efficient microcontrollers
demonstrated by Sri Harsha Grandhi (2024) In our work,
these cutting-edge technologies were adopted to increase
real-time power line monitoring, significantly improving
operational efficiency in remote energy infrastructure
management [12]. LiDAR and detailed imagery work
together to improve monitoring systems. LiDAR delivers
accurate spatial precision and 3D modeling through the
creation of intricate point clouds, vital for distance
measurement and identifying clearance infringements. High-
resolution images provide intricate visual attributes such as
texture and color, enhancing object recognition. The fusion
used in the RandLA-Net study facilitates precise semantic
segmentation and reliable hazard detection. The integration
enables real-time observation, improves safety, and
minimizes dependence on manual checks by combining
LiDAR's geometric accuracy with the visual richness of
images. The integration of three-dimensional (3D) point
cloud data from LiDAR sensors with high-resolution images
enables enhanced scene understanding by combining
geometric precision with rich visual information [13], can
enhance the object identification along power line corridors
[14], facilitating easier detection and monitoring of
vegetation intrusion, structural defects, or other hazards
[15]. It is also possible through the integration of LiDAR
data [16] with images to measure distances more precisely,
which in turn ensures proper clearance of power lines from
obstructions. Through automating the monitoring process
with this integrated system, power grid operators can
considerably decrease the risks and costs of the conventional
inspection procedures [17]. The work by Sitaraman (2024)
explores LiDAR-based SLAM and DenseNet deep learning
for real-time robotic mapping and motion planning. In our
proposed work, we combine these methods for real-time
spatial distance monitoring of power transmission lines
using LiDAR and visual imaging. This integration enables
automated anomaly detection for power line surveillance
[18]. LiDAR is ideal for real-time spatial distance
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monitoring of power transmission lines because it provides
highly accurate 3D point cloud data for precise modeling of
cables and nearby structures. It performs reliably in complex
environments and, when combined with deep learning
models like RandLA-Net, enables efficient, automated
hazard detection with minimal human intervention.

This study presents a new approach to real-time spatial
distance collection of power transmission lines through
integration of LiDAR point cloud data with images, which
provide a kind of "visual" information from the reflectance
of surfaces sensed by LiDAR. By combining high-resolution
3D point clouds and images, this method is capable of
providing more precise and real-time estimates of the spatial
distances between power transmission lines and surrounding
obstacles like vegetation, buildings, or other structures. The
proposed system's real-time operation ensures constant
monitoring and prompt identification of problems,
enhancing the maintenance process as a whole and reducing
the risk of failure or outages. Proper clearance between
transmission lines and surrounding objects is critical for
safety, equipment protection, and reliable power delivery. It
helps avoid contact with buildings, foliage, and poles,
lowering the risk of electrical fires, arcing, and short
circuits. Violations of clearance requirements can lead to
equipment damage and unscheduled downtime. Real-time
monitoring using LiDAR and high-resolution imaging
allows for early detection of dangers, decreases human
inspection tasks, and promotes cost-effective maintenance.
Ensuring appropriate clearance also aids in meeting
regulatory criteria and increasing the dependability and
safety of power transmission networks. This study employs
the RandLA-Net deep learning model within a LiDAR-
image fusion framework to achieve real-time monitoring of
power transmission lines. RandLA-Net performs semantic
segmentation on large-scale LiDAR point clouds, achieving
99.1% accuracy and 93.2% mloU. By combining LiDAR
geometry with image features, the system improves object
recognition, particularly for thin structures like cables. It
extracts transmission line proxies, calculates 3D distances to
nearby objects, and compares them with IEEE/OSHA safety
thresholds for hazard detection. Though developed using the
offline KITTI dataset, the approach is suitable for real-time
deployment on edge devices. This enables automated, cost-
effective, and accurate monitoring crucial for renewable
energy systems.

By automating the monitoring procedure through this
combined system, power grid operators can significantly
mitigate the cost and risk associated with conventional
inspection schemes. The proposed system assures constant
monitoring and prompt identification of faults, enhancing
the entire process of maintenance as well as eliminating the
chances of failures or outages.

Key Contributions
This paper makes the following key contributions to the
field of power transmission line monitoring:
e Integration of LiDAR Point Clouds and High-
Resolution Images, the paper presents a novel
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method that combines geometric 3D LiDAR data
with visual image information to enhance the
accuracy of spatial distance measurements around
power transmission lines.

e Efficient Semantic Segmentation Using RandLA-
Net applies the RandLA-Net deep learning model
to effectively segment complex transmission line
proxies and surrounding urban infrastructure from
large-scale, sparse point cloud data.

e Automated Proxy Extraction and Distance
Measurement, the proposed framework uses
geometric filtering, clustering, and line fitting
algorithms to automatically extract transmission
line proxies and calculate precise 3D distances to
nearby objects for hazard detection.

e Improved Monitoring for Safety and Maintenance,
the system provides reliable detection of clearance
violations and potential hazards, supporting safer
maintenance planning and reducing reliance on
costly manual inspections.

Current power transmission line monitoring systems

encounter various significant constraints. Inspections

conducted manually and via drones are labor-intensive,
expensive, and susceptible to human mistakes. Current

LiDAR-based techniques are dependent on manual

post-processing and do not offer real-time automation.

Deep learning models frequently struggle to generalize

across different terrains and environmental conditions.

Existing systems additionally lack accurate clearance

detection, endangering safety, causing breaches, and

service interruptions. These constraints emphasize the
necessity for a scalable, precise, and automated
monitoring solution, tackled by this investigation via

LiDAR-image fusion and segmentation based on

RandLA-Net.

Structure of the Paper

The paper begins with an Abstract that describes the
necessity of real-time monitoring of power transmission
lines and the issues with the present manual and drone
inspections. The paper introduces the significance of power
transmission lines as critical infrastructure for the supply of
electricity and emphasizes the difficulties entailed in
monitoring them because of extensive geographical areas.
The Related Works discuss existing LiIDAR and image-
based techniques, noting their strengths and limitations. The
Problem Statement addresses problems such as excessive
cost, time requirement, and weather and environment-
induced errors, revealing the necessity for an automated,
effective solution. The Methodology describes how data
from the KITTI dataset is cleaned, segmented, and
processed using RandLA-Net, and then transmission lines
are identified and distances measured to adjacent objects to
identify hazards. The Results and Discussion indicate that
the method is effective and accurate and would apply to
real-time systems. The paper concludes with a Conclusion

highlighting the advantages of fusing images and LiDAR for
enhanced transmission line monitoring.

2. Related Works

This section reviews existing research and technologies
related to power transmission line monitoring using LiDAR
and image-based methods, highlighting their strengths and
limitations.

[19] proposed a real-time LiDAR-based reconstruction
technique to inspect anti-external force damage to power
transmission lines. The technique projects 3D point cloud
data to a 2D plane [20], performs a catenary equation fit,
and recovers the complete 3D model. The technique
remedies the shortcoming of short-range LiDAR by
supporting precise distance measurement. Field experiments
proved efficient 3D reconstruction of the transmission lines
[21], improving system reliability. [22] performed a
comprehensive method of PLC inspection and LiDAR-
based 3D modelling methods [23] using power line
corridors. They inspected different point-based and image
techniques for multi- and single-conductor extraction from
mobile and aerial laser scanning systems [24]. The research
presented that most prevailing methods are predominantly
based on small datasets and post-processing, with limited
full automation. They have proposed a future study to utilize
deep learning for facilitating scalability and accuracy in PLC
modelling. [25] suggested a deep learning-enabled Point
Cloud Transmission Tower Segmentation (PCTTS)
approach for UAV inspection target point localization
automation. The approach uses octree sampling, offset-
attention, and multi-scale feature extraction to improve
segmentation performance. The approach attained 94.1%
mlOU on part segmentation and 86.9% mIOU on instance
segmentation datasets, better than PointNet++, DGCNN,
and others [26]. The method drastically minimizes the
amount of manual planning while enhancing UAV
inspection efficiency and accuracy A deep learning-based
system has been developed that integrates LiDAR and
spherical photography for autonomous vegetation inspection
[27] in urban power grid lines. Their system employs
vehicle-mounted sensors to overcome the shortfalls of aerial
photography and human observation. Implemented in four
Brazilian cities, the process attained more than 94%
accuracy in interference detection. The research shows
promising prospects for real-time vegetation management
using Al in large-scale electric grids.

[28] provided a detailed review of LiDAR-based methods in
powerline corridor monitoring, facing issues such as scene
noise and object proximity. They compared tracking,
machine learning, and deep learning methods based on their
weaknesses and strengths. The research focused on
forgotten areas such as single wire and pylon detection in
the proximity of vegetation. Despite automation
achievements, the review pointed out issues with data
labeling and model generalization, making
recommendations for potential future research directions.
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[29] undertook a systematic review of technologies for
distance recognition to improve the safety of transmission
lines in challenging corridor environments. They classified
active and passive ranging techniques and their applicability
in detecting spatial distances. The work identified the
disadvantages of existing technology, such as high false
alarms and low efficiency. It offered a deep learning-based
framework for enhancing accuracy and outlined prospects
and challenges in the application. [30] Applied UAV-based
LiDAR to detect 160 km of transmission lines in hilly
Sanmenxia, China, with a particular emphasis on the
detection of safety hazards. They used 3D point cloud
denoising, line repairing, and range calculation to locate
clearance hazards. The inspection found 54 common, 22
serious, and 1 emergent vegetation hazards. The approach
enhanced the precision of hazard detection and offered an
excellent reference to replace traditional field inspections in
difficult terrains.

[31] suggested a procedure for power line extraction and
tree risk identification via height difference and local
dimension probability modeling. They used the Cloth
Simulation Filter and neighborhood sharing for conductor
and ground wire classification [32], followed by linear—
catenary reconstruction modeling. The procedure realized
more than 98% precision, recall, and F-score in
classification, with a safety distance MAE of less than 6.47
cm. These outcomes confirm the high accuracy and
reliability of the model in identifying vegetation-related
hazards.

Notwithstanding advances in LiDAR-based monitoring of
power transmission lines, some limitations are highlighted
in the ten studies. [19] enhanced the accuracy of short-range
LiDAR but failed to test the system under poor weather or in
complex terrains. [22] identified that most approaches use
small datasets and require manual post-processing, making
full automation and scalability challenging. [25] attained
high segmentation accuracy with deep learning but requires
additional testing in various settings. [24] demonstrated
good performance with LiDAR and spherical photography,
but the performance of the model in extremely dense forests
or urban areas was not investigated. [26] highlighted
challenges such as scene noise, nearness of objects, poor
model generalization, and data labeling complications. [27]
said several distance detection methods are low on
efficiency but have high false alarms and require better
integration with deep learning. [10] correctly classified
hazards on slopes but the methodology might need adjusting
for other lands. [29] had very accurate power line and tree
danger categorization but nothing is known about the
method's performance in a varying environment. [31]
incorporated tree growth prediction but long-term
performance and application under evolving forest
conditions are unknown. [32] constructed PowerLine-Net
with good performance, but issues such as real-time
application and class imbalance in big datasets persist.
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3. Problem Statement

Even with breakthroughs in LiDAR-based and deep
learning-powered monitoring of power transmission lines,
some major limitations remain that impede real-world
scalability and deployability.

o  Furthermore, [26] emphasized persistent issues
related to data labeling complexity and insufficient
model generalization, which hinder the deployment
of scalable, fully automated powerline inspection
systems.

e Secondly, [20] highlighted that current
methodologies are highly dependent on tiny
datasets and manual post-processing, leading to
low scalability and inadequate automation for
powerline corridor monitoring on a large scale.

e [22] Suggested a high-precision segmentation
model based on deep learning, which is not
generalizable to different operating conditions,
particularly those with unknown geographic or
structural properties.

e [32] showed robust segmentation performance
using PowerLine-Net but questionable real-time
deployability of the model, especially under class
imbalance and large-volume data scenarios.

These deficiencies underscore an urgent necessity for a
scalable, weather-resistant, and generalizable methodology
for LIDAR-based power transmission line monitoring that
seamlessly unites strong deep learning methods with
domain-sensitive  data  preprocessing as well as
environmental flexibility.

Research Objectives

1. Identify the limitations of traditional transmission
line inspection methods and the need for automated
solutions.

2. Analyze and integrate LIDAR point cloud data with
high-resolution imaging to enhance spatial distance
monitoring accuracy.

3. Develop a semantic segmentation and distance
measurement model using RandLA-Net for
effective hazard detection.

4. Evaluate the performance of the proposed system
in terms of segmentation accuracy, safety margin
detection, and real-time feasibility.

4. Methodological Framework for LiDAR-
Image Fusion in Transmission Line
Hazard Detection

The approach used in this research applies an organized
procedure to merge LiDAR point cloud data with high-
definition images for efficient power transmission line
monitoring. The integration of LiDAR with visual imagery
through a multi-step process improves segmentation
precision for monitoring power transmission lines. Data is
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gathered from the KITTI dataset, merging 3D LiDAR point
clouds with high-resolution images. Preprocessing
procedures involve noise reduction, downsampling, ground
segmentation, and coordinate normalization. RandLA-Net is
utilized for semantic segmentation, accurately identifying
objects by utilizing both geometric and visual
characteristics. Transmission line proxies are subsequently
obtained through geometric filtering, DBSCAN clustering,
and RANSAC line fitting. The system computes 3D
Euclidean distances from these proxies to surrounding
objects, evaluating them against safety limits to identify
violations. Ultimately, hazard areas are prominently
displayed in the 3D point cloud. This method attains a
segmentation accuracy of 99.1% and a mean IoU of 93.2%,
showcasing its capability for real-time, automated
surveillance through the integration of LiDAR and image
information. The data used is obtained from the publicly
released KITTI dataset, which offers synchronized LiDAR
scans and image frames capturing suburban and urban
scenes. To ensure data quality and simplify computational
complexity, the point clouds in their raw form go through
preprocessing processes. These steps filter the data by
removing objects of interest like poles, vegetation,
buildings, and overhead wires. After preprocessing,
semantic segmentation with RandLA-Net, a deep learning
network for accurate and efficient classification of sparse,
large-scale 3D point clouds, is conducted. This segmentation
allows for the accurate detection of transmission line proxies
and proximate infrastructure. Then geometric filtering,
clustering methods like DBSCAN, and line fitting methods
like RANSAC are utilized to reconstruct and extract proxy
models of transmission lines. Data quality and preprocessing
are critical components of effective monitoring systems,
such as those that follow power transmission lines with
LiDAR point clouds and optical imaging. Mistakes in data
might lead to computation mistakes and risk
misidentification. Noise reduction, down sampling, and
ground segmentation improve data quality by removing
outliers, lowering computing costs, and emphasizing key
characteristics. Semantic segmentation using models such
as RandLA-Net categorizes point clouds, enhancing danger
identification and distance measurements, resulting in more
reliable  real-time  monitoring and  infrastructure
maintenance. Excellent data quality and preprocessing are
critical for high-performance monitoring systems. The last
step is to compute the 3D Euclidean distances between
proxies of the transmission line and nearby objects to detect
potential clearance violations by safety regulations. This
multi-phased method facilitates automated detection and
visualisation of risk, improving monitoring accuracy and
operational safety. The general workflow of the novel
methodology is shown in Figure 1 below.
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Figure 1: Multi-Stage Framework for Spatial Distance
Measurement in Power Line Environments

4 1 Data Collection

The data for this research employs the publicly available
KITTI dataset(“Lidar Dataset” 2025), which provides
synchronized multimodal sensor data captured from a
sensor-equipped car driving along city and suburban streets.
The dataset comprises Velodyne LiDAR point clouds, the
primary source of 3D spatial information with geometrical
detail of the environment. Along with the LiDAR data, high-
resolution image frames are provided by cameras, frame-
synchronized with the LiDAR scans to allow for efficient
space and appearance data fusion. Unlike real-time data
acquisition via UAV or airborne sensor platforms, the
KITTI dataset is recorded, offline data allowing the
workflow of processing and analysing stored point cloud
and image data rather than continuous live acquisition. It
includes urban infrastructure features such as poles,
buildings, trees, and overhead tram wires, which are
themselves substitutes for transmission line environments.

4.2 Data Preprocessing

Before executing spatial distance acquisition and
segmentation on the KITTI LiDAR point clouds, it is
imperative to preprocess the raw data to enhance quality,
diminish  computational complexity, and segregate
appropriate objects. The below preprocessing procedures are
executed:

4.2.1 Noise Filtering

LiDAR point clouds usually have spurious points because of
sensor errors or environmental conditions. Spurious points
are climinated using Statistical Outlier Removal (SOR).
This method looks at the neighbourhood around each point
and deletes points that are very different from their
neighbors.
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For each pointP:, compute the average distance dito itsk
nearest neighbors given in Eqn. (1)

Ii-'!T:' = %E’j:zl ”p - P

)

is the Euclidean distance between

Where”pf b
pointsP:Fi

Calculate the global meant and standard deviation Fof
alltl;. Points with average neighbor distances outside the

interval # T T (where® is a threshold parameter, typically
1.0-2.0) are considered outliers and removed.

p;isremovedifd, > pu+ao or d; < u—ao

This step preserves the structural integrity of the scene by
eliminating isolated noise points.

The method addresses environmental variations like weather
and terrain using robust preprocessing, RandLA-Net-based
segmentation, and LiDAR-image fusion. Noise filtering
with Statistical Outlier Removal eliminates unwanted points
from sensor errors or environmental interference. Ground
segmentation through morphological filtering and height
thresholding effectively isolates relevant objects from
ground clutter, enhancing accuracy across diverse terrains.
RandLA-Net facilitates efficient, large-scale sparse LiDAR
data segmentation via random sampling and local feature
aggregation, maintaining fine structural details. By fusing
LiDAR data with high-resolution images, the system
improves object detection under fluctuating lighting and
terrain conditions. Trained on the KITTI dataset, the
approach demonstrates 99.1% accuracy and 93.2% mloU
with minimal safety violation rates, highlighting its robust
performance in varying environments.

4.2.2 Downsampling

Unprocessed point clouds are very dense and generate high
computational expenses during downstream processing. To
thin out point clouds without losing geometric details, Voxel
Grid Filtering is employed. Voxel Grid Filtering offers
distinct advantages over random and uniform sampling by
preserving geometric structure and reducing computational
load. It retains the overall 3D shape by replacing all points
within a voxel with their centroid, maintaining spatial
integrity essential for tasks like segmentation and distance
measurement. Unlike random sampling, which may remove
critical structural points, or uniform sampling, which may
not adapt well to varying point densities, VGF provides a
balanced reduction that supports efficient processing
without significant loss of detail. This leads to improved
segmentation accuracy, as seen in the paper’s use of
RandLA-Net, which achieved 99.1% accuracy and 93.2%
mloU. Combined with noise filtering techniques like
Statistical Outlier Removal, VGF enables robust, real-time
performance while preserving key geometric information in
LiDAR point clouds.

The area is split into a 3D grid of voxels of volume v, and
every point in each voxel is approximated by its centroid.
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For a voxel Vmcontaining points{Pi-P:- -Pn}, the voxel

representative pointﬁh is computed using Eqn. (2)
L 1 n
Pm = - E:';':1 2 ()

This downsampling reduces data size and computational
load while maintaining the overall shape and structure
necessary for accurate segmentation and distance
calculations. Voxel Grid Filtering efficiently lowers
computational requirements while maintaining the
geometric integrity of LIDAR point clouds. Dividing space
into 3D voxels and substituting all points in each voxel with
their centroid preserves the overall shape and spatial
relationships essential for precise segmentation and distance
computations. In contrast to random sampling, which can
overlook essential structural details, and uniform sampling,
which might inadequate representation of dense areas, VGF
provides a more balanced method. It guarantees uniform
spatial distribution, facilitates effective segmentation with
an accuracy of 99.1% and mloU of 93.2%, and, when paired
with Statistical Outlier Removal, aids in removing noise
while preserving data integrity.

4.2.3 Ground Segmentation
Separating ground points from above-ground objects is
crucial for focusing on infrastructure like poles and
vegetation. Two common approaches are used:

e Height Thresholding:
l

Estimate the ground elevation "*gand remove points below a

certain height threshold Nenas given in Eqn. (3)
If z; < hy + hep = p; is ground 3)

WhereZ: is the vertical coordinate of the point¥:.

e  Morphological Filtering:
Apply iterative dilation and erosion operations on the point
cloud or its 2D height map projection to identify ground
surfaces that are continuous and smooth, separating them
from elevated objects.
These steps isolate non-ground points representing poles,
trees, buildings, and other obstacles relevant for distance
measurement.

4.2.4 Coordinate Normalization

To ensure consistent processing, especially when combining
data from different frames or sensors, point coordinates are
normalized within a local reference frame.

For each point coordinate = (x,3,2), compute using Eqn.

“

o @)

where #%pand are the mean and standard deviation of all
point coordinates along each axis in the dataset. This
standardization centers the data and scales it to unit
variance, which improves the stability and convergence of
deep learning models used downstream.
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Pseudocode: LiDAR Data Preprocessing

Input: Raw point cloud P = {p_i}
Parameters: k, o, voxel_size v, ground_height h_g,
height_threshold h_th

Output: Processed point cloud P_processed

Step 1: Noise Filtering (Remove Outliers):
For each point p_iin P:
Find k nearest neighbors

Compute average distance
d bar i

to neighbors

Compute mean u and std dev o of all d_bar i
Keep points p i where d_bar i is within [u -
a*o, u + a*af

Step 2: Downsampling:
Divide space into 3D voxels of size v
For each voxel:
Replace points inside voxel with their centroid

Step 3: Ground Segmentation:
For each point p_i:
If vertical coordinatez i <h g+ h_th:
Mark p_i as ground point
Else:
Mark p_i as non-ground point

Step 4: Coordinate Normalization:
Compute mean yu_p and std dev o p of non-
ground points coordinates
For each non-ground point p_i:
Normalize: p i norm = (p i-u p)/o p

Return normalized non-ground points P_processed

4.3 Semantic Segmentation of LiDAR
Point Clouds Using RandLA-Net

Semantic segmentation labels each point in a LiDAR point
cloud with a class, which allows the detection of various
objects like utility lines, poles, buildings, and vegetation. As
far as your study goes, the correct segmentation of
transmission line elements and nearby infrastructure is
important for accurate spatial distance collection. Semantic
segmentation differs from traditional segmentation by
assigning specific class labels to each point in a LiDAR
point cloud, enabling class-aware partitions, unlike
traditional methods that segment based on low-level features
like color or texture without understanding object meaning.
Traditional approaches use basic techniques such as
thresholding or clustering and require manual tuning, while
semantic segmentation uses deep learning models like
RandLA-Net to learn features and context automatically. In
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this paper, RandLA-Net processes large-scale point clouds
efficiently using random sampling and local feature
aggregation, enabling accurate, real-time identification of
infrastructure elements. Although traditional methods like
DBSCAN and RANSAC are still used for clustering and
line fitting, semantic segmentation enhances the process by
providing detailed, automated classification essential for
hazard detection and monitoring.

To do this, the use of RandLA-Net (Random Sampling and
Local Aggregation Network) is utilized because it excels at
handling large-scale, sparse 3D point clouds common to
LiDAR scans. RandLA-Net is a balance of computation
efficiency and segmentation accuracy and 1is very
appropriate for use with outdoor scenes with intricate
structures. The system efficiently processes large-scale
LiDAR point clouds through noise filtering, voxel-based
downsampling, and ground segmentation to reduce data
volume while preserving essential features. RandLA-Net is
employed for semantic segmentation, offering high
accuracy, 99.1% and mloU 93.2% by combining random
sampling and local feature aggregation. Proxy transmission
lines are extracted using DBSCAN and RANSAC, enabling
precise 3D distance calculations. Distances are compared
against safety thresholds to detect hazards such as
vegetation or building encroachments. The lightweight and
modular design supports real-time deployment with low
MAE 0.16 m and RMSE 0.23 m, making it suitable for
automated transmission line monitoring. Figure 2
Architecture of RandLA-Net showing hierarchical random
sampling, local feature aggregation, shared MLPs, and
semantic label prediction. The structure reflects the end-to-
end learning pipeline for large-scale point cloud

segmentation.
RandLA-Net
L]

Input point clouds
(N, dy)

Output semantic
labels

Random Sampling

Figure 2: Architecture of RandLA-Net

Its key features are:

e Random Sampling: Efficiently reduces the number
of points while maintaining geometric details
without costly clustering or voxelization.

e Local Feature Aggregation (LFA): Combines local
neighbourhood features to preserve fine-grained
geometry and context.

e End-to-End Learning: Directly learns point-wise
features from raw 3D coordinates and side features
(e.g., intensity, color).

Let the input point cloud be given in Eqn. (5)
P={p;=(x,vz:, ;)1 1 =12,..,N} 5)
where (¥:1%:Zi)are the 3D coordinates of the point

f:‘represent auxiliary features such as intensity or RGB
values.
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To reduce computational load while preserving spatial
structure, RandLA-Net applies random sampling to select a
subset of points for each hierarchical layer given in Eqn. (6)

P+ = RandomSample( PV, M) ©)

WhereP"" is the point set at the layerf ,and M < Nwhat is
the number of sampled points for the next layer

1)

For each sampled point‘T':r :: , the local neighborhood

(1+1)
N (p i ) is identified within the original point set £~
using a radius or k-k-nearest neighbors search:
(1+1) (i . || 5, (L
¥ (00) = {p & PO: [ - p | = 1)
(7
Where!” is the radius defining the local neighborhood.

RandLA-Net aggregates local features to capture geometric
details crucial for segmenting slender structures like
transmission lines.
e Relative Position Encoding: Calculate relative
coordinates within neighbourhoods using Eqn. (8)
(i) (141}
ﬁp_}k =Py p}' 8)
e Feature Transformation: Apply shared multilayer
perceptrons (MLPs) to concatenated features using

o= MLP ([ﬁpj:\--ﬂf:}]) ©)

e Attention  Weighting: Compute attention

coefficients “kto emphasize important neighbors
using Eqn. (10)
exp | ¢ (37 II

Grﬂ“ = | b3 Y
: = I+ 1 X | B2 |
mai|plr e P |l Rim ) |

(10)
where® is a learnable function, such as an MLP.
o Feature Aggregation: Aggregate weighted features
using Eqn. (11)

(1+1)
};." '=EkE - b

1
4

g -

1.
1
] .5

(11)
This mechanism allows the network to adaptively attend to
salient local structures, enhancing transmission line and
object segmentation. Several layers of local feature
aggregation and random sampling of increasing scale extract
features.
Those features from rough layers are further interpolated
back to their original positions with pointwise label
prediction.
e Feature propagation uses
weighting using Eqn. (12)
0 E:;".:-_l'-';';'f.-"'""
£V =————, wherew;; =1
- Loy Wij B TP

1-
.5

ae(ptt)

distance

inverse

J (12)

e Point-wise Classification

e Finally, fully connected layers followed by a
softmax activation classify each point into the

semantic categories given in Eqn. (13)

V; = arg maxsoftmax (I-L-’ f;':'}:' + FJ) (13)

where/¥" and Pare learnable parameters, and Viis the

predicted label for a pointF:, such as transmission lines,
poles, vegetation, or buildings.

Pseudocode: Semantic Segmentation of LiDAR Point
Clouds Using RandLA-Net

Input: Point cloud P (0) = {p i = (x_i, y i, z_ i, fi) |
i=1,,N}
Parameters:

L: number of hierarchical layers

M I: number of points sampled at layer I+1, M I <
[P

r: radius for local neighborhood search

k: number of neighbors (optional alternative to radius)

Output: Predicted semantic labels {y i} for each point in
P0)

Forl=0toL-1do:
Step 1: Random Sampling
P~(1+1) = Random Sample(P\(1), M 1) // Eqn. (6)
For each sampled point p_jN1+1) in PN1+1):
Step 2: Local Neighborhood Search
Np_j~i+1)) = {p_k™) € P1) | distance(p_k™(1),
p jNI+1) <r} //Egn.(7)

Step 3: Relative Position Encoding
For each neighbor p_k"(l) in N(p_j~1+1)):
dp_jk=p kD -p NI+1)  / Eqn. (8)

Step 4: Feature Transformation with Shared MLP
h_jk = MLP (concat (Ap_jk, f k™(1))) // Eqn. (9)

Step 5: Attention Weighting
For each neighbor k in N(p_j~1+1)):
ajk = exp@(hjk) / E_ {m € N(p_j"(+1))}
exp(p(h_jm)) // Eqn. (10)

Step 6: Feature Aggregation

N+ = Xtk € Np jNI+1))} o jk * h jk
// Eqn. (11)

End For

Step 7: Feature Propagation (Interpolation Back to
Original Points)
Forl=L-1down to 0do:
For each point p_i™(1) in P™(1):
Identify neighbors p_j1+1) in PN1+1)
Compute weights w_ij = 1/ distance(p_i™(l), p_jN1+1))
i) = & Gow g * LjND) S (G ow )
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// Eqn. (12)
End For
End For

Step 8: Point-wise Classification
For each point p_i* (0) in P*(0):
y i = argmax softmax (W
// Eqn. (13)
End For

0+ b

Return { y i } as semantic labels for all points

4.4 Transmission Line Proxy Extraction

The objective is to distinguish and separate pole-like objects
(potentially transmission poles) and overhead wires (e.g.,
tram or streetcar power cables) from the previously
segmented semantic classes. As there are no explicit
transmission line annotations available in the KITTI dataset,
detected overhead wires (potentially tram lines) will be used
as proxy objects for transmission lines. Figure 3 shows the
workflow diagram for transmission line proxy extraction,
illustrating each key step from data preprocessing to hazard
detection clearly and systematically.

Start: Transmission Line Proxy
Extraction

I

Step 1: Point Cloud Filtering &
Local Point Density Filtering

Filter fer linear/cylindrical
structures

Step 2: DBSCAN Clustering &
Identify Dense Clusters

Separate line-like objects from
noise

Step 3: Line Fitting & RANSAC
or Least Squares

<Fil line model to clusters

Output: Transmission Line
Proxy Reconstruction

Figure 3: Workflow Diagram for Transmission Line
Proxy Extraction

Geometric filtering and clustering are essential in the
transmission line proxy extraction process. Geometric
filtering identifies candidate points likely to belong to linear
or cylindrical structures such as cables and poles by
analyzing local point density within a neighborhood. High-
density, linear features are flagged as potential transmission
line elements. Following this, DBSCAN clustering groups
these filtered points into distinct clusters, isolating
continuous structures like transmission poles or wires while

2 EA

discarding noise. Finally, line fitting techniques such as
RANSAC are applied to the clustered points to reconstruct
straight or spline models of transmission line proxies. This
integrated process enables accurate modeling of
transmission lines from LiDAR data, supporting reliable
spatial distance measurement and hazard detection.

Step 1: Point Cloud Filtering for Linear Structures
Geometric filtering is first used to separate the candidate
points that could be parts of linear or cylindrical objects like
cables and poles. For this, we concentrate on extended
features by inspecting the local point density and point
distribution along the point cloud.

Local Point Density Filtering: For every

point?: = LX :'-."-':‘-—-7:'}, compute the local point density in a
small neighborhood (either with k-nearest neighbors or a
radius search) and mark points that belong to a high-density,
linear structure, given in Eqn. (14)

Npd = {p; lp: —pll <7} (14)
where Tis a small radius specifying the neighborhood, and

N(p:is the neighborhood of pointP:. High local density
points grouped along a straight line or a cylinder are marked
as possible transmission line candidates
Step 2: Clustering Using DBSCAN
To further separate line-like objects from other things,
density-based clustering can be used. DBSCAN (Density-
Based Spatial Clustering of Applications with Noise) is
perfect for this as it can identify dense areas of points that
make up continuous shapes, like transmission poles or
cables, and ignore unconnected noise.
DBSCAN clusters points within a certain epsilon distance
(€) and shares a minimum number of points (minPts) in their
neighborhood using Eqn. (15)

DESCAN(F, e, minPts) (15)

whereF represents the set of points in the point cloud, and
the algorithm will identify clusters of points that can
represent transmission line proxies (poles or cables). This
allows for the segmentation of the line-like regions from the
rest of the scene.

Step 3: Line Fitting to Proxy Points

After we identify clusters of points that should map onto
transmission lines (or poles), line fitting is employed to
restore the shape of the transmission line. As transmission
lines are typically straight or close to being straight for long
distances, we perform RANSAC (Random Sample
Consensus) or least-squares fitting to represent the points as
a straight line or spline.

For a set of points {pLp2s }belonging to a potential
transmission line, fit a line model in 3D using Eqn. (16)
L{t) =pp + td (16)

where Puois the starting point, d is the direction vector, andt
is the parameter along the line. RANSAC iteratively selects
subsets of points and finds the line that maximizes the inlier
count, minimizing the geometric distance to the line model
given in Eqn. (17)
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. n e w2

min y lpy— L)l (17

After fitting the line or spline model, the transmission line
proxy is fully reconstructed and ready for distance
measurement in the following steps.

By utilizing geometric filtering, DBSCAN, and line fitting
algorithms (RANSAC), the model efficiently isolates and
reconstructs transmission line proxies from the LiDAR point
clouds. This process enables precise 3D modeling of
transmission line structures even if the dataset does not have
clear labels for the said objects. These reconstructed proxies
are now prepared for calculating spatial distance and hazard
detection in later phases of the work. A method is presented
for accurately measuring distances between transmission
lines and surrounding objects using a combination of
LiDAR point clouds and high-resolution images. The
system integrates geometric data from LiDAR and visual
features from images to enable precise scene understanding.
Preprocessing steps such as noise filtering, downsampling,
ground segmentation, and coordinate normalization improve
data quality and computational efficiency. RandLA-Net is
used for semantic segmentation, achieving 99.1% accuracy
and 93.2% mloU. Transmission line proxies are identified
using geometric filtering, DBSCAN clustering, and
RANSAC line fitting. Spatial distances are then calculated
using 3D Euclidean metrics and compared against safety
thresholds to flag clearance violations. The system achieves
a low mean absolute error of 0.16 meters and a root mean
square error of 0.23 meters, with safety violations detected
in less than 4% of object pairs. The results are visualized in
3D with highlighted hazard zones, supporting effective and
potentially real-time hazard detection in transmission line
monitoring.

4.5 Spatial Distance Measurement

The Spatial Distance Measurement step is critical in
measuring the clearance among transmission lines (or their
proxy models) and the adjacent infrastructure including
vegetation, buildings, and poles. This step is important to
ensure that the transmission lines are sufficiently separated
from hazard items to keep them safe and avoid damage. The
process requires computing 3D Euclidean distances between
the reconstructed transmission lines and neighbouring
objects, and then comparing those distances with safety
thresholds according to transmission line standards.

Step 1: Calculate 3D Euclidean Distances
Once the proxy transmission lines (modeled as lines or
splines) are extracted, the next task is to compute the 3D
Euclidean distance from each point in the point cloud to the
reconstructed  transmission line. Given a point
p = (X%,%,Z)in the LiDAR point cloud and a point on the
reconstructed linel{Z) = Po + fd, the Euclidean distance
d(p, L)is calculated using Eqn. (18)
d(p, L) = |lp — L{D) |

2 EA

(18)

Where, P = (x,%,2) is the point in the point cloudL (t) is
the line parameterized byf, with Poas the starting point

andd as the direction vector. T is the parameter along the
line.

For each point in the point cloud, the closest distance to the
transmission line (or proxy line) is computed.

Step 2: Apply Safety Threshold Rules

After calculating the distances, these values are compared
with safety thresholds derived from power line regulations.
Transmission lines typically have minimum safety clearance
distances defined by local or international standards (e.g.,
IEEE, OSHA). These thresholds take into account factors
like:
e Distance to vegetation: Preventing trees or plants
from encroaching on power lines.
e Distance to buildings: Ensuring that transmission
lines do not pose a risk to nearby infrastructure.
e Distance to other poles or structures: Ensuring that
poles do not interfere with each other or other
structures in the vicinity.

Let Ii"!1r.':represent the safety threshold for a given object. If

the calculated distancet (12 L) falls below this threshold, the
point is flagged as potentially hazardous.

Hazard if @(p, L) < dep

The threshold®: can vary depending on the object type, as
power line regulations typically have different safety
distances for vegetation, buildings, and other obstacles. The
system calculates 3D FEuclidean distances between
transmission lines and nearby objects like vegetation,
buildings, and poles. These distances are then compared
with safety thresholds based on IEEE and OSHA standards.
If the measured distance is less than the specified threshold
for an object type, it is flagged as a hazard. Different safety
limits apply for vegetation, infrastructure, and poles to
ensure compliance. Violations are visually highlighted in the
3D point cloud for easy identification. This method enables
automated, accurate clearance monitoring with a low error
rate and strong alignment with safety regulations.

Step 3: Highlight Regions Below Safety Margins

Once distances are calculated and compared to safety
thresholds, regions where distances are below acceptable
safety margins need to be highlighted for further action.
These areas are marked as potential hazard zones where
vegetation, buildings, or other objects may interfere with
transmission lines.

The identification of hazardous regions can be done by
color-coding or highlighting the affected areas within the
point cloud. For example, any point in the point cloud

d(p, L) < dincan be visually marked in red or other colors
to indicate risk.

The output of this step is a 3D visualization of the point
cloud, where hazardous areas are highlighted. Although alert
generation is not implemented in this study, the flagged
zones can support further decision-making or monitoring.
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Final Outcome
e  Clearance violations (e.g., encroaching building or
vegetation) are identified and flagged. These
flagged violations serve as key outputs of the
system and support the final goal of automated
spatial clearance monitoring in urban transmission
line environments
e 3D hazard zones are visualized for the areas where
the safety margins are breached.
This process helps ensure that transmission lines are
adequately monitored for security and that objects close by
that can cause interferences or present hazards are readily
identifiable and solved.
Pseudocode: Spatial Distance Measurement
Input:
P = set of points in the point cloud
L = set of transmission line proxies (lines)
SafetyThresholds = { vegetation: d veg, building:
d_building, pole: d_pole }

Output:
HazardPoints = points violating safety distances

For each point p in P:
minDistance = very large number

For each line l in L:
Find closest point on [ to p
Calculate distance = Euclidean distance between
p and closest point

If distance < minDistance:
minDistance = distance

Determine object type of p (vegetation, building,
pole, etc.)
Get threshold d_th from SafetyThresholds based on

object type
If minDistance < d_th:
Mark p as hazard point
Add p to HazardPoints
End For
Highlight HazardPoints in the 3D visualization

Output HazardPoints and visualization

5. Results and Discussion

This section reports the semantic segmentation and spatial
distance measurement experiment results carried out on the

KITTI Dataset. The emphasis here is on testing the proposed
method for the accuracy of segmentation, precision in
distance measurement, and performance in detecting hazards
in the environment of transmission lines. The experiments
were conducted on a PC with an Intel Core 19-10900K CPU
at 3.7 GHz, 32 GB RAM, Ubuntu 20.04.5 LTS, and an
NVIDIA RTX 3080 Ti GPU. Software employed is C++17,
Python 3.8, PyTorch 1.11.0, and CUDA 11.4 for running the
models effectively.

5.1 Semantic Segmentation Results

To evaluate the effectiveness of the RandLA-Net model for
semantic segmentation of the point clouds, the following
metrics were used and Table 1 shows the segmentation
performance metrics for different classes, including poles,
buildings, vegetation, transmission line proxies, and
background.

Accuracy: The ratio of correctly classified points to the total

number of points, given in Eqn. (19
Number of Corrzetly C&ssiﬁad Points
Accuracy

Totsl Mumbar of Points (19)
loU: Measures the overlap between predicted and ground
truth segments for each class. The formula is given in Eqn.
(20)

Intarsection  |AnB|

" laus] (20)
Mean Intersection over Union (mloU): The average loU
across all classes, given in Eqn. (21)

mloU = = Yo, IoU;
r- -

ol =

Union

1)

where C is the number of classes.

Table 1: Segmentation Results

Class Precision | Recall | F1- loU
(%) (%) Score | (%)
(%)
Poles 98.4 97.9 98.1 95.5
Buildings 97.3 96.7 97.0 92.8
Vegetation 94.5 93.1 93.8 88.2
Transmission | 96.1 954 95.7 90.3
Line
(Proxy

Power

Wires)

Background | 99.7 99.8 99.7 99.3

e Overall Accuracy: 99.1%

o mloU: 93.2%
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Figure 4: RandLA-Net's Segmentation Metrics Graph

Figure 4 shows the graphical representation of the
segmentation results given above. These findings indicate
that RandLA-Net with image fusion efficiently segments
important transmission line proxies and city infrastructure.
The large IoU for cable-like features validates the strength
of the model in detecting thin, linear features, which is
particularly significant for monitoring over distances.
Vegetation segmentation is also extremely accurate, which
is essential in the detection of possible safety risks.
RandLA-Net is a deep learning model for semantic
segmentation of LiDAR point clouds, excelling in urban and
semi-structured environments but struggling with dense
vegetation and close structures. In complex scenarios like
forests, it may misidentify similar objects or noise, leading
to decreased accuracy. Overlapping point clouds create
challenges in distinguishing foliage from nearby structures
such as poles. It finds tightly packed objects difficult to
segment accurately, resulting in misclassifications.
Additionally, it may struggle with distance estimation when
objects cluster in urban settings. While effective in
controlled environments like suburbs, RandLA-Net's
scalability in larger, complex datasets is limited. Its real-
time performance may suffer in thick foliage or congested
surroundings.  Environmental factors such as rain and
illumination can obscure LiDAR scans, limit segmentation
capabilities, and require pre- and post-processing to
successfully manage edge situations.

5.2 Spatial Distance Measurement

To evaluate the accuracy of spatial distance calculations
between transmission line proxies and surrounding objects,
the following metrics were used:

MAE: Measures the average of the absolute errors between
predicted and ground truth distances, given in Eqn. (21)

1 ] N i 7 i
MAE = EE':.":l |apl,ed¢_p;-} - ﬂg,:':_P:'” (21)

RMSE: Penalizes large errors by squaring the differences
before averaging, given in Eqn. (22)

< EAI

11 . . . L 2
RMSE = \i'; Tits (ﬂpred‘-}}:} - ﬂgc‘-P:})
(22)
Safety Clearance Violation Rate: Percentage of objects

(vegetation, buildings) violating the safety margin threshold,
expressed in Eqn. (23)

" . MNumber of Hazardous Peints
W =
1olation Rate v~ x 100 23)

Table 2 shows the distance measurement results between
various object pairs, including poles and vegetation, cables
and buildings, poles and buildings, and cables and
vegetation. These results indicate that the spatial distance
measurement module reliably detects proximity issues with
low error margins, supporting hazard detection and
maintenance planning. The safety thresholds for vegetation,
buildings, and poles are defined to ensure safe clearances
between transmission lines and nearby objects. These limits
help prevent electrical faults, physical contact, and structural
interference. Vegetation thresholds guard against tree
encroachment, building thresholds maintain required
distances from structures, and pole thresholds avoid utility
infrastructure conflicts. The system computes 3D Euclidean
distances using LiDAR data to reconstruct transmission line
proxies, identifying any point below the defined threshold as
hazardous. These points are visually marked for quick
identification. Reported safety violation rates include 3.2%
for poles and vegetation, 2.5% for cables and buildings,
1.1% for poles and buildings, and 3.8% for cables and
vegetation. This automated process enhances hazard
detection, improves maintenance planning, and ensures
compliance with clearance regulations.

Table 2: Distance Measurement Results

Object MAE RMSE Safety

Pair (meters) | (meters) | Violation
Rate (%)

Poles -10.18 0.25 3.2

Vegetation

Cables - | 0.15 0.21 25

Buildings

Poles -10.12 0.18 1.1

Buildings

Cables -| 0.20 0.28 3.8

Vegetation

e Average MAE: 0.16 meters

o  Average RMSE: 0.23 meters

e  Overall Violation Rate: Low, indicating good
clearance detection accuracy

A bar graph in Figure 5 is best used for comparing different
values across distinct categories or groups. In this specific
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image, it's used to compare 'MAE', 'RMSE', and 'Safety
Violation Rate' across different 'Object Pairs'.

““““

B MAE

BN RMSE

mm Safety Violation Rate
L0

w8 a2

Poles -

‘Object Pair

Figure 5: Distance Measurement Results Metrics
Graph

Distance Measurement Errors (WA and RMSE for Object Pairs

Figure 6: Distance Measurement Errors

Figure 6 shows the distance measurement errors and Figure
7 is a histogram of the measured distances from
transmission lines to different types of obstacles. The
distance in meters is shown on the horizontal axis in discrete
bins. The frequency, or how often a specific range of
distances was measured, is on the vertical axis. The
histogram indicates the central tendency and variation of
these distance values, showing the most typical distances
and the range of variation measured.

Distribution of Measured Distances Between Tr ion Lines and Obstacles

g

Frequency

8

0 2 4 6 8
Distance {meters}

Figure 7: Histogram of Measured Distances Between
Transmission Lines and Obstacles

The pie chart in Figure 8 shows the rate of safety violations
for four pairs of objects: Cables - Vegetation, Poles -
Vegetation, Cables - Buildings, and Poles - Buildings. Each
of the pie slices corresponds to one of these object pairs, and
the diameter of each slice is proportional to the percentage

of safety violations found for that particular pair. The
percentages are also clearly marked on each slice, making it
possible to directly compare the rates of violations. The
graph visually indicates which object pairs have the greatest
and least frequency of safety violations.

Safety Violation Rates Across Object Pairs
Cables - Vegetation

10.4%

30.2% Poles - Buildings

Poles - Vegetation

23.6%

Cables - Buildings

Figure 8: Safety Violation Rates across Object Pairs

Figure 9 displays a 3D LiDAR (Light Detection and
Ranging) point cloud that has been projected onto the 2D
coordinates of a standard image. The red dots represent
individual data points captured by the LiDAR sensor, and
their placement corresponds to their location as seen from
the perspective of the image. By projecting the point cloud,
it becomes easier to associate the 3D measurements with the
objects and features visible in the corresponding image.

Figure 9: LiDAR Point Cloud Projected onto Image
Coordinates

5.3 Hazard Detection and Visualization

The system visualizes hazard zones by color-coding the 3D
point cloud output:

e Red: Indicates points where the clearance is below

the safety threshold (hazard).

e Green: Indicates points with safe distances.
Although the current implementation does not generate real-
time alerts, the visual outputs highlight hazardous areas for
manual review or future automation. The RandLA-Net
model effectively manages environmental variations such as
weather and terrain by combining LiDAR point clouds with
high-resolution imagery and robust preprocessing
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techniques. Noise filtering through Statistical Outlier
Removal removes spurious points caused by environmental
factors. Ground segmentation and coordinate normalization
ensure focus on relevant structures like poles and vegetation.
RandLA-Net enhances segmentation by preserving fine
geometric details and enabling generalization in diverse
outdoor conditions. The fusion of visual and geometric data
improves object recognition under varying lighting and
terrain. Though validated on the KITTI dataset, the method
shows strong performance and proposes future adaptation
for complex terrains like forests and mountains.

Figure 10 displays two 2D scatter plots side by side, each
showing a point cloud from a bird's-eye view (X and Y
axes). The left graph, "Segmented Point Cloud (2D View),"
contains the data points colored differently, presumably
indicating various segmented classes or categories found in
the point cloud. The correct plot, "Hazard Zones
Highlighted (2D View)," shows the majority of points as
Gray, with a smaller set of points highlighted as red. These
red points would probably represent areas or objects
determined as "hazard zones" according to some given
criteria. The visualization comparing these two plots will
provide a sense of the relative positioning of the segmented
classes regarding the detected hazard zones across the same
spatial context.

Segmented Point Cloud (2D View)

Hazard Zones Highlighted (2D View)

Figure 10: Segmented and Hazard-Highlighted LiDAR
Point Cloud Visualization (2D Projection)

Figure 11 shows three distinct 3D scatter plots, each plotting
a LiDAR point cloud of the same environment from almost
identical but not quite identical viewing positions. Each is
viewed using a three-dimensional Cartesian coordinate
system with the X and Y axes defining the horizontal plane
and the Z axis defining height. The colored individual points
in the cloud are most probably the 3D intensity of the
LiDAR signal reflected or perhaps some other
characteristics such as distance or the object class. These
visualizations give a spatial indication of the scene
environment that is sensed by the LiDAR sensor and show
the shape, size, and relative locations of the objects in the
scene that are scanned. Multiple views create a richer
perception of the scene's 3D structure. The paper presents a
method that integrates LiDAR point clouds and high-
resolution imagery for real-time monitoring of power
transmission lines, focusing on calibration, synchronization,
and real-time data acquisition. While using the offline
KITTI dataset for development, the approach is adaptable to
UAV-based real-time applications. It emphasizes the need
for intrinsic and extrinsic sensor calibration and precise
temporal synchronization to ensure accurate data fusion. The

system simulates real-time performance using frame-synced
KITTI data and employs lightweight preprocessing, efficient
segmentation with RandLA-Net, and fast 3D distance
calculations. This makes it suitable for GPU-enabled edge
devices and real-time hazard detection, enabling automated,
scalable monitoring in field conditions.

Figure 11: 3D LIDAR Point Cloud

Figure 12 shows a 3D Point Cloud Visualization with Color-
coded Classes. The colors likely represent different classes
or values within the point cloud data, such as depth,
intensity, or object categories. The image appears to show
scenes with roads, vehicles, and buildings, all represented by
different colors.

Figure 12: 3D Point Cloud Visualization with Color-
coded Classes

5.4 Performance Comparison

The proposed method demonstrates higher accuracy and
robustness in these areas compared to the existing
approaches. Table 3 compares the core aspects of the three
research papers with the proposed method, focusing on data
source, real-time capability, segmentation accuracy, hazard
detection, and distance measurement. The proposed
approach offers an advanced real-time solution for
monitoring power transmission lines, surpassing existing
methods. [24] Focused on vegetation inspection but lacked
distance measurements and safety compliance. [22]
presented a mobile LiDAR framework with semantic
segmentation inaccuracies, while PowerLine-Net by 29.
showed segmentation performance without real-time
capabilities or spatial clearance evaluation. Our system uses
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high-resolution LiDAR and RandLA-Net for 99.1% which is
segmentation accuracy and 93.2% mloU, incorporating 3D essential in
distance  measurements and IEEE/OSHA  safety the detection
comparisons,  effectively addressing limitations  in of possible
scalability, generalization, and hazard identification. - - sgfety risk
’ ? Novelty Medium - | Medium- High -
Uses deep | dynamic Combines
learning for | point cloud | airborne
vegetation registration LiDAR  with
Table 3: Comparison of Key Features Across Papers inspection multiple
and Proposed Method advanced
algorithms
Aspect Bergmann | (M. Li et al. | Proposed for
etal(2024) | 2024) Method transmission
_ i _ i line  safety
Segmentatio | Medium  — Medlurq - High . - monitoring
n Focus on | Transmissio | Effective
vegetation n line object | segmentatio
segmentatio | n of multiple
n objects
(buildings, L .
plants, RandLA-Net outperforms several existing segmentation
transmission models in key areas relevant to power transmission line
lines) monitoring. Compared to PointNet++, it handles sparse and
large-scale LiDAR data more efficiently while preserving
fine geometric details. Against DGCNN, RandLA-Net
Hazard Medium — | Medium — | High — offer.s greater computational efﬁf:iency apd .scalability,
Detection Vegetation Transmissio | Detection of | making it more sultablg for real-time applications. When
interference | n line object | vegetation, compared with Power Line-Net, RandLA-Net shows better
with  power | identification | buildings, real-time capability and generalization with fewer issues
lines and  other | related to class imbalance. Additionally, models like
objects along | DCPLD-Net and SS-IPLE, though innovative, are more
transmission complex and less modular, wherecas RandLLA-Net integrates
lines seamlessly with LiDAR-image fusion systems. It delivers
higher segmentation accuracy, faster inference, and stronger
environmental adaptability for detecting linear infrastructure
Distance Low — No | Medium - | High = | like power lines.
Measuremen | explicit Real-time Accurate
t distance registration distance
measureme | and measuremen
nt classificatio |t  between 5.5 Discussion
n transmission
lines  and | The high overall accuracy (99.1%) and mloU above 93%
objects demonstrate that RandLA-Net, combined with image fusion,
effectively segments critical transmission line proxies and
urban infrastructure. The proposed system enhances
Method Medium - | Medium— High — | transmission line safety by automating monitoring with
Complexity | Deep Kalman Combines LiDAR point clouds and high-resolution pictures, therefore
learning for | filtering  + | multiple lowering reliance on manual inspection. Ground surveys
vegetation deep algorithms and drone operations are examples of traditional inspection
inspection learning for | for  feature . .
registration extraction, processes thgt are both tlme—consumlng and error-prone. By
segmentatio merging L}DAR and picture datg, the quICG detgcts
n, and | clearance violations and dangers while also giving real-time
measuremen distance measurements between transmission lines and other
t impediments. It recognizes possible hazards such as
Accuracy Medium - | Medium - | High — | vegetation intrusion and surrounding buildings, avoiding
(Hazard >94% 94.7% 99.1% operational problems. By leveraging sophisticated semantic
Identificatio | precision for | accuracy in | Vegetation segmentation models such as RandLA-Net, the system
n) vegetation object segmentatio categorizes objects within extensive point clouds and applies
interference | identification | n is also . . .
extremely accurate dlstancg measurement methods. This automation
accurate, guarantees precise identification of safety breaches with
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minimal supervision, greatly boosting reliability and safety
in comparison to manual checks and increasing the

efficiency of maintenance tasks through ongoing
surveillance.
Final Output Summary:

e  Clearance violations (e.g., encroaching buildings or
vegetation) are identified and flagged. These
flagged violations serve as key outputs of the
system and support the final goal of automated
spatial clearance monitoring in urban transmission
line environments.

e 3D hazard zones are visualized in areas where the
safety margins are breached, providing a clear
representation of potential risks for further analysis.

The method handles environmental variations such as terrain
through  robust  preprocessing, = RandLA-Net-based
segmentation, and LiDAR-image fusion. Noise filtering
removes spurious points caused by environmental
conditions, and ground segmentation isolates relevant
features for improved accuracy. RandLA-Net ensures
generalization across complex outdoor scenes using random
sampling and local feature aggregation. The fusion of
geometric LiDAR data with high-resolution images
enhances detection under varying lighting and terrain.
Although tested on urban datasets (KITTI), the method
achieves 99.1% accuracy and 93.2% mloU, with low hazard
violation rates.

Real-Time Implementation Feasibility

Even though the study makes use of the pre-recorded and
offline dataset, the methodology applies to real-time
systems. Provided with the right hardware in the form of
real-time  LiDAR  sensors, camera systems in
synchronization, and GPU-enabled edge devices, the
majority of the pipeline's stages can be run in real time. In
particular, noise filtering, ground segmentation, RandLA-
Net inference, proxy extraction, and spatial distance
calculation are computationally light and can be
implemented in real-time systems. Everything else, except
the initial training of the deep learning model and dataset
collection (in the proposed work, utilizing KITTI), can go
online after training. The model can then continuously
process live point cloud and image data. This verifies the
capability of the method to aid real-time hazard detection
and clearance monitoring in real transmission line
conditions, which facilitates quicker and automatic decision-
making.

6. Conclusion and Future Scope

This research introduced an end-to-end real-time monitoring
system for power transmission lines through the fusion of
high-resolution visual imagery and LiDAR point cloud data.
The monitoring system offers several cost-related
advantages compared to conventional inspection methods. It
reduces labor and operational costs by minimizing the need

post-processing ~ expenses by eliminating  manual
intervention. Equipment and transport costs are reduced by
utilizing pre-collected or vehicle-mounted LiDAR data
instead of deploying drones or helicopters. Its high accuracy
in hazard detection supports early intervention, cutting
emergency response costs. The system's scalability
decreases inspection frequency, and accurate hazard
visualization enables predictive maintenance, leading to
overall cost savings and extended infrastructure lifespan.

The integration of LiDAR point cloud data with high-
resolution  imagery  significantly = enhances power
transmission line monitoring by combining precise 3D
geometric information with rich visual detail. This fusion
improves scene understanding, object identification, and
hazard detection. Using RandLA-Net for semantic
segmentation, the system achieves 99.1% accuracy and
93.2% mloU, effectively detecting thin structures like wires.
It enables accurate spatial distance measurements with low
MAE 0.16 m and RMSE 0.23 m, and maintains safety
violation detection rates below 4%. The method supports
real-time implementation, reduces manual inspection
dependency, lowers operational costs, and improves
monitoring reliability in complex environments. The
RandLA-Net semantic segmentation framework was used,
where the model segmented infrastructure elements like
poles, buildings, vegetation, and transmission line proxies
with high precision. The spatial distance measurement
module also allowed for the accurate calculation of 3D
Euclidean distances between transmission lines and other
structures, effectively marking potential clearance breaches.
Experimental evaluation on the KITTI dataset showed
excellent segmentation accuracy (mloU of 93.2%) and
minimal spatial distance error (average MAE of 0.16
meters), affirming the robustness and reliability of the
model. The method provides substantial benefits in boosting
the automation, precision, and safety of monitoring power
transmission lines and can be easily applied in real-time
with suitable sensors and edge computing equipment. The
enhanced segmentation accuracy and precise spatial distance
measurements affirm the effectiveness of using KITTI along
with RandLA-Net and multi-modal fusion techniques. This
provides a highly reliable framework for monitoring
transmission line proxy infrastructure in urban settings and
supports future scaling to more specialized datasets. The
system achieves real-time performance by integrating strong
hardware with refined software methods. It was evaluated
with an Intel 19 processor, 32 GB of RAM, and an NVIDIA
RTX 3080 Ti graphics card. For field applications, edge
devices such as NVIDIA Jetson AGX Orin and Xavier excel
because of their integrated GPU features. Improvements like
model pruning, quantization, and deployment using
TensorRT or ONNX Runtime boost inference speed.
Preprocessing with GPUs and handling data asynchronously
further lowers latency. Utilizing synchronized sensors and a
modular structure, the system is exceptionally versatile for
monitoring power lines in real time.

for manual surveys and aerial inspections through Future Scope:
automation. The use of deep learning RandLA-Net lowers
EAI Endorsed Transactions on
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Visual Imaging

v Integration with UAVs and real-time sensors is a
matter of extending the existing offline model to
real-time field implementation with drone-based
LiDAR and visual sensors for ongoing aerial
observation.

v' Adaptation for varied terrain and weather
conditions means training and testing the model
with data from forest, mountain, and coastal
terrains  to  increase  generalization  and
environmental resilience.

v' Real-time alert and predictive maintenance are
possible through the creation of an automated alert
creation system and predictive analytics integration
to foresee vegetation overgrowth or structural
decay. A robust foundation is presented for
implementing real-time alerts and predictive
maintenance in power line hazard detection. By
combining LiDAR point clouds and visual imagery
it enables accurate and real-time identification of
hazards like vegetation encroachment and
structural interference. Using RandLA-Net, the
system achieves high segmentation accuracy and
mloU to classify critical infrastructure components.
It calculates 3D distances between transmission
lines and nearby objects, flagging safety violations.
Though real-time alerts are not yet implemented,
the output highlights hazardous zones, which can
be automated. Predictive maintenance can be
achieved by monitoring distance trends, modeling
vegetation growth, and applying machine learning
to forecast risks. The entire pipeline, comprising
real-time  sensing,  segmentation,  distance
measurement, alert generation, and scheduling, can
be executed on GPU-enabled edge devices, making
it feasible for real-world deployment.
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