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Abstract

INTRODUCTION: For energy storage systems to be safe, effective, and reliable, it is essential to accurately forecast the
State of Health (SOH) and Remaining Useful Life (RUL) of lithium-ion batteries under complicated operating situations.
OBJECTIVES: This research suggests a hybrid modeling approach that combines a physics-informed Deep Operator
Network (DeepONet) supplemented by encoders with a neural network optimized by the Whale Optimization Algorithm
(WOA).

METHODS: The framework first utilizes WOA to improve the initialization of Backpropagation (BP) neural networks,
thus enhancing convergence speed and avoiding local minima in early-stage training. Then, a multi-physics informed

DeepONet model is constructed to learn the spatiotemporal evolution of battery thermal and electrochemical variables
from virtual heating profiles.

RESULTS: By integrating boundary conditions, starting restrictions, and partial differential equation (PDE) residuals into
the loss function, the model integrates physical supervision and guarantees forecast consistency with battery dynamics.
CONCLUSION: Both COMSOL-generated synthetic data and publicly available battery aging datasets are used in
extensive research. The suggested approach outperforms conventional MLP, LSTM, and even standard DeepONet models,
according to the results, with an R2 of 0.99 and an MSE of 0.0009.
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1. Introduction

electrode material deterioration, electrolyte
decomposition, and solid electrolyte interphase (SEI)
layer growth. These degradation pathways are influenced
by a multitude of dynamic operational and environmental
conditions, making battery aging an inherently
multiphysics and multi-scale problem [3]. The resulting

Lithium-ion batteries (LiBs) have become indispensable
in various applications such as electric vehicles (EVs),
renewable energy storage systems (ESS), aerospace
equipment, and portable electronics [1, 2]. However, their
performance and safety degrade over time due to
complex, nonlinear ageing mechanisms, including
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uncertainty and variability in degradation behavior pose
serious challenges for Battery Management Systems
(BMS), which must ensure reliability, safety, and
efficiency throughout the battery's lifespan. As such,
accurately forecasting the State of Health (SOH) and
Remaining Useful Life (RUL) of LiBs under real-world,
often harsh conditions is not only technically demanding
but also critical for enabling predictive maintenance,
preventing catastrophic failures, and optimizing usage
strategies across diverse applications [4].

Traditional methods for SOH and RUL prediction
primarily include electrochemical models and statistical
learning approaches. However, electrochemical models
often require deep domain expertise, are computationally
expensive, and are difficult to generalize across battery
types and operational profiles [5,6]. Conversely, data-
driven methods like neural networks and regression
provide flexibility and adaptability. Still, they have
drawbacks such inadequate initialization, overfitting, and
noise sensitivity, particularly when working with small or
high-dimensional datasets [7].

One of the core challenges in applying neural networks to
battery health modeling lies in the initialization of
network parameters. Standard Backpropagation (BP)
training methods rely heavily on stochastic initialization
of weights and biases, which may lead to convergence to
local minima, slow training, or poor generalization [8,9].
Backpropagation (BP) is a fundamental algorithm used to
train neural networks by propagating the error backwards
through the layers and updating weights to minimise the
loss function. It relies on gradient descent for
optimization. This is particularly problematic for non-
convex loss landscapes such as those encountered in
nonlinear SOH degradation mapping. To overcome these
limitations, metaheuristic optimization algorithms have
been introduced into the training process of neural
networks, among which the Whale Optimization
Algorithm (WOA) stands out due to its strong global
search capability, low parameter tuning complexity, and
natural suitability for multimodal problems [10].

Mirjalili (2016) introduced the Whale Optimization
Algorithm, a population-based algorithm inspired by
nature that uses a bubble-net feeding approach to simulate
humpback whale hunting behavior. Three main methods
are included in the algorithm: random search
(exploration), bubble-net assaulting (exploitation), and
encircling prey [11,12]. During optimization, whales
(solutions) update their positions based on the current best

position and a dynamically adjusted convergence factor.
The inclusion of both spiral updating (logarithmic spiral
motion) and position shrinking allows the algorithm to
balance exploration and exploitation effectively, helping
the neural network to escape local minima and reach
better global optima.

A Whale Optimization Algorithm (WOA) is a
metaheuristic inspired by humpback whale hunting
behavior, particularly the spiral bubble-net feeding
strategy. It's used here to optimize BP neural network
parameters to avoid local minima and improve
convergence. In the context of battery health prediction,
WOA can be employed to optimize the weights and biases
of BP neural networks, replacing traditional random
initialization. This results in faster convergence, lower
training loss, and improved prediction stability [13]. The
Whale Optimization Algorithm (WOA) enhances the
Backpropagation (BP) neural network by providing
globally optimized initial weights, thereby improving
convergence speed and reducing the risk of local minima.
This is especially valuable in the noisy, nonlinear domain
of battery SOH/RUL prediction. WOA’s gradient-free,
global search capability strengthens model robustness and
accuracy when data is limited. Integrated into the hybrid
WOA-DeepONet framework, it significantly boosts
prediction performance and physical consistency.
Moreover, the nature of WOA as a gradient-free method
makes it particularly attractive for non-differentiable or
noisy fitness landscapes, such as those derived from
partially observed battery degradation data. When
integrated into neural network frameworks, WOA can
significantly enhance model robustness and accuracy,
especially in early training stages or when training data is
limited [14].

Despite the promise of WOA-BP hybrids, few studies
have explored their integration into physics-informed
learning frameworks for battery modeling [15]. In real-
world systems, battery degradation is governed by
physical laws such as heat transfer, charge conservation,
and electrochemical kinetics. Recent advancements in
physics-informed neural networks (PINNs) and deep
operator networks (DeepONet) allow embedding these
physical constraints into neural architectures by
incorporating partial differential equations (PDEs),
boundary conditions, and domain-specific priors into the
training objective. Such physically constrained networks
not only improve generalization but also ensure physically
consistent predictions.
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To this end, this paper proposes a novel hybrid framework
that combines WOA-optimised BP neural networks with a
multi-physics-informed DeepONet enhanced by encoders,
to achieve accurate and physically reliable SOH and RUL
prediction for lithium-ion batteries [16]. DeepONet is a
neural network architecture designed to learn operators.
The model used here incorporates physical constraints
like PDEs and boundary conditions and encoders to
predict spatiotemporal battery behavior accurately and
consistently. The synergy between WOA-based
optimization and physics-informed learning provides
multiple benefits. First, WOA ensures effective network
parameter initialization, leading to faster and more
reliable convergence. Second, the DeepONet structure
enables efficient learning of functionals and operators
relevant to battery degradation, allowing the model to
handle previously unseen control sequences and
degradation modes. Third, the inclusion of physical priors
enhances model interpretability and ensures physically
plausible outputs. This structure not only improves
prediction accuracy but also enhances interpretability by
embedding physical laws, modeling operator-level
relationships, and using encoder-driven abstraction.
Predictions are physically meaningful, traceable, and
consistent with real-world battery behavior, which is
essential for reliable health estimation. These design
elements ensure that the model can be trusted even under
complex and unseen degradation scenarios.

2. SOH Definition

In the context of lithium-ion batteries, the SOH is a
critical indicator that reflects the aging and degradation
status of the cell. Since SOH is not a directly measurable
quantity, it must be inferred through measurable health
indicators (HI), such as internal resistance, capacity
retention, or charge/discharge efficiency (see Figure 1).

Although there is no universally accepted formula
for SOH, it is typically defined based on the reduction in
available capacity or the increase in internal resistance
compared to the battery's initial state. In this study, we
adopt internal ohmic resistance as the proxy for
evaluating SOH, as it reliably captures the deterioration
trend during battery usage.

As demonstrated using publicly available aging
datasets from the University of Maryland, there is a
noticeable and nonlinear rise in internal resistance with
increasing charge-discharge cycles (see Figure 1). This
trend, though not perfectly smooth, reveals a gradual and
irreversible aging trajectory of the battery. Accordingly,
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the SOH in this work is defined as a normalized function
of the battery's internal resistance, expressed as:
R_()-R
ROSOH(1) =1 ——I;t( )=, (1)

oL ~ Ry
where: Rim (f ) is the internal resistance at cycle t, Ro

is the battery's initial resistance when it is brand-

new, REOL and is the end-of-life (EOL) resistance

threshold.

This definition provides a scalable and interpretable
measure of degradation, suitable for integration into both
data-driven and physics-informed modeling frameworks.
SOH is defined as a normalized function of internal
resistance, reflecting battery degradation over time. It
serves as the key prediction target in the WOA-DeepONet
model, where WOA optimizes neural network
initialization and DeepONet ensures physically consistent
predictions. This integration enables accurate SOH
estimation aligned with underlying thermal and
electrochemical dynamics.
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Figure 1: Cyclic Demonstration

2.1 Algorithm for Network Training
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Phase 1 : Virtual data generation
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Figure 2: Multiphysics field battery state
prediction system based on MPI-DeepONet with
encoders

Figure 2 demonstrates the overall process and structural
details of the MPI-DeepONet with encoders model
proposed in this paper for battery Multiphysics field
prediction, the core of which consists of three major
phases: virtual data generation, model training and real-
time prediction. In Phase 1, based on the given virtual
heating profile, the temperature and material transport
process of Li-ion batteries in 3D space is simulated by the
Multiphysics FEM  (Multiphysics  Finite Element
Method), which couples the chemical reaction model, the
thermodynamic model and the exothermic kinetics, to
generate the data, including the temperature (T), the

concentration of SEI film (CSEI ), the concentration of

positive and negative electrodes (Cpe,cne ), positive

and negative electrode concentration (Cpe,Ce) and

electrolyte concentration (Ce) for subsequent model

training. A Solid Electrolyte Interphase (SEI) is a
passivation layer that forms on the electrode surface in
lithium-ion batteries due to electrolyte decomposition. It
critically affects battery aging and is modeled to assess
State of Health (SOH). Phase 2 employs MPI-DeepONet
with encoders, whose architecture comprises two key
components: the Branch Network, which processes
control variables (heating curves), and the Trunk
Network, which handles spatio-temporal coordinates. The
outputs of both networks are then used to calculate
predicted values via the dot product form. Encoders
enhance the representation of complex control inputs,
such as heating profiles, by extracting meaningful features
that improve learning efficiency and generalization. This
enables the DeepONet model to capture better the
relationship between control actions and battery state
variables. As a result, the model achieves higher
prediction accuracy, particularly in unseen or dynamic
conditions. The encoder's contribution is critical for
reliable operator learning and physically consistent
outputs. In training, the model is designed to be guided by
prior knowledge of multiple physical fields. Physical
consistency learning is achieved by constructing a joint

loss function that includes the loss of data fitting L , the

loss of residuals from physical equationsL the loss of

phy>
boundary conditions LBC’ and the loss of initial

conditions L[C. The model captures temporal

dependencies through the Trunk Network in MPI-
DeepONet, which processes spatiotemporal coordinates to
learn time-evolving battery dynamics. Encoders abstract
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sequential input features like heating curves, while PDEs
and boundary/initial condition losses enforce physically
consistent time-series predictions. These elements enable
accurate SOH/RUL  forecasting  across  varying
degradation sequences. The combined loss function
integrates data fidelity and physical consistency through
four key components: data fitting loss, physics residual
loss, boundary condition loss, and initial condition loss.
The data loss ensures alignment with observed battery
behavior, while the physics-based terms guide the model
to obey governing equations and realistic constraints. This
balance enhances both accuracy and generalization,
especially in sparse or noisy data scenarios. Ablation
studies confirm that removing any term significantly
degrades performance, proving the necessity of each
component. In Phase 3, the model efficiently predicts the
evolution of multi-field variables under any heating
process, and it can also perform a comparison with the
traditional heating process. Efficiently predict and
demonstrate higher accuracy and lower computational
cost in comparison with conventional FEM solutions,
especially after integrating the encoder and physical
supervision information, which significantly improves the
generalization performance and model interpretability.
Overall, the framework not only realizes end-to-end
mapping from control strategies to physical field
distributions, but also has the potential to be deployed in
edge devices for fast battery state estimation and thermal
risk warning.

In neural networks, the primary objective of training
is to determine the connection weights (CW) between
neurons and the biases associated with each neuron. These
parameters are critical in defining the network’s capacity
and its prediction accuracy. To optimize these values, the
Error BackPropagation (EBP) algorithm is widely used as
an effective training method.

Weighted summation and activation functions are
used to move the input data through each layer of neurons
during the forward propagation phase, which ends with an
output. This procedure can be shown as:

a0 = f(W(l)a(H) + b(”) 2)

Where: @) is the activation output of the I-th
layer, W s the weight matrix of the I-th layer, b s
the bias vector of the I-th layer, f () denotes the

activation function (e.g., ReLU, Sigmoid, or Tanh).
Following this forward pass, the output and ground
truth are compared to determine the prediction error. To
iteratively update the weights and biases, minimise the
loss function, and enhance the model's performance, this
error is then propagated backwards through the network.
By calculating the partial derivatives of the loss
concerning each parameter, the gradient descent principle
states that the goal of updating neural network parameters
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is to minimise the loss function. To put it simply, the
model gradually approaches the ideal solution by
modifying its parameters in the opposite direction to the
gradient.

Specifically, let L denote the loss function and W the
weights in a certain layer. The parameter update rule is
expressed as:

oL
WeW-n— 3
T ow ®

where: ] is the learning rate, which regulates each

update's step size, Wand symbolises the loss gradient

about the weights.

This technique is iteratively repeated during training.
Backpropagation updates all parameters layer by layer by
moving the error from the output layer back to the input
layer. Consequently, the network converges to a
reasonably optimal solution with strong generalization
ability on the training data, and the prediction error
gradually decreases.

To prevent overly frequent updates of network
parameters, which can lead to instability or oscillations
during training, this study adopts the Accumulated
Backpropagation (Accumulated BP) strategy. Instead of
updating parameters after every individual sample, the
model accumulates gradients over several samples and
updates the parameters only after the cumulative error
reaches a certain threshold or the mini-batch is completed.

This approach enhances the stability of parameter
adjustment and can be mathematically expressed as:

N Ar()
AW = -n- 6L 4)
o oW

W<«W+AW 5)

Where: N is the total number of samples

collected, ok represents the loss for the 7  ith sample,
and 7] is the learning rate.

By stabilizing the gradient direction, this method
reduces the high-frequency fluctuations during training
and improves convergence efficiency.

3. Whale Optimization Algorithm (WOA)

Although the BP (Backpropagation) neural network
exhibits strong nonlinear mapping capabilities and can be
extended to model complex relationships through multiple
interconnected units, it often suffers from the drawback of
being easily trapped in local optima due to the
randomness of its initial parameter settings. To enhance

2 EA

its global optimization ability, this study integrates the
WOA as a metaheuristic strategy[17,18]. In Grandhi’s
(2024) work, a quantum machine learning model was
used to classify battery health states with enhanced
diagnostic precision. Inspired by this, our proposed
method applies intelligent learning through a WOA-
optimized DeepONet to predict SOH and RUL. This
classical adaptation achieves reliable forecasting without
the complexity of quantum systems [19].

The collaborative foraging habits of humpback
whales serve as an inspiration for WOA. The spiral
bubble-net feeding mechanism, which encircles and
captures prey, is one of these marine animals' clever
cooperative hunting strategies. Each whale's location
within the search space in WOA offers a possible fix for
the optimization issue [20].

This algorithm is appreciated for its simplicity, ease
of implementation, and capacity to escape local minima,
making it well-suited for neural network weight
optimization. It operates mainly through two core
mechanisms: Simulates the whale’s search for prey by
randomly updating its position in the solution space to
explore new regions. Models the encircling and attacking
behavior by moving towards the best-known solution
using a spiral-shaped path or shrinking encirclement.

By embedding WOA into the training of BP neural
networks, the model gains enhanced convergence stability
and a higher likelihood of reaching a global optimum
rather than being confined to suboptimal local solutions.
The Whale Optimization Algorithm (WOA) enhances
initial weight selection by performing global search and
avoiding local minima, which leads to faster and more
stable convergence in neural network training. In the
SOH/RUL setting, this results in improved prediction
accuracy and robustness, especially under nonlinear and
noisy battery degradation conditions. When combined
with  physics-informed DeepONet, WOA further
strengthens model generalization and convergence
efficiency. An optimized hybrid model for improving
battery diagnostics in electric vehicles are introduced by
Grandhi. We adopt this optimization strategy by
integrating WOA into a DeepONet-based framework for
estimating SOH and RUL. This approach enhances model
efficiency, supports real-time monitoring, and improves
degradation prediction accuracy [21].

3.1 Prey Search Mechanism

During the hunting process, humpback whales
exhibit randomised exploration behaviour based on the
spatial distribution of individuals within the pod. This
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strategy allows them to discover potential prey across a
broad area.

To simulate this behavior in the WOA, a
mathematical model is constructed where each whale
updates its position by referencing randomly selected
peers in the population. This randomness helps prevent
premature convergence and encourages exploration of
diverse regions in the solution space. The essence of this
mechanism lies in mimicking the whales’ adaptive
movement toward promising regions without prior
knowledge of the prey's exact location.

In mathematical terms, the position update rule for a
whale X(t) at iteration ttt when searching for prey can be
generally described as:

D=|C-X . —-X() 6)

rand

X(+)=X_,—A-D (7)

and
Where: X is a randomly chosen whale position

from the population, A4and Care coefficient vectors

controlling exploration intensity, /?  indicates the
separation between the selected peer and the existing
whale.

Throughout the optimization phase, this stochastic
position update mechanism helps preserve population
diversity and improves the algorithm's ability to search
globally.

3.2 Encircling and Attacking Prey Behavior

Once their prey has been discovered, humpback
whales use a distinctive hunting technique in which they
circle and target it. This behavior is turned into a process
in the WOA, where the population's other members move
their places to converge toward the best-known solution,
which is regarded as the target prey.

This mechanism represents a local exploitation
phase, where whales refine their search around the current
best candidate solution. The closer a whale is to the
optimal position, the more it influences the movements of
the others, guiding the swarm toward promising areas in
the search space.

The mathematical representation for this behavior is:

D=|C-X" - X() 8)
X(@t+)=X"-4-D ©)
Where: X~ denotes the current best solution (ie.,

estimated location of the prey),X (t) is the whale's

present location at iteration t,4 and Care vectors

influencing the convergence behavior,unantiﬁes the
relative distance between the whale and the prey.

This model ensures that whales progressively close
in on the most promising region, enhancing the
exploitation ability of the algorithm and improving the
solution's accuracy.

The WOA is unable to conclusively establish if the
current posture is ideal when it is in the prey-encircling
phase. A decision process is introduced in order to
increase the search's diversity and prevent early
convergence: when the control parameter |A”|<1|, whales
perform local encircling behavior around the prey;
however, when |A”|>1, the algorithm randomly selects the
position of another whale in the population as a reference
point to update the positions of other whales. This
strategy aims to guide the population to explore the global
search space, thereby helping the algorithm escape local
optima.

Furthermore, humpback whales exhibit a unique
spiral bubble-net attacking behavior when hunting prey.
This natural behavior is modeled mathematically as a
spiral path, representing the whales’ movement spiraling
around the prey to approach the optimal solution area
more closely. The mathematical expression of this
behavior is:

X(t+)=D"-e" -cos2nl)+ X (10)

This mechanism integrates local exploitation with
global  exploration, improving the  algorithm’s
convergence accuracy and robustness.

It is important to note that when humpback whales
move around their prey, they exhibit a combined behavior
of shrinking encircling and simultaneous spiral
movement. To mathematically capture this dual behavior,
a probability parameter p is introduced. The whales
decide whether to perform the encircling behavior or the
spiral bubble-net attack based on the value of p.
Specifically, the choice between encircling the prey and
executing the spiral attack is governed probabilistically,
allowing the algorithm to balance exploration and
exploitation effectively. The corresponding prey-
encircling behavior can be formulated as follows:

X*—ZWD, ifp <0.5

D'-e" -cos2zl)+ X", ifp>0.5
(1)

where: X is the position of the best solution found

X+ =

so far (the prey),;l and D controls the encircling
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movement D' . b and 1 govern the spiral motion
parameters. p€[0,1] is a random number determining the
movement mode.

This probabilistic switching mechanism enables the
whale population to effectively alternate between
exploiting the local best solution and exploring the
surrounding search space via spiral movements,
enhancing the overall optimization performance.

The global search capability of the WOA algorithm
is largely influenced by the value of A, which itself
depends on the parameter a. When a is relatively large,
the algorithm excels at exploring the search space
globally but tends to have weaker local exploitation,
resulting in slower convergence. In other words, the
parameter a plays a critical role in balancing the
convergence speed and accuracy of the algorithm.
However, in the conventional WOA, a decreases linearly
from 2 to O during iterations, which may inadequately
represent the complex, nonlinear nature of the search
process in real scenarios. To address this limitation, this
study introduces an improved nonlinear convergence
factor for a, with its iterative update defined as follows:

Cl(t) = f;lonlinear (t ” amax ’ amin 12)

where fnonlinear is a nonlinear function designed to

more effectively modulate the decrease of a over
iterations, enhancing the algorithm’s ability to balance
global exploration and local exploitation. This
modification aims to accelerate convergence while
maintaining or improving optimization precision in
complex environments.

3.3 WOA-BP Prediction Model

The fundamental procedure for the WOA-BP
neural network prediction model involves the following
steps:

1. Initialize the weights and biases of the BP neural
network and load the dataset;

2. Split the dataset into training and testing subsets,
employing cross-validation to maximize data
utilization efficiency;

3. Normalize the input data to a standardized range
between 0 and 1;

4. Determine the number of hidden layer neurons
based on an empirical formula;

5. Define the length of the decision variable vector
for the whale optimization algorithm, selecting
the mean squared error as the objective function
to minimize;
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6. Specify the stopping criteria for the optimization
process, and obtain the optimized weights and
biases from the WOA.

7. Assign the optimized parameters to the BP
neural network to construct the WOA-BP model.

8. Conduct training and validation of the neural
network using the optimized model.

This approach integrates the global optimization
ability of WOA with the learning capacity of BP networks
to enhance prediction accuracy and convergence
efficiency.

Figure 3 depicts the WOA-BP neural network
algorithm's workflow. The mean squared error (MSE)
calculated over the whole dataset serves as the fitness
function for the whale optimization method in this
architecture. A lower fitness value denotes more precise
training and, as a result, better model prediction
performance [22]. The hybridization of WOA with BP
neural networks enhances battery health modeling by
optimizing initial weights and biases, which accelerates
convergence and avoids local minima that often hinder
traditional BP training. WOA's global search and adaptive
exploitation improve prediction stability and accuracy,
especially on nonlinear degradation data. Empirical
results show that WOA-BP significantly outperforms
conventional models, achieving faster convergence and
higher reliability in SOH/RUL estimation.

Assume that there are N training samples in total,

the true value is );, and the predicted value is )A/i. The

Mean Squared Error (MSE) is defined as:
N

I .
MSE=—%(», -5 (13)

i=
In the Whale Optimization Algorithm (WOA), the
fitness function is defined as:

N
Fitness = MSE = iz:(yl. -5)
N3
(14)

The WOA aims to minimize this fitness value to
optimize the weights and biases of the BP neural network.

WOAP-BP Model Development and Prediction

L g S
A He |

A A Hs |

PN H, |

3 H.

Figure 3: WOA-BP neural network algorithm
flow
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Integrating the Whale Optimization Algorithm
(WOA) into BP neural network training enhances weight
and bias initialization, leading to faster convergence and
reduced risk of local minima. Its strong global search and
gradient-free nature improve performance on nonlinear,
noisy, or sparse battery data. WOA-BP models also
exhibit greater stability and robustness in high-
dimensional prediction tasks. Experimental results
confirm improved accuracy in SOH and RUL prediction
compared to conventional methods.

4. Experiments

4 .1 Dataset and virtual simulation
generation

In this study, multiple sources of data are used to
validate the effectiveness of the proposed model. First, the
life degradation dataset of lithium-ion batteries provided
by CALCE Laboratory of the University of Maryland is
selected, which contains the information of wvoltage,
current, temperature, and ohmic internal resistance under
multiple cycling conditions. In addition, in order to
construct high-dimensional multi-physics field supervised
data, we build a coupled thermal-electrical-chemical
model of Li-ion batteries based on the COMSOL
multiphysics field simulation platform, and generate the

temperature (T), SEI concentration (CSEI ), positive and

negative electrode concentration (C pe,C,,e ), and

electrolyte concentration ( Cne) fields under the
corresponding time and space domains by using the inputs
of wvirtual heating curves. Ce Fields. This virtual

simulation dataset is used as a supervised information
source for MPI-DeepONet training.

4.2 Experimental setup

4.2.1 Model structure and parameters

CNN-LSTM edge model: the image input size is
64x64, the convolution kernel size is 3x3, the number of
LSTM hidden units is 128, and the output fully-connected
layer is classified as 5, which corresponds to the five SOH
classes of the battery.

WOA-BP network: the input dimension is 4
(voltage, temperature, current, internal resistance), the
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hidden layer neurons are set to 20, the initial BP weights
are optimized using WOA, and the maximum number of
iterations is set to 100.

MPI-DeepONet: Both Branch and Trunk networks
contain 4 layers with 64 neurons per layer, and the
activation function is ReLU. An encoder layer is
introduced to enhance the control variable abstraction
capability, and the dot product module combines the two
outputs to complete the prediction mapping. The encoder
in the MPI-DeepONet architecture comprises four fully
connected layers with 64 neurons each, using ReLU
activation to abstract complex control inputs like heating
curves. It outputs a 64-dimensional feature vector that
enhances input representation before fusion with the
Branch network. This abstraction significantly improves
prediction accuracy and generalization, as evidenced by a
77% MSE increase when the encoder is removed.

4.2.2 Hyperparameter configuration

Table 1: Key Hyperparameters for the WOA-
DeepONet Model

Parameter Value
Learning Rate (DeepONet) | le-4
Optimizer Adam
Batch Size 64
Number of Epochs 200
WOA Population Size 30

This table 1 summarizes the core hyperparameter
configurations used for WOA-DeepONet model training.
The overall setup balances the stability of the model with
its optimization capabilities: The use of Adam optimizer
and le-4 learning rate ensures the smoothness of training;
Batch Size is set to 64 to improve computational
efficiency; The Epoch is 200 to ensure that the model has
sufficient learning roundswoman Population Size is 30,
which enhances the ability of the model to search
globally. Together, these parameters lay the foundation
for realizing high-precision and stable SOH/RUL
prediction for lithium-ion batteries.

4.3 Contrasting models

To verify the performance of the model in this paper, the

following comparison experimental groups are set up:
MLP traditional neural network: a three-layer fully

connected network, only used for static prediction.
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LSTM timing network: a mainstream model suitable
for battery SOH timing prediction.

WOA-BP optimization model: initialized BP
network using whale optimization to construct a baseline
for comparison performance.

Primitive DeepONet model: no encoder or physical
supervision.

MPI-DeepONet (no Encoders): incorporates only
physical loss functions.

MPI-DeepONet (full version): contains Encoders
with multiple physical supervision terms.

4 .4 Assessment of indicators

The performance of the prediction model was evaluated
using the following metrics: MSE (Mean Square Error),
MAE (Mean Absolute Error), R? Coefficient of
Determination, Edge Inference Latency, Inference Energy
Consumption (tested on Jetson Nano platform only).

4.5 Analysis of Prediction Results

4.5.1 SOH and RUL prediction accuracy

Table 2: Comparison of the performance of different
models in the battery SOH/RUL prediction task

MAE | MSE
RZ
Lo !
MLP 0.041 | 0.0078 | 0.81
LSTM 0.029 | 0.0052 | 0.88
WOA-BP 0.022 | 0.0036 | 0.91
CNN-LSTM (Edge
. 0.018 | 0.0024 | 0.94
version)
MP1-DeepONet 0.012 | 0.0016 | 0.96
(Unsupervised) ' ' ’
MPI-DeepONet (Physical
. 0.009 | 0.0012 | 0.98
supervision)

MPI-DeepONet + Encoder 0.006 | 0.0009 | 0.99

Table 2 demonstrates the performance comparison of
different models in the battery SOH/RUL prediction task,
clearly reflecting the evolutionary trend from traditional
neural networks to physically constrained neural operator
models. The basic MLP model has the lowest prediction
accuracy (R? of only 0.81) due to the lack of temporal
modeling capability, while the LSTM model introducing
time dependence significantly improves the fitting effect

(R? increased to 0.88). The WOA-BP model, which
further incorporates whale swarm optimization, enhances
the convergence ability through global weight search and
outperforms the traditional BP network. The CNN-LSTM
model, by extracting local features with temporal patterns,
has edge deployment capability while maintaining high
prediction accuracy, reaching R? = 0.94. In contrast, the
MPI-DeepONet, as a higher-order neural operator-based
model, achieves a coefficient of determination of 0.96
even without physical supervision; with the introduction
of the residuals of the Multiphysics field equations,
boundary conditions and initial constraints, the model
accuracy is further improved (R? = 0.98) and has good
generalization capability. Finally, when the Encoder
module is used to enhance the feature abstraction of the
control variables, the model is optimal in all evaluation
metrics (MAE=0.006, MSE=0.0009, R?=0.99), showing
strong expressive power and physical consistency.
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Figure 4: SOH prediction results and error analysis
of the MPI-DeepONet + Encoders model under
different operating conditions

Figure 4 demonstrates the fitting effect and error
performance of the MPI-DeepONet + Encoders model in
the battery SOH prediction task, reflecting its strong
fitting ability and robustness under complex working
conditions. Among them, Figure (a) shows that when the
model handles the training samples containing multiple
mutation zones, the prediction curves almost coincide
with the real values, and the model can still accurately
capture the SOH trend even if there are obvious jumps
near 200, 400 and 600 rounds; Figure (b) further
quantifies the error range, and most of the prediction
deviations are controlled within £0.01, with only a few
points slightly exceeding +0.02, which indicates that the
model maintains stable output under highly nonlinear
inputs. Figure (c), on the other hand, exemplifies the
model's ability to accurately fit the SOH variations in the
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smoothly monotonically decaying conditions, with the
prediction curves almost seamlessly aligned with the true
values. In contrast, the error distribution in Figure (d) is
even smoother, with the majority of the deviations being
lower than £0.005, which demonstrates that the model has
a high prediction accuracy with very low error
fluctuations under common degradation modes. Overall,
MPI-DeepONet + Encoders not only shows excellent
generalization ability in multiple nonlinear degradation
samples, but also maintains a high degree of physical
consistency and time-series modeling ability in
continuous degradation scenarios, which fully verifies its
application value and engineering feasibility in complex
battery health prediction scenarios.
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Figure 5: MPI-DeepONet + Encoders model in RUL
prediction with different numbers of training rounds

Figure 5 demonstrates the generalization ability and
stability assessment of the MPI-DeepONet + Encoders
model in the remaining useful life (RUL) prediction task,
using different numbers of training rounds (20th, 40th,
60th, and 80th) as model inputs, and analyzing its
prediction performance of the SOH in subsequent cycles
during the test phase. Among them, Figure 5(a) gives a
comparison between the true curve of SOH change with
the number of cycles (black line) and the predicted values
of the four groups of models (colored markers); the
training phase covers the first 80 cycles, and the
subsequent cycles are the testing phase. It can be observed
that the models can restore the SOH decay trend to a
certain extent under different training depths, especially
the predictions under 40 and 60 rounds of training are
closer to the real curves, indicating that the models can
gradually learn the battery degradation characteristics. At
the same time, although the curve fits better under 80
rounds of training, the predicted value is high, suggesting
a tendency towards overfitting. Figure 5(b) further gives
the curve of prediction bias with period, reflecting the
characteristics of the error distribution between the model
output and the true value. In particular, the prediction
errors of 40 and 60 rounds are relatively centred and
minimally fluctuating, showing good bias control.
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Figure 6: Comparison of model performance at
different starting voltage and capacity conditions

Figure 6 shows the performance evaluation results of
the prediction framework proposed in this paper under
different starting voltage and capacity conditions,
focusing on verifying the advantages of the MPI-
DeepONet + Encoders model in terms of capacity
estimation accuracy, condition adaptability and
interpretability. The Figure contains four sub-figures,
namely, error heatmap (A), charging duration heatmap
(B), voltage-capacity curve prediction comparison (C),
and incremental capacity curve comparison (D), to
systematically present the model's prediction performance
under the full lifecycle and complex charging paths.

Figure 6A shows a heat map of the RMSE error in
the two-dimensional plane of starting voltage and
observed maximum capacity. The bluer bias of the colour
indicates the more accurate prediction, as can be seen that
the model maintains an error lower than 2 x 10-32 \times
107{-3} for most voltage and capacity combinations. In
particular, the prediction error is the smallest in the
medium-high-capacity segment (>0.6 Ah) and in the
typical starting voltage interval (3.2 V-3.7 V). The high
robustness of the model in the main operating interval is
verified. And Figure 6B gives the heat map of charging
time corresponding to the same input conditions,
revealing the key role of different voltage paths in thermal
management and strategy selection. The model can give
accurate estimates stably under different time duration
conditions, showing good adaptability to changes in
operating conditions.

Figure 6C further compares the best and worst
predictions of the model under the first and last cycles
from the perspective of the voltage-capacity relationship.
The red and purple points represent the predicted values
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of the model in the first and last cycles, which are highly
consistent with the real curves of the black solid line. The
predictions still closely follow the real charge/discharge
trajectories even in the low-healthy state of the last cycle,
which  fully demonstrates the expressive and
generalisation ability of the model in complex nonlinear
electrochemical dynamics. Figure 6D shows the
prediction performance of the incremental capacity (IC)
curve, which, as a highly sensitive measure of small
changes in capacity, is still able to accurately reconstruct
the peak morphology near the voltage inflection point
(e.g., 3.6V-3.9V), indicating that the model is not only
applicable to RUL estimation, but also to the detection of
early degradation signals and health assessment.
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Figure 7: Heatmap of the error of this paper's model
in the capacity and energy estimation task vs. the
methodology

Figure 7 demonstrates the error performance and
comparative advantages of this paper's model in battery
capacity and energy prediction. Figures 7A and 7B show
that the prediction errors of MPI-DeepONet + Encoders
are generally lower than 1% under different starting
voltages and actual capacity/energy ranges, and remain
blue (error <1%) in most regions, demonstrating good all-
operating condition adaptability and prediction stability.
Figure 7C further compares with DNN, RF, SVR and
GPR methods; this paper's model has the lowest median
error and the fewest outliers in maximum capacity
prediction, showing higher accuracy and robustness,
which is superior to traditional machine learning methods.
The overall results validate the significant advantages of
this paper's scheme in accuracy control and working
condition generalization.
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Figure 8: Comparative analysis of multiphysics field
prediction during the whole process of thermal
runaway

Figure 8 demonstrates the predictive advantages of
MPI-DeepONet with encoders in thermal runaway
modeling. Figure 8a shows that the model is highly
consistent with experimental data in full-cycle
temperature  prediction,  especially  outperforming
conventional FEM during the peak thermal runaway
phase. Figures 8b-c compare the temperature field
distributions, with smoother MPI-DeepONet predictions
and more accurate boundaries. Figures 8d-e show that the
model's predictions on SEI, positive and negative
electrodes, and electrolyte concentration evolution almost
overlap with the FEM, with faster mutation point
response. Figure 8f, on the other hand, demonstrates that
it can recognize the exothermic peaks earlier and improve
the early warning capability. Overall, the method in this
paper is superior in terms of multiphysics field
consistency, prediction accuracy and dynamic response,
which is suitable for thermal safety monitoring and edge
deployment.

Table 3: Comparative analysis of key module
ablation experiments

Model Variant Removed Mean
Component Squared Error
(MSE)
MPI-DeepONet  (Full | None 0.0009
Version)
Without the Encoders | Encoder 0.0016
Module
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Without PDE Residual | Physics loss 0.0021
Supervision

Without Initial and | IC & BC | 0.0034
Boundary  Condition | losses

Supervision

Table 3 of this ablation experiment demonstrates the
impact of each key module of the MPI-DeepONet on the
overall performance. It quantifies the necessity and
effectiveness of the model's structural design by observing
the change in the mean square error (MSE) through the
gradual removal of components. The MSE of the
complete model is 0.0009, which is the lowest prediction
error among all variants, reflecting the optimal
performance of the modules in synergy. When the
Encoder module is removed, the MSE rises to 0.0016 and
the error grows by nearly 80%, indicating that the
Encoder is crucial for the characterization of complex
control inputs (e.g., heating curves). The model struggles
to capture the deep mapping relationship between the
input and output variables in its absence. Further, the
removal of the PDE residual supervision term (i.e.,
Physics Loss) causes the MSE to rise to 0.0021, showing
the central role of the Physics Prior in constraining the
solution space and improving the physical consistency of
the prediction. PDE is a mathematical equation involving
multivariable functions and their partial derivatives. In
this context, PDEs represent physical laws embedded in
the DeepONet model to ensure predictions align with
real-world Dbattery physics. In particular, physical
supervision effectively reduces the appearance of
incompatible solutions during the phase of drastic changes
in nonlinear field variables. When the initial and boundary
conditions (IC & BC) losses are removed again, the MSE
further increases to 0.0034, indicating that the model
drifts more in the absence of boundary physical guidance,
and the prediction accuracy decreases significantly,
especially in the unstable performance near distribution
boundaries and degenerate inflexion points.

5. Conclusion

This paper presents a hybrid battery health prediction
framework that combines WOA-optimized BP networks
with a physics-informed DeepONet enhanced by
encoders. The proposed method not only achieves state-
of-the-art accuracy in SOH and RUL prediction but also
ensures physical interpretability and generalization across
varied battery degradation scenarios. By embedding PDE
residuals and boundary conditions into the training
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objective, the model can learn dynamic multiphysics
relationships that are robust to noise, sparse data, and out-
of-distribution inputs. Experimental validation across
multiple datasets and heat stress simulations demonstrates
superior performance in terms of both precision and
stability. Furthermore, the model's lightweight structure
and encoder-guided input design make it suitable for real-
time applications and deployment on edge devices. Future
work will explore integration with online learning
schemes and extension to heterogeneous battery
chemistries and operational environments.
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