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Abstract 

INTRODUCTION: For energy storage systems to be safe, effective, and reliable, it is essential to accurately forecast the 
State of Health (SOH) and Remaining Useful Life (RUL) of lithium-ion batteries under complicated operating situations. 
OBJECTIVES: This research suggests a hybrid modeling approach that combines a physics-informed Deep Operator 
Network (DeepONet) supplemented by encoders with a neural network optimized by the Whale Optimization Algorithm 
(WOA). 
METHODS: The framework first utilizes WOA to improve the initialization of Backpropagation (BP) neural networks, 
thus enhancing convergence speed and avoiding local minima in early-stage training. Then, a multi-physics informed 
DeepONet model is constructed to learn the spatiotemporal evolution of battery thermal and electrochemical variables 
from virtual heating profiles. 
RESULTS: By integrating boundary conditions, starting restrictions, and partial differential equation (PDE) residuals into 
the loss function, the model integrates physical supervision and guarantees forecast consistency with battery dynamics. 
CONCLUSION: Both COMSOL-generated synthetic data and publicly available battery aging datasets are used in 
extensive research. The suggested approach outperforms conventional MLP, LSTM, and even standard DeepONet models, 
according to the results, with an R2 of 0.99 and an MSE of 0.0009. 
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1. Introduction

Lithium-ion batteries (LiBs) have become indispensable 
in various applications such as electric vehicles (EVs), 
renewable energy storage systems (ESS), aerospace 
equipment, and portable electronics [1, 2]. However, their 
performance and safety degrade over time due to 
complex, nonlinear ageing mechanisms, including  

electrode material deterioration, electrolyte 
decomposition, and solid electrolyte interphase (SEI) 
layer growth. These degradation pathways are influenced 
by a multitude of dynamic operational and environmental 
conditions, making battery aging an inherently 
multiphysics and multi-scale problem [3]. The resulting 
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uncertainty and variability in degradation behavior pose 
serious challenges for Battery Management Systems 
(BMS), which must ensure reliability, safety, and 
efficiency throughout the battery's lifespan. As such, 
accurately forecasting the State of Health (SOH) and 
Remaining Useful Life (RUL) of LiBs under real-world, 
often harsh conditions is not only technically demanding 
but also critical for enabling predictive maintenance, 
preventing catastrophic failures, and optimizing usage 
strategies across diverse applications [4]. 

Traditional methods for SOH and RUL prediction 
primarily include electrochemical models and statistical 
learning approaches. However, electrochemical models 
often require deep domain expertise, are computationally 
expensive, and are difficult to generalize across battery 
types and operational profiles [5,6]. Conversely, data-
driven methods like neural networks and regression 
provide flexibility and adaptability. Still, they have 
drawbacks such inadequate initialization, overfitting, and 
noise sensitivity, particularly when working with small or 
high-dimensional datasets [7]. 

One of the core challenges in applying neural networks to 
battery health modeling lies in the initialization of 
network parameters. Standard Backpropagation (BP) 
training methods rely heavily on stochastic initialization 
of weights and biases, which may lead to convergence to 
local minima, slow training, or poor generalization [8,9]. 
Backpropagation (BP) is a fundamental algorithm used to 
train neural networks by propagating the error backwards 
through the layers and updating weights to minimise the 
loss function. It relies on gradient descent for 
optimization. This is particularly problematic for non-
convex loss landscapes such as those encountered in 
nonlinear SOH degradation mapping. To overcome these 
limitations, metaheuristic optimization algorithms have 
been introduced into the training process of neural 
networks, among which the Whale Optimization 
Algorithm (WOA) stands out due to its strong global 
search capability, low parameter tuning complexity, and 
natural suitability for multimodal problems [10]. 

Mirjalili (2016) introduced the Whale Optimization 
Algorithm, a population-based algorithm inspired by 
nature that uses a bubble-net feeding approach to simulate 
humpback whale hunting behavior. Three main methods 
are included in the algorithm: random search 
(exploration), bubble-net assaulting (exploitation), and 
encircling prey [11,12]. During optimization, whales 
(solutions) update their positions based on the current best 

position and a dynamically adjusted convergence factor. 
The inclusion of both spiral updating (logarithmic spiral 
motion) and position shrinking allows the algorithm to 
balance exploration and exploitation effectively, helping 
the neural network to escape local minima and reach 
better global optima. 

A Whale Optimization Algorithm (WOA) is a 
metaheuristic inspired by humpback whale hunting 
behavior, particularly the spiral bubble-net feeding 
strategy. It's used here to optimize BP neural network 
parameters to avoid local minima and improve 
convergence. In the context of battery health prediction, 
WOA can be employed to optimize the weights and biases 
of BP neural networks, replacing traditional random 
initialization. This results in faster convergence, lower 
training loss, and improved prediction stability [13]. The 
Whale Optimization Algorithm (WOA) enhances the 
Backpropagation (BP) neural network by providing 
globally optimized initial weights, thereby improving 
convergence speed and reducing the risk of local minima. 
This is especially valuable in the noisy, nonlinear domain 
of battery SOH/RUL prediction. WOA’s gradient-free, 
global search capability strengthens model robustness and 
accuracy when data is limited. Integrated into the hybrid 
WOA-DeepONet framework, it significantly boosts 
prediction performance and physical consistency. 
Moreover, the nature of WOA as a gradient-free method 
makes it particularly attractive for non-differentiable or 
noisy fitness landscapes, such as those derived from 
partially observed battery degradation data. When 
integrated into neural network frameworks, WOA can 
significantly enhance model robustness and accuracy, 
especially in early training stages or when training data is 
limited [14]. 

Despite the promise of WOA-BP hybrids, few studies 
have explored their integration into physics-informed 
learning frameworks for battery modeling [15]. In real-
world systems, battery degradation is governed by 
physical laws such as heat transfer, charge conservation, 
and electrochemical kinetics. Recent advancements in 
physics-informed neural networks (PINNs) and deep 
operator networks (DeepONet) allow embedding these 
physical constraints into neural architectures by 
incorporating partial differential equations (PDEs), 
boundary conditions, and domain-specific priors into the 
training objective. Such physically constrained networks 
not only improve generalization but also ensure physically 
consistent predictions. 
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To this end, this paper proposes a novel hybrid framework 
that combines WOA-optimised BP neural networks with a 
multi-physics-informed DeepONet enhanced by encoders, 
to achieve accurate and physically reliable SOH and RUL 
prediction for lithium-ion batteries [16]. DeepONet is a 
neural network architecture designed to learn operators. 
The model used here incorporates physical constraints 
like PDEs and boundary conditions and encoders to 
predict spatiotemporal battery behavior accurately and 
consistently. The synergy between WOA-based 
optimization and physics-informed learning provides 
multiple benefits. First, WOA ensures effective network 
parameter initialization, leading to faster and more 
reliable convergence. Second, the DeepONet structure 
enables efficient learning of functionals and operators 
relevant to battery degradation, allowing the model to 
handle previously unseen control sequences and 
degradation modes. Third, the inclusion of physical priors 
enhances model interpretability and ensures physically 
plausible outputs. This structure not only improves 
prediction accuracy but also enhances interpretability by 
embedding physical laws, modeling operator-level 
relationships, and using encoder-driven abstraction. 
Predictions are physically meaningful, traceable, and 
consistent with real-world battery behavior, which is 
essential for reliable health estimation. These design 
elements ensure that the model can be trusted even under 
complex and unseen degradation scenarios. 

2. SOH Definition
In the context of lithium-ion batteries, the SOH is a

critical indicator that reflects the aging and degradation 
status of the cell. Since SOH is not a directly measurable 
quantity, it must be inferred through measurable health 
indicators (HI), such as internal resistance, capacity 
retention, or charge/discharge efficiency (see Figure 1). 

Although there is no universally accepted formula 
for SOH, it is typically defined based on the reduction in 
available capacity or the increase in internal resistance 
compared to the battery's initial state. In this study, we 
adopt internal ohmic resistance as the proxy for 
evaluating SOH, as it reliably captures the deterioration 
trend during battery usage. 

As demonstrated using publicly available aging 
datasets from the University of Maryland, there is a 
noticeable and nonlinear rise in internal resistance with 
increasing charge-discharge cycles (see Figure 1). This 
trend, though not perfectly smooth, reveals a gradual and 
irreversible aging trajectory of the battery. Accordingly, 

the SOH in this work is defined as a normalized function 
of the battery's internal resistance, expressed as: 

int 0

EOL 0

( )0SOH( ) 1 R t RR t
R R

−
= −

−
(1) 

where: int ( )R t  is the internal resistance at cycle t, 0R
is the battery's initial resistance when it is brand-

new, EOLR and is the end-of-life (EOL) resistance 

threshold. 
This definition provides a scalable and interpretable 

measure of degradation, suitable for integration into both 
data-driven and physics-informed modeling frameworks. 
SOH is defined as a normalized function of internal 
resistance, reflecting battery degradation over time. It 
serves as the key prediction target in the WOA-DeepONet 
model, where WOA optimizes neural network 
initialization and DeepONet ensures physically consistent 
predictions. This integration enables accurate SOH 
estimation aligned with underlying thermal and 
electrochemical dynamics. 

Figure 1: Cyclic Demonstration 

2.1 Algorithm for Network Training 
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Figure 2: Multiphysics field battery state 
prediction system based on MPI-DeepONet with 

encoders 

Figure 2 demonstrates the overall process and structural 
details of the MPI-DeepONet with encoders model 
proposed in this paper for battery Multiphysics field 
prediction, the core of which consists of three major 
phases: virtual data generation, model training and real-
time prediction. In Phase 1, based on the given virtual 
heating profile, the temperature and material transport 
process of Li-ion batteries in 3D space is simulated by the 
Multiphysics FEM (Multiphysics Finite Element 
Method), which couples the chemical reaction model, the 
thermodynamic model and the exothermic kinetics, to 
generate the data, including the temperature (T), the 

concentration of SEI film ( SEIC ), the concentration of

positive and negative electrodes ( peC , neC ), positive

and negative electrode concentration ( peC , eC ) and

electrolyte concentration ( eC ) for subsequent model
training. A Solid Electrolyte Interphase (SEI) is a 
passivation layer that forms on the electrode surface in 
lithium-ion batteries due to electrolyte decomposition. It 
critically affects battery aging and is modeled to assess 
State of Health (SOH).  Phase 2 employs MPI-DeepONet 
with encoders, whose architecture comprises two key 
components: the Branch Network, which processes 
control variables (heating curves), and the Trunk 
Network, which handles spatio-temporal coordinates. The 
outputs of both networks are then used to calculate 
predicted values via the dot product form. Encoders 
enhance the representation of complex control inputs, 
such as heating profiles, by extracting meaningful features 
that improve learning efficiency and generalization. This 
enables the DeepONet model to capture better the 
relationship between control actions and battery state 
variables. As a result, the model achieves higher 
prediction accuracy, particularly in unseen or dynamic 
conditions. The encoder's contribution is critical for 
reliable operator learning and physically consistent 
outputs. In training, the model is designed to be guided by 
prior knowledge of multiple physical fields. Physical 
consistency learning is achieved by constructing a joint 

loss function that includes the loss of data fitting DL , the

loss of residuals from physical equations phyL , the loss of

boundary conditions BCL , and the loss of initial

conditions ICL . The model captures temporal
dependencies through the Trunk Network in MPI-
DeepONet, which processes spatiotemporal coordinates to 
learn time-evolving battery dynamics. Encoders abstract 

sequential input features like heating curves, while PDEs 
and boundary/initial condition losses enforce physically 
consistent time-series predictions. These elements enable 
accurate SOH/RUL forecasting across varying 
degradation sequences. The combined loss function 
integrates data fidelity and physical consistency through 
four key components: data fitting loss, physics residual 
loss, boundary condition loss, and initial condition loss. 
The data loss ensures alignment with observed battery 
behavior, while the physics-based terms guide the model 
to obey governing equations and realistic constraints. This 
balance enhances both accuracy and generalization, 
especially in sparse or noisy data scenarios. Ablation 
studies confirm that removing any term significantly 
degrades performance, proving the necessity of each 
component. In Phase 3, the model efficiently predicts the 
evolution of multi-field variables under any heating 
process, and it can also perform a comparison with the 
traditional heating process. Efficiently predict and 
demonstrate higher accuracy and lower computational 
cost in comparison with conventional FEM solutions, 
especially after integrating the encoder and physical 
supervision information, which significantly improves the 
generalization performance and model interpretability. 
Overall, the framework not only realizes end-to-end 
mapping from control strategies to physical field 
distributions, but also has the potential to be deployed in 
edge devices for fast battery state estimation and thermal 
risk warning. 

In neural networks, the primary objective of training 
is to determine the connection weights (CW) between 
neurons and the biases associated with each neuron. These 
parameters are critical in defining the network’s capacity 
and its prediction accuracy. To optimize these values, the 
Error BackPropagation (EBP) algorithm is widely used as 
an effective training method. 

Weighted summation and activation functions are 
used to move the input data through each layer of neurons 
during the forward propagation phase, which ends with an 
output. This procedure can be shown as: 

( )( ) ( ) ( 1) ( )l l l la f W a b−= + (2) 

Where: ( )la  is the activation output of the l-th 

layer, ( )lW  is the weight matrix of the l-th layer, ( )lb  is 

the bias vector of the l-th layer, ( )f ⋅  denotes the

activation function (e.g., ReLU, Sigmoid, or Tanh). 
Following this forward pass, the output and ground 

truth are compared to determine the prediction error. To 
iteratively update the weights and biases, minimise the 
loss function, and enhance the model's performance, this 
error is then propagated backwards through the network. 

By calculating the partial derivatives of the loss 
concerning each parameter, the gradient descent principle 
states that the goal of updating neural network parameters 
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is to minimise the loss function. To put it simply, the 
model gradually approaches the ideal solution by 
modifying its parameters in the opposite direction to the 
gradient. 

Specifically, let L denote the loss function and W the 
weights in a certain layer. The parameter update rule is 
expressed as: 

LW W
W

η ∂
← − ⋅

∂
(3) 

where:η  is the learning rate, which regulates each

update's step size, 
L
W
∂
∂

and symbolises the loss gradient 

about the weights. 
This technique is iteratively repeated during training. 

Backpropagation updates all parameters layer by layer by 
moving the error from the output layer back to the input 
layer. Consequently, the network converges to a 
reasonably optimal solution with strong generalization 
ability on the training data, and the prediction error 
gradually decreases. 

To prevent overly frequent updates of network 
parameters, which can lead to instability or oscillations 
during training, this study adopts the Accumulated 
Backpropagation (Accumulated BP) strategy. Instead of 
updating parameters after every individual sample, the 
model accumulates gradients over several samples and 
updates the parameters only after the cumulative error 
reaches a certain threshold or the mini-batch is completed. 

This approach enhances the stability of parameter 
adjustment and can be mathematically expressed as: 

( )

1

iN

i

LW
W

η
=

∂
∆ = − ⋅

∂∑ (4) 

W W W← +∆ (5) 
Where: N is the total number of samples 

collected, ( )iL  represents the loss for the thi ith sample,
and η is the learning rate.

By stabilizing the gradient direction, this method 
reduces the high-frequency fluctuations during training 
and improves convergence efficiency. 

3. Whale Optimization Algorithm (WOA)

Although the BP (Backpropagation) neural network
exhibits strong nonlinear mapping capabilities and can be 
extended to model complex relationships through multiple 
interconnected units, it often suffers from the drawback of 
being easily trapped in local optima due to the 
randomness of its initial parameter settings. To enhance 

its global optimization ability, this study integrates the 
WOA as a metaheuristic strategy[17,18]. In Grandhi’s 
(2024) work, a quantum machine learning model was 
used to classify battery health states with enhanced 
diagnostic precision. Inspired by this, our proposed 
method applies intelligent learning through a WOA-
optimized DeepONet to predict SOH and RUL. This 
classical adaptation achieves reliable forecasting without 
the complexity of quantum systems [19]. 

The collaborative foraging habits of humpback 
whales serve as an inspiration for WOA. The spiral 
bubble-net feeding mechanism, which encircles and 
captures prey, is one of these marine animals' clever 
cooperative hunting strategies. Each whale's location 
within the search space in WOA offers a possible fix for 
the optimization issue [20]. 

This algorithm is appreciated for its simplicity, ease 
of implementation, and capacity to escape local minima, 
making it well-suited for neural network weight 
optimization. It operates mainly through two core 
mechanisms: Simulates the whale’s search for prey by 
randomly updating its position in the solution space to 
explore new regions. Models the encircling and attacking 
behavior by moving towards the best-known solution 
using a spiral-shaped path or shrinking encirclement. 

By embedding WOA into the training of BP neural 
networks, the model gains enhanced convergence stability 
and a higher likelihood of reaching a global optimum 
rather than being confined to suboptimal local solutions. 
The Whale Optimization Algorithm (WOA) enhances 
initial weight selection by performing global search and 
avoiding local minima, which leads to faster and more 
stable convergence in neural network training. In the 
SOH/RUL setting, this results in improved prediction 
accuracy and robustness, especially under nonlinear and 
noisy battery degradation conditions. When combined 
with physics-informed DeepONet, WOA further 
strengthens model generalization and convergence 
efficiency. An optimized hybrid model for improving 
battery diagnostics in electric vehicles are introduced by 
Grandhi. We adopt this optimization strategy by 
integrating WOA into a DeepONet-based framework for 
estimating SOH and RUL. This approach enhances model 
efficiency, supports real-time monitoring, and improves 
degradation prediction accuracy [21]. 

3.1 Prey Search Mechanism 

During the hunting process, humpback whales 
exhibit randomised exploration behaviour based on the 
spatial distribution of individuals within the pod. This 
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strategy allows them to discover potential prey across a 
broad area. 

To simulate this behavior in the WOA, a 
mathematical model is constructed where each whale 
updates its position by referencing randomly selected 
peers in the population. This randomness helps prevent 
premature convergence and encourages exploration of 
diverse regions in the solution space. The essence of this 
mechanism lies in mimicking the whales’ adaptive 
movement toward promising regions without prior 
knowledge of the prey's exact location. 

In mathematical terms, the position update rule for a 
whale X(t) at iteration ttt when searching for prey can be 
generally described as: 

( )randD C X X t= ⋅ −
  

(6) 

( 1) randX t X A D+ = − ⋅
  

 (7) 

Where: X


 is a randomly chosen whale position

from the population, A


and C


are coefficient vectors 

controlling exploration intensity, D


 indicates the
separation between the selected peer and the existing 
whale. 

Throughout the optimization phase, this stochastic 
position update mechanism helps preserve population 
diversity and improves the algorithm's ability to search 
globally. 

3.2 Encircling and Attacking Prey Behavior 

Once their prey has been discovered, humpback 
whales use a distinctive hunting technique in which they 
circle and target it. This behavior is turned into a process 
in the WOA, where the population's other members move 
their places to converge toward the best-known solution, 
which is regarded as the target prey. 

This mechanism represents a local exploitation 
phase, where whales refine their search around the current 
best candidate solution. The closer a whale is to the 
optimal position, the more it influences the movements of 
the others, guiding the swarm toward promising areas in 
the search space. 

The mathematical representation for this behavior is: 
* ( )D C X X t= ⋅ −

  
(8) 

*( 1)X t X A D+ = − ⋅
  

(9) 

Where: *X


 denotes the current best solution (i.e., 

estimated location of the prey), ( )X t


is the whale's 

present location at iteration t, A


 and C


are vectors 

influencing the convergence behavior, D


quantifies the
relative distance between the whale and the prey. 

This model ensures that whales progressively close 
in on the most promising region, enhancing the 
exploitation ability of the algorithm and improving the 
solution's accuracy. 

The WOA is unable to conclusively establish if the 
current posture is ideal when it is in the prey-encircling 
phase. A decision process is introduced in order to 
increase the search's diversity and prevent early 
convergence: when the control parameter ∣A⃗∣≤1|, whales 
perform local encircling behavior around the prey; 
however, when ∣A⃗∣>1, the algorithm randomly selects the 
position of another whale in the population as a reference 
point to update the positions of other whales. This 
strategy aims to guide the population to explore the global 
search space, thereby helping the algorithm escape local 
optima. 

Furthermore, humpback whales exhibit a unique 
spiral bubble-net attacking behavior when hunting prey. 
This natural behavior is modeled mathematically as a 
spiral path, representing the whales’ movement spiraling 
around the prey to approach the optimal solution area 
more closely. The mathematical expression of this 
behavior is: 

*( 1) cos(2 )blX t D e l Xπ′+ = ⋅ ⋅ +
 

(10) 
This mechanism integrates local exploitation with 

global exploration, improving the algorithm’s 
convergence accuracy and robustness. 

It is important to note that when humpback whales 
move around their prey, they exhibit a combined behavior 
of shrinking encircling and simultaneous spiral 
movement. To mathematically capture this dual behavior, 
a probability parameter p is introduced. The whales 
decide whether to perform the encircling behavior or the 
spiral bubble-net attack based on the value of p. 
Specifically, the choice between encircling the prey and 
executing the spiral attack is governed probabilistically, 
allowing the algorithm to balance exploration and 
exploitation effectively. The corresponding prey-
encircling behavior can be formulated as follows: 

*

*

, if 0.5
( 1)

cos(2 ) , if 0.5bl

X A D p
X t

D e l X pπ

 − ⋅ <+ = 
⋅ ⋅ + ≥ ′

 


 

(11) 

where: *X


 is the position of the best solution found 

so far (the prey), A


 and D


controls the encircling
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movement D′


. b and l govern the spiral motion 
parameters. p∈[0,1] is a random number determining the 
movement mode. 

This probabilistic switching mechanism enables the 
whale population to effectively alternate between 
exploiting the local best solution and exploring the 
surrounding search space via spiral movements, 
enhancing the overall optimization performance. 

The global search capability of the WOA algorithm 
is largely influenced by the value of A, which itself 
depends on the parameter a. When a is relatively large, 
the algorithm excels at exploring the search space 
globally but tends to have weaker local exploitation, 
resulting in slower convergence. In other words, the 
parameter a plays a critical role in balancing the 
convergence speed and accuracy of the algorithm. 
However, in the conventional WOA, a decreases linearly 
from 2 to 0 during iterations, which may inadequately 
represent the complex, nonlinear nature of the search 
process in real scenarios. To address this limitation, this 
study introduces an improved nonlinear convergence 
factor for a, with its iterative update defined as follows: 

nonlinear max min( ) ( , , )a t f t a a= (12) 

where nonlinearf  is a nonlinear function designed to 

more effectively modulate the decrease of a over 
iterations, enhancing the algorithm’s ability to balance 
global exploration and local exploitation. This 
modification aims to accelerate convergence while 
maintaining or improving optimization precision in 
complex environments. 

3.3 WOA-BP Prediction Model 

The fundamental procedure for the WOA-BP 
neural network prediction model involves the following 
steps: 

1. Initialize the weights and biases of the BP neural
network and load the dataset;

2. Split the dataset into training and testing subsets,
employing cross-validation to maximize data
utilization efficiency;

3. Normalize the input data to a standardized range
between 0 and 1;

4. Determine the number of hidden layer neurons
based on an empirical formula;

5. Define the length of the decision variable vector
for the whale optimization algorithm, selecting
the mean squared error as the objective function
to minimize;

6. Specify the stopping criteria for the optimization
process, and obtain the optimized weights and
biases from the WOA.

7. Assign the optimized parameters to the BP
neural network to construct the WOA-BP model.

8. Conduct training and validation of the neural
network using the optimized model.

This approach integrates the global optimization 
ability of WOA with the learning capacity of BP networks 
to enhance prediction accuracy and convergence 
efficiency. 

Figure 3 depicts the WOA-BP neural network 
algorithm's workflow. The mean squared error (MSE) 
calculated over the whole dataset serves as the fitness 
function for the whale optimization method in this 
architecture. A lower fitness value denotes more precise 
training and, as a result, better model prediction 
performance [22]. The hybridization of WOA with BP 
neural networks enhances battery health modeling by 
optimizing initial weights and biases, which accelerates 
convergence and avoids local minima that often hinder 
traditional BP training. WOA's global search and adaptive 
exploitation improve prediction stability and accuracy, 
especially on nonlinear degradation data. Empirical 
results show that WOA-BP significantly outperforms 
conventional models, achieving faster convergence and 
higher reliability in SOH/RUL estimation. 

Assume that there are N training samples in total, 

the true value is iy , and the predicted value is ˆiy . The

Mean Squared Error (MSE) is defined as: 

( )2

1

1M ˆSE
N

i i
i

y y
N =

= −∑ (13) 

In the Whale Optimization Algorithm (WOA), the 
fitness function is defined as: 

2

1

1Fitness MSE ( )ˆ
N

i i
i

y y
N =

= = −∑
(14) 

The WOA aims to minimize this fitness value to 
optimize the weights and biases of the BP neural network. 

Figure 3: WOA⁃BP neural network algorithm
flow 
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Integrating the Whale Optimization Algorithm 
(WOA) into BP neural network training enhances weight 
and bias initialization, leading to faster convergence and 
reduced risk of local minima. Its strong global search and 
gradient-free nature improve performance on nonlinear, 
noisy, or sparse battery data. WOA-BP models also 
exhibit greater stability and robustness in high-
dimensional prediction tasks. Experimental results 
confirm improved accuracy in SOH and RUL prediction 
compared to conventional methods. 

4. Experiments

4.1 Dataset and virtual simulation 
generation 

In this study, multiple sources of data are used to 
validate the effectiveness of the proposed model. First, the 
life degradation dataset of lithium-ion batteries provided 
by CALCE Laboratory of the University of Maryland is 
selected, which contains the information of voltage, 
current, temperature, and ohmic internal resistance under 
multiple cycling conditions. In addition, in order to 
construct high-dimensional multi-physics field supervised 
data, we build a coupled thermal-electrical-chemical 
model of Li-ion batteries based on the COMSOL 
multiphysics field simulation platform, and generate the 

temperature (T), SEI concentration ( SEIC ), positive and

negative electrode concentration ( ,pe neC C ), and

electrolyte concentration ( neC ) fields under the

corresponding time and space domains by using the inputs 

of virtual heating curves. eC Fields. This virtual

simulation dataset is used as a supervised information 
source for MPI-DeepONet training. 

4.2 Experimental setup 

4.2.1 Model structure and parameters 

CNN-LSTM edge model: the image input size is 
64×64, the convolution kernel size is 3×3, the number of 
LSTM hidden units is 128, and the output fully-connected 
layer is classified as 5, which corresponds to the five SOH 
classes of the battery. 

WOA-BP network: the input dimension is 4 
(voltage, temperature, current, internal resistance), the 

hidden layer neurons are set to 20, the initial BP weights 
are optimized using WOA, and the maximum number of 
iterations is set to 100. 

MPI-DeepONet: Both Branch and Trunk networks 
contain 4 layers with 64 neurons per layer, and the 
activation function is ReLU. An encoder layer is 
introduced to enhance the control variable abstraction 
capability, and the dot product module combines the two 
outputs to complete the prediction mapping. The encoder 
in the MPI-DeepONet architecture comprises four fully 
connected layers with 64 neurons each, using ReLU 
activation to abstract complex control inputs like heating 
curves. It outputs a 64-dimensional feature vector that 
enhances input representation before fusion with the 
Branch network. This abstraction significantly improves 
prediction accuracy and generalization, as evidenced by a 
77% MSE increase when the encoder is removed. 

4.2.2 Hyperparameter configuration 

Table 1: Key Hyperparameters for the WOA-
DeepONet Model 

Parameter Value 
Learning Rate (DeepONet) 1e-4 

Optimizer Adam 
Batch Size 64 

Number of Epochs 200 
WOA Population Size 30 

This table 1 summarizes the core hyperparameter 
configurations used for WOA-DeepONet model training. 
The overall setup balances the stability of the model with 
its optimization capabilities: The use of Adam optimizer 
and 1e-4 learning rate ensures the smoothness of training; 
Batch Size is set to 64 to improve computational 
efficiency; The Epoch is 200 to ensure that the model has 
sufficient learning roundswoman Population Size is 30, 
which enhances the ability of the model to search 
globally. Together, these parameters lay the foundation 
for realizing high-precision and stable SOH/RUL 
prediction for lithium-ion batteries. 

4.3 Contrasting models 

To verify the performance of the model in this paper, the 
following comparison experimental groups are set up: 

MLP traditional neural network: a three-layer fully 
connected network, only used for static prediction. 
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LSTM timing network: a mainstream model suitable 
for battery SOH timing prediction. 

WOA-BP optimization model: initialized BP 
network using whale optimization to construct a baseline 
for comparison performance. 

Primitive DeepONet model: no encoder or physical 
supervision. 

MPI-DeepONet (no Encoders): incorporates only 
physical loss functions. 

MPI-DeepONet (full version): contains Encoders 
with multiple physical supervision terms. 

4.4 Assessment of indicators 

The performance of the prediction model was evaluated 
using the following metrics: MSE (Mean Square Error), 
MAE (Mean Absolute Error), R² Coefficient of 
Determination, Edge Inference Latency, Inference Energy 
Consumption (tested on Jetson Nano platform only). 

4.5 Analysis of Prediction Results 

4.5.1 SOH and RUL prediction accuracy 

Table 2: Comparison of the performance of different 
models in the battery SOH/RUL prediction task 

MAE 
↓ 

MSE 
↓ 

R² ↑ 

MLP 0.041 0.0078 0.81 
LSTM 0.029 0.0052 0.88 
WOA-BP 0.022 0.0036 0.91 
CNN-LSTM（Edge 
version） 

0.018 0.0024 0.94 

MPI-DeepONet
（Unsupervised） 0.012 0.0016 0.96 

MPI-DeepONet（Physical 
supervision） 

0.009 0.0012 0.98 

MPI-DeepONet + Encoder 0.006 0.0009 0.99 

Table 2 demonstrates the performance comparison of 
different models in the battery SOH/RUL prediction task, 
clearly reflecting the evolutionary trend from traditional 
neural networks to physically constrained neural operator 
models. The basic MLP model has the lowest prediction 
accuracy (R² of only 0.81) due to the lack of temporal 
modeling capability, while the LSTM model introducing 
time dependence significantly improves the fitting effect 

(R² increased to 0.88). The WOA-BP model, which 
further incorporates whale swarm optimization, enhances 
the convergence ability through global weight search and 
outperforms the traditional BP network. The CNN-LSTM 
model, by extracting local features with temporal patterns, 
has edge deployment capability while maintaining high 
prediction accuracy, reaching R² = 0.94. In contrast, the 
MPI-DeepONet, as a higher-order neural operator-based 
model, achieves a coefficient of determination of 0.96 
even without physical supervision; with the introduction 
of the residuals of the Multiphysics field equations, 
boundary conditions and initial constraints, the model 
accuracy is further improved (R² = 0.98) and has good 
generalization capability. Finally, when the Encoder 
module is used to enhance the feature abstraction of the 
control variables, the model is optimal in all evaluation 
metrics (MAE=0.006, MSE=0.0009, R²=0.99), showing 
strong expressive power and physical consistency. 

Figure 4: SOH prediction results and error analysis 
of the MPI-DeepONet + Encoders model under 

different operating conditions 

Figure 4 demonstrates the fitting effect and error 
performance of the MPI-DeepONet + Encoders model in 
the battery SOH prediction task, reflecting its strong 
fitting ability and robustness under complex working 
conditions. Among them, Figure (a) shows that when the 
model handles the training samples containing multiple 
mutation zones, the prediction curves almost coincide 
with the real values, and the model can still accurately 
capture the SOH trend even if there are obvious jumps 
near 200, 400 and 600 rounds; Figure (b) further 
quantifies the error range, and most of the prediction 
deviations are controlled within ±0.01, with only a few 
points slightly exceeding ±0.02, which indicates that the 
model maintains stable output under highly nonlinear 
inputs. Figure (c), on the other hand, exemplifies the 
model's ability to accurately fit the SOH variations in the 
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smoothly monotonically decaying conditions, with the 
prediction curves almost seamlessly aligned with the true 
values. In contrast, the error distribution in Figure (d) is 
even smoother, with the majority of the deviations being 
lower than ±0.005, which demonstrates that the model has 
a high prediction accuracy with very low error 
fluctuations under common degradation modes. Overall, 
MPI-DeepONet + Encoders not only shows excellent 
generalization ability in multiple nonlinear degradation 
samples, but also maintains a high degree of physical 
consistency and time-series modeling ability in 
continuous degradation scenarios, which fully verifies its 
application value and engineering feasibility in complex 
battery health prediction scenarios. 

Figure 5: MPI-DeepONet + Encoders model in RUL 
prediction with different numbers of training rounds 

Figure 5 demonstrates the generalization ability and 
stability assessment of the MPI-DeepONet + Encoders 
model in the remaining useful life (RUL) prediction task, 
using different numbers of training rounds (20th, 40th, 
60th, and 80th) as model inputs, and analyzing its 
prediction performance of the SOH in subsequent cycles 
during the test phase. Among them, Figure 5(a) gives a 
comparison between the true curve of SOH change with 
the number of cycles (black line) and the predicted values 
of the four groups of models (colored markers); the 
training phase covers the first 80 cycles, and the 
subsequent cycles are the testing phase. It can be observed 
that the models can restore the SOH decay trend to a 
certain extent under different training depths, especially 
the predictions under 40 and 60 rounds of training are 
closer to the real curves, indicating that the models can 
gradually learn the battery degradation characteristics. At 
the same time, although the curve fits better under 80 
rounds of training, the predicted value is high, suggesting 
a tendency towards overfitting. Figure 5(b) further gives 
the curve of prediction bias with period, reflecting the 
characteristics of the error distribution between the model 
output and the true value. In particular, the prediction 
errors of 40 and 60 rounds are relatively centred and 
minimally fluctuating, showing good bias control. 

Figure 6: Comparison of model performance at 
different starting voltage and capacity conditions 

Figure 6 shows the performance evaluation results of 
the prediction framework proposed in this paper under 
different starting voltage and capacity conditions, 
focusing on verifying the advantages of the MPI-
DeepONet + Encoders model in terms of capacity 
estimation accuracy, condition adaptability and 
interpretability. The Figure contains four sub-figures, 
namely, error heatmap (A), charging duration heatmap 
(B), voltage-capacity curve prediction comparison (C), 
and incremental capacity curve comparison (D), to 
systematically present the model's prediction performance 
under the full lifecycle and complex charging paths. 

Figure 6A shows a heat map of the RMSE error in 
the two-dimensional plane of starting voltage and 
observed maximum capacity. The bluer bias of the colour 
indicates the more accurate prediction, as can be seen that 
the model maintains an error lower than 2 × 10-32 \times 
10^{-3} for most voltage and capacity combinations. In 
particular, the prediction error is the smallest in the 
medium-high-capacity segment (>0.6 Ah) and in the 
typical starting voltage interval (3.2 V-3.7 V). The high 
robustness of the model in the main operating interval is 
verified. And Figure 6B gives the heat map of charging 
time corresponding to the same input conditions, 
revealing the key role of different voltage paths in thermal 
management and strategy selection. The model can give 
accurate estimates stably under different time duration 
conditions, showing good adaptability to changes in 
operating conditions. 

Figure 6C further compares the best and worst 
predictions of the model under the first and last cycles 
from the perspective of the voltage-capacity relationship. 
The red and purple points represent the predicted values 
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of the model in the first and last cycles, which are highly 
consistent with the real curves of the black solid line. The 
predictions still closely follow the real charge/discharge 
trajectories even in the low-healthy state of the last cycle, 
which fully demonstrates the expressive and 
generalisation ability of the model in complex nonlinear 
electrochemical dynamics. Figure 6D shows the 
prediction performance of the incremental capacity (IC) 
curve, which, as a highly sensitive measure of small 
changes in capacity, is still able to accurately reconstruct 
the peak morphology near the voltage inflection point 
(e.g., 3.6V-3.9V), indicating that the model is not only 
applicable to RUL estimation, but also to the detection of 
early degradation signals and health assessment. 

Figure 7: Heatmap of the error of this paper's model 
in the capacity and energy estimation task vs. the 

methodology 

Figure 7 demonstrates the error performance and 
comparative advantages of this paper's model in battery 
capacity and energy prediction. Figures 7A and 7B show 
that the prediction errors of MPI-DeepONet + Encoders 
are generally lower than 1% under different starting 
voltages and actual capacity/energy ranges, and remain 
blue (error <1%) in most regions, demonstrating good all-
operating condition adaptability and prediction stability. 
Figure 7C further compares with DNN, RF, SVR and 
GPR methods; this paper's model has the lowest median 
error and the fewest outliers in maximum capacity 
prediction, showing higher accuracy and robustness, 
which is superior to traditional machine learning methods. 
The overall results validate the significant advantages of 
this paper's scheme in accuracy control and working 
condition generalization. 

Figure 8: Comparative analysis of multiphysics field 
prediction during the whole process of thermal 

runaway 

Figure 8 demonstrates the predictive advantages of 
MPI-DeepONet with encoders in thermal runaway 
modeling. Figure 8a shows that the model is highly 
consistent with experimental data in full-cycle 
temperature prediction, especially outperforming 
conventional FEM during the peak thermal runaway 
phase. Figures 8b-c compare the temperature field 
distributions, with smoother MPI-DeepONet predictions 
and more accurate boundaries. Figures 8d-e show that the 
model's predictions on SEI, positive and negative 
electrodes, and electrolyte concentration evolution almost 
overlap with the FEM, with faster mutation point 
response. Figure 8f, on the other hand, demonstrates that 
it can recognize the exothermic peaks earlier and improve 
the early warning capability. Overall, the method in this 
paper is superior in terms of multiphysics field 
consistency, prediction accuracy and dynamic response, 
which is suitable for thermal safety monitoring and edge 
deployment. 

Table 3: Comparative analysis of key module 
ablation experiments 

Model Variant Removed 
Component 

Mean 
Squared Error 
(MSE) 

MPI-DeepONet (Full 
Version) 

None 0.0009 

Without the Encoders 
Module 

Encoder 0.0016 
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Without PDE Residual 
Supervision 

Physics loss 0.0021 

Without Initial and 
Boundary Condition 
Supervision 

IC & BC 
losses 

0.0034 

Table 3 of this ablation experiment demonstrates the 
impact of each key module of the MPI-DeepONet on the 
overall performance. It quantifies the necessity and 
effectiveness of the model's structural design by observing 
the change in the mean square error (MSE) through the 
gradual removal of components. The MSE of the 
complete model is 0.0009, which is the lowest prediction 
error among all variants, reflecting the optimal 
performance of the modules in synergy. When the 
Encoder module is removed, the MSE rises to 0.0016 and 
the error grows by nearly 80%, indicating that the 
Encoder is crucial for the characterization of complex 
control inputs (e.g., heating curves). The model struggles 
to capture the deep mapping relationship between the 
input and output variables in its absence. Further, the 
removal of the PDE residual supervision term (i.e., 
Physics Loss) causes the MSE to rise to 0.0021, showing 
the central role of the Physics Prior in constraining the 
solution space and improving the physical consistency of 
the prediction. PDE is a mathematical equation involving 
multivariable functions and their partial derivatives. In 
this context, PDEs represent physical laws embedded in 
the DeepONet model to ensure predictions align with 
real-world battery physics. In particular, physical 
supervision effectively reduces the appearance of 
incompatible solutions during the phase of drastic changes 
in nonlinear field variables. When the initial and boundary 
conditions (IC & BC) losses are removed again, the MSE 
further increases to 0.0034, indicating that the model 
drifts more in the absence of boundary physical guidance, 
and the prediction accuracy decreases significantly, 
especially in the unstable performance near distribution 
boundaries and degenerate inflexion points. 

5. Conclusion
This paper presents a hybrid battery health prediction 
framework that combines WOA-optimized BP networks 
with a physics-informed DeepONet enhanced by 
encoders. The proposed method not only achieves state-
of-the-art accuracy in SOH and RUL prediction but also 
ensures physical interpretability and generalization across 
varied battery degradation scenarios. By embedding PDE 
residuals and boundary conditions into the training 

objective, the model can learn dynamic multiphysics 
relationships that are robust to noise, sparse data, and out-
of-distribution inputs. Experimental validation across 
multiple datasets and heat stress simulations demonstrates 
superior performance in terms of both precision and 
stability. Furthermore, the model's lightweight structure 
and encoder-guided input design make it suitable for real-
time applications and deployment on edge devices. Future 
work will explore integration with online learning 
schemes and extension to heterogeneous battery 
chemistries and operational environments. 
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