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Abstract 

INTRODUCTION: New energy microgrids face significant challenges in multi-source coordinated dispatching, primarily 
due to the high uncertainty in renewable energy output. Traditional optimization methods often suffer from local optimality 
and extended computation times, limiting their effectiveness in real-time or complex environments. There is a critical need 
for enhanced strategies to improve both the economic efficiency and operational robustness of microgrids. 
OBJECTIVES: This paper aims to propose and validate an optimization dispatching strategy based on an Improved Particle 
Swarm Optimization (IPSO) algorithm. The core objectives are to reduce the system's comprehensive operating cost, 
increase computational efficiency, and enhance the absorption rate of new energy within microgrid systems. 
METHODS: The IPSO algorithm enhances the conventional PSO by incorporating dynamically adjusted inertia weights and 
adaptive learning factors, improving its global search ability and convergence speed. A multi-source collaborative 
optimization model is formulated with a primary objective of minimizing the total operating cost. The model accounts for 
fluctuations in load demand and constraints related to the charging and discharging efficiency of the energy storage system 
(ESS). The strategy is implemented and tested with consideration of Distributed Energy Resources (DERs).. 
RESULTS: The improved IPSO algorithm demonstrated a 22.7% improvement in computational efficiency. It also achieved 
an average 16.2% reduction in the system’s comprehensive operating cost and increased the average absorption rate of new 
energy to 92.4%. 
CONCLUSION: The proposed IPSO-based optimization strategy significantly enhances the economic and operational 
efficiency of new energy microgrids. By effectively integrating DER characteristics and operational constraints, this method 
provides a viable technical pathway for advancing the utilization of renewable energy and improving the overall performance 
of microgrid systems. 
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1. Introduction

 Microgrids achieve local production and efficient 
consumption of energy by organically integrating load-
side resources [22]. However, the inherent intermittent 
and volatile nature of renewable energy generation 
makes it difficult to effectively cope with the high 
uncertainty and complexity challenges faced by system 
operation. Distributed Energy Resources (DERs) in 
microgrids increase the reliability and create 
difficulties like intermittency and ramp constraints; 
thus, their coordination is essential after their access by 
relying on conventional scheduling strategies.  Within 
this context, it is especially important to minimize the 
total operational costs of microgrids, particularly with 
the growing penetration of intermittent and variable 
renewable energy resources, leading to increased 
operational costs otherwise. Therefore, exploring better 
multi-source coordinated scheduling strategies to 
improve the economic efficiency and stability of 
microgrid operation has become an important focus of 
current research. 

This study proposes a multi-source collaborative 
optimization scheduling mechanism based on an 
improved particle swarm algorithm. This mechanism 
significantly improves the global optimization ability 
and environmental adaptability of the algorithm by 
embedding a dynamic adjustment strategy in the 
optimization algorithm. At the same time, closely 
combined with the actual operating characteristics of 
distributed power sources, an optimization model with 
the minimization of comprehensive operating costs as 
the core goal is constructed, and the load demand 
dynamics, energy storage system response 
characteristics, and new energy grid connection 
constraints are uniformly incorporated into the 
modeling framework [23]. This design can achieve 
efficient collaborative operation between distributed 
energy and energy storage systems, and provides a 
practical solution for the refined optimization operation 
of new energy microgrids. The core innovation of this 
study is that in view of the tendency to converge to 
local optima and computational efficiency bottleneck 

of conventional optimization methods, an improved 
algorithm design is proposed to significantly improves 
the dispatching performance; further, in the process of 
modeling and optimization, the operating 
characteristics and system constraints of new energy 
are fully considered, and the complex characteristics of 
multi-source coordination of microgrids are deeply 
integrated, to effectively achieves the coordinated 
optimization of system operation economy and stability. 
This achievement not only opens up an innovative 
technical path for the optimal dispatch of new energy 
microgrids but also lays a solid theoretical and practical 
foundation for promoting the efficient utilization of 
distributed energy and the in-depth development of 
microgrid technology [18-19]. 

The rest of the paper is structured in the following 
way. Section 2 provides the related work reviewed in 
the microgrid optimization and scheduling. Section 3 
describes the suggested methodology, the design of the 
enhanced particle swarm algorithm, and the multi-
source collaborative optimization model. The results 
and analysis of the simulation are discussed in Section 
4. Lastly, Section 5 would provide a conclusion of the
paper and future research directions.

The importance of decentralized energy systems 
and microgrids in the global economy as a possible 
solution for sustainable energy is increasing. Many 
countries are implementing facilitatory policies and 
regulatory frameworks that are productive to realize the 
integration of renewables and establish more resilient 
grids, and encourage more organized development of 
microgrids. Such tendencies in the international sphere 
emphasize the necessity of resolving the issue of the 
coordination of DER and also point to the topicality of 
the study even more. 

2. Related Work

Research on microgrid operation optimization and new 
energy consumption efficiency improvement has 
emerged continuously, and scholars have proposed a 
variety of solutions, providing important references for 
microgrid optimization. Zhang et al. [1] took the 
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minimum network loss, minimum voltage offset and 
maximum energy utilization rate as the objective 
function, combined with the constraints of distributed 
power output, rural microgrid operation and energy 
storage, and established a rural microgrid source-grid-
load-storage model with distributed power sources; in 
the multi-objective particle swarm algorithm, the grid 
vector pruning strategy of ε-dominance relationship 
was introduced to accelerate the convergence 
efficiency of the algorithm. Yao et al. [2] 
comprehensively considered the system operation 
economy and carbon emission environmental benefits 
of the microgrid group, and proposed a low-carbon 
day-ahead scheduling model for interactive microgrid 
groups based on distributed shared energy storage. Lin 
et al. [3] established photovoltaic, wind turbine 
probability models and load probability models based 
on the normal distribution probability model, and based 
on this, developed the scenario construction of the 
virtual power plant microgrid. Taking the operation 
cost, renewable energy consumption, and 
environmental cost as the optimization objectives, a 
source-load coordinated optimization scheduling 
model was established. Zhang et al. [4] proposed a two-
stage robust multi-park microgrid and shared energy 
storage cooperative game model based on source-load 
uncertainty to improve the economic efficiency of the 
power system with shared energy storage. The 
simulation results show that the coordinated 
optimization operation of shared energy storage and 
each park microgrid can reduce the operating costs of 
each entity. Li et al. [5] proposed a two-layer 
optimization configuration method for microgrids to 
improve the local consumption capacity of renewable 
energy and solve the problem of seasonal energy 
imbalance. Li [6] studied the control and scheduling of 
isolated microgrids. Krishna et al. [7] proposed a new 
algorithm to provide multiple break-even solutions. Jia 
et al. [8] established a microgrid economic operation 
optimization model considering demand response with 
price uncertainty. Ben et al. [9] developed a demand-
side management algorithm that integrates the 
capabilities of the energy consumption scheduler. The 
algorithm achieves optimal energy sharing by relying 

on appropriate energy cost parameters and appropriate 
multi-source devices. Zhang et al. [10] used the 
innovativeness of the Bi-ELECTRE method to explore 
how to measure the interaction between bipolar scale 
indicators when evaluating renewable energy 
alternatives for microgrids and how to determine the 
optimal renewable energy combination for microgrids. 
The above studies still have shortcomings in dealing 
with the volatility of renewable energy output, 
improving the efficiency of optimization algorithms, 
and the adaptability of multi-source collaborative 
scheduling models. This paper proposes a method of 
improving particle swarm optimization combined with 
multi-source collaborative optimization modeling to 
improve the economy and stability of microgrids. 

The convergence acceleration method is based on 
the e-dominance grid vector pruning strategy, which 
was first suggested by Zang. Under this method, the 
objective space is broken up into discrete e-sized grids. 
The solutions are assigned to a grid cell, each about the 
objective values. In case two or more solutions belong 
to the same grid, only the solution with superior 
dominance properties is maintained, and the redundant 
solutions are culled. This step is the pruning process, 
which will shrink the size of the solution archive and 
avoid overcrowding of solutions around the small area. 
As a result, more efficient guidance of the search 
process in the objective space increases the rate of 
convergence and does not lose diversity in solutions.  

3. Method

3.1 Algorithm Design 

3.1.1 Dynamic inertia weight 
In the design of the improved particle swarm algorithm 
(IPSO), a dynamic inertia weight mechanism is 
introduced. The core idea of this mechanism is to 
continuously adjust the value of the inertia weight 
according to specific rules. This dynamic adjustment 
aims to effectively balance the exploration ability of the 
particle swarm in the entire search space (global search) 
and the development ability in a specific area (local 
search). The dynamic adjustment process of the inertia 
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weight is: 

w=wmax-(wmax-wmin)⋅ t
T

(1) 

The inertia weight w is set to a large value. At this 
time, the particles mainly rely on their own historical 
optimal positions when updating their speed, which 
significantly enhances the ability of the particle swarm 
to explore the entire search space (global search) and 
helps avoid the algorithm from converging to a 
suboptimal solution (local optimum) too early. 

As the iteration process progresses, the inertia 
weight w gradually decreases according to preset rules 
(such as linear decrease). At lower weight values, the 
particle speed update is more guided by the current 
local optimal solution (individual optimal or global 
optimal), thereby improving the algorithm's ability to 
perform fine searches near potential optimal areas 
(local search accuracy). The update formula for particle 
speed is: 

vi
t+1=w⋅vi

t+c1⋅r1⋅�pi
best-xi

t�+c2⋅r2⋅�gbest-xi
t�   (2)

Different inertia weight ranges (wmax  and wmin ) 
are set for comparison, and the data are shown in Table 
1. 

This table illustrates the inertia weight ranges of 
the IPSO on which the dynamic parameter adaptation 
is based.  

Table 1: Different ranges of inertia weight 
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Different configurations of dynamic inertia 
weights are significantly better than the case of a fixed 
weight (0.5). As the inertia weight range is adjusted, the 
average number of iterations and running time are 
significantly reduced, and the objective function value 
(i.e., the optimization goal) is also significantly 
improved. Especially when the inertia weight range is 
wmax=1.0,wmin=0.2 The algorithm shows high 
convergence accuracy and efficiency, which shows that 
the dynamic inertia weight mechanism is particularly 
suitable for complex scenarios in multi-source 
optimization scheduling of new energy microgrids. 

The algorithm balances local and global search 
using the use of a dynamic inertia weight. In the initial 
iterations with a larger inertia weight, particles can 
search the solution space widely and increase their 
global search to prevent premature convergence. The 
inertia weight reduces as the iterations continue to run, 
thereby restricting the range of exploration that the 
particle can cover but enhancing local search capacity, 
which tends to converge closer to the global optimum. 
This dynamic adaptation will provide a successful 
balance between exploration and exploitation.  
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3.1.2 Adaptive learning factor 
The social learning and the cognitive factors are often 
treated as constant in the traditional PSO. But fixed 
learning factors tend to decrease algorithmic flexibility. 
When the search is in its infancy, more exploration is 
needed to identify the global optimum area. When the 
factors of constant learning are used, the particles can 
converge too early to the local optima, resulting in poor 
global exploration. Thus, changing the aspects of 
adaptive or dynamic learning can improve the tradeoff 
between earlier iterations' exploration and later 
iterations' exploitation, which will in turn improve 
convergence performance.  

In IPSO, in order to further improve the 
algorithm's search capability, an adaptive learning 
factor strategy is adopted. The learning factors c1 and 
c2  In the traditional particle swarm algorithm are 
usually fixed. Fixed learning factors may lead to 
insufficient flexibility in the search process, weak 
exploration of the global optimal solution in the early 
stage, and excessive reliance on its own optimal 
solution in the later stage, resulting in insufficient local 
search capabilities. Therefore, in this study, an adaptive 
learning factor is introduced to improve the accuracy of 
local search during iteration by dynamically adjusting 
the values of c1  and c2 . The dynamic adjustment 
formula of the adaptive learning factor is as follows: 

c1=c1_max-(c1_max-c1_min)⋅ t
T

(3) 

c2=c2_min+(c2_max-c2_min)⋅ t
T

(4) 

In the early stage of the algorithm, the value of c1 
is large, while the value of c2  is small, and the 
particles rely more on their own historical optimal 
solution, thereby enhancing the global search ability. 
Combined with the particle speed update after the 
adaptive learning factor, by adding the adaptive 
learning factor, the particles can automatically adjust. 
Table 2 compares the range of different learning. The 
adaptation plan is dynamically adjusted in the 
intercession of the iterations, aiming at balancing the 
evolution between exploration and exploitation. In the 
early stages, the learning factors are adjusted to 

concentrate on global exploration, where the particles 
are allowed to scour extensively within the solution 
space. As the iterations increase, the exploration weight 
decreases, and the exploitation one increases and steers 
the particles to reduce their search areas in promising 
areas. A control logic of the number of iterations 
establishes this change to have a smooth and systematic 
transition between exploration and exploitation, 
thereby improving the efficiency of this table which 
compares the various ranges of learning factors, 
depicting how adaptive factors can facilitate enhanced 
exploration/exploitation balance. 

Table 2: Comparison of different learning 
factor ranges 
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3.2 Multi-source Collaborative 
Optimization Scheduling Model 

3.2.1 Objective 
The microgrid has distributed energy resources (DERs), 
which consist of distributed generation and storage 
systems to aid load demand and enhance reliability. 
Nevertheless, DERs have some intrinsic drawbacks, 
which include the intermittency of renewable energy, 
ramp-rate constraints, and availability inconsistency. 
These properties render their integration very difficult 
yet very important for stability assurance, economic 
viability, and dependability of performance of the 
microgrid. It is based on this that the optimization 
objective below is formulated. 

First, a mathematical optimization model based on 
time series is constructed, assuming that the microgrid 
operation time is divided into multiple discrete time 
periods. t∈T, in which the system state is considered 
static in each time period [11-12]. The objective 
function can be expressed as the weighted sum of the 
operating costs [13-14]. The process is as follows: 

MinimizeCtotal= ∑  t∈T (Cgen,t+Cess,t+Cgrid,t)   (5) 
These cost items are time-related variables, so the 

optimization process must consider dynamic changes 
in the time dimension [15]. In addition, the model can 
also add constraint weights to the objective function to 
further improve the utilization rate. By introducing a 

penalty term Cpenalty,t Quantitative penalties are 
imposed on behaviors such as wind and solar power 
abandonment [16]. The improved form of the objective 
function is as follows： 

MinimizeCtotal= ∑  t∈T �Cgen,t+Cess,t+Cgrid,t+Cpenalty,t�
(6) 

The construction of this objective function fully 
considers the dual needs of economy and 
environmental protection, and provides a basis for 
subsequent constraints and scheduling strategies [20]. 
During the scheduling process, the output power of 
each distributed power source needs to be coordinated 
with the charging and discharging power of the energy 
storage system and meet the immediate balance 
relationship of load demand, while the main grid, as an 
auxiliary resource, provides support for the supply and 
demand balance of the entire microgrid [21]. By 
solving the optimization model [17], it is possible to 
minimize the operating cost of the microgrid and 
maximize the utilization rate of new energy based on 
meeting multiple constraints, thereby improving the 
overall operating efficiency of the microgrid. 

3.2.2 Constraints 
In the multi-source collaborative optimization 
scheduling model, a series of constraints must be 
introduced. These constraints cover multiple aspects 
such as distributed energy power output, energy storage 
system operating characteristics, power balance, and 
equipment operating restrictions to ensure that the 
optimization results meet the actual operating 
requirements [24]. The first is the power balance 
constraint, the core of which is to ensure that in each 
time period, the power generation in the microgrid and 
the interaction with the main grid power can jointly 
meet the load demand. The power balance constraint 
can be expressed as follows: 

Pgen,t+Pess,t+Pgrid,t=Pload,t,∀t∈T     (7) 
The power output of distributed energy is limited 

by its physical characteristics and weather conditions, 
and its upper limit of power generation is determined 
by the maximum available power. The constraints are: 

0≤Pgen,t≤Pgen,max,t,∀t∈T       (8) 
Energy storage systems are also limited by 
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capacity and charge and discharge power. The state of 
energy storage is usually represented by its state of 
charge (State of Charge, SOCt ), which must be 
guaranteed to operate within the preset upper and lower 
limits. The constraints of energy storage systems 
include power limits and state of charge limits, 
specifically: 

Pess,min≤Pess,max,SOCmin≤SOCt≤SOCmax,∀t∈T 
(9) 

The state of energy storage is typically referred to 
as its state of charge, which is mentioned multiple times. 
Please keep it as is (when introducing constraints of 
ESS) and amend or eliminate elsewhere. Alternative 
recommendation: The SOC is considered the major 
measure of storage condition in this research. The state 
of energy storage is usually represented by its state of 
charge, which must be guaranteed to operate within the 
preset upper and lower limits. The constraints of the 
energy storage system include power limit and state of 
charge limit, specifically: 

Pgrid,t≥0orPgrid,t≤0,|Pgrid,t|≤Pgrid,max,∀t∈T   (10) 
In order to intuitively show the restrictions on 

system operation, the available power of distributed 
energy and the operating parameters of the energy 
storage system are listed in Tables 1 and 2. In Figure 1, 
the available power of distributed energy is a predicted 
value based on typical weather conditions and 
equipment capacity, showing the maximum power 
output of photovoltaic and wind power in different time 
periods. 

Figure 1: Data at different times 

This value represents the convergence of PSO and 
IPSO, as it is true to say that IPSO is more quickly and 
steadily optimized.  

Energy Storage System (ESS) is an important 
factor in the effectiveness of absorbing the fluctuation 
of generation by renewable energy, particularly in the 
aspect of coordination of multiple sources. It also 
minimizes intermittency, as a backup of surplus power 
is stored and discharged during periods of scarcity, and 
it also provides capacity reserve, frequency control, 
and ramping capacity. This contribution to stability 
justifies the fact that the explicit consideration of ESS 
properties such as capacity and charge/discharge limits 
is required in the scheduling algorithm of the 
optimization model. 

Table 3 shows the operating constraint parameters 
of the energy storage system, including maximum 
charge and discharge power, upper and lower limits of 
charge state, and efficiency parameters. These 
parameters determine the behavior range of the energy 
storage system in optimal scheduling. 

This table shows the operating constraint 
parameters of the ESS, which are essential in ensuring 
the stability of the system and efficient scheduling.  
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Table 3: Operating constraint parameters of 
the energy storage system 

Parameter 
Name 

Value 
Range 

Unit 

 P es s,m ax 80 kW 
Pess.min -80 kW 
SOCmax 90 % 
SOCmin 20 % 

ηess 95 % 

The above data reflects the physical constraints of 
the system. The power output of distributed energy is 
mainly affected by weather conditions, while the 
operating range of the energy storage system is 
determined by the equipment capacity and efficiency. 
These constraints play a key role in optimizing 
scheduling and ensuring the feasibility and safety of the 
generated scheduling plan in actual operation. 

3.2.3 Simulation scenario 
This study selects the IEEE 33-node distribution 
system as the basic simulation platform. As a typical 
distribution network structure, this system can 
effectively simulate the collaborative operation 
characteristics of multiple energy sources in the 
microgrid by configuring distributed power sources 
(DERs), energy storage devices (ESS), and load nodes. 
The simulation designs a variety of typical scenarios, 
including conventional load, high load, low renewable 
energy output, and dynamic electricity prices. These 
scenarios aim to comprehensively test the scheduling 
optimization ability and system robustness of the 
model under different operating conditions and 
constraints by changing factors such as the output level 
of distributed power sources, load demand, operating 
status of energy storage systems, and grid electricity 
prices [25] Valivarthi (2018) promoted the Wavelet 
Transform-PSO approach, ranging from anomaly 
detection to ensuring accuracy and security in a cloud-
based healthcare system. This portrays PSO's flexibility, 
paving the way for us to propose IPSO-based 
scheduling for microgrids, where efficient data 

handling and secure optimization are a must [26][27]. 
The IEEE 33-node distribution system is selected since 
it is a popular reference point of study in the 
distribution network. It offers a trade-off between the 
simplicity of computing the results and the realism of 
the system, enabling the results to be directly compared 
to other literature work. 

The renewable energy output and load demand are 
dynamically simulated using a time series model based 
on measured or predicted data. The simulation covers 
24 hours with a time resolution of 1 hour. At the same 
time, the main grid electricity purchase and sales price 
curve is set to ensure that the economic characteristics 
of different scenarios (especially dynamic electricity 
price scenarios) are accurately reflected. Figure 2 
shows the key parameters, such as load demand, 
photovoltaic power generation output, wind power 
generation output, and main grid electricity price of 
some nodes in each time period in the simulation. 

Figure 2: Key parameters of some nodes at 
different time periods in the simulation 

This figure indicates the time scheduling 
outcomes with the various sources and how IPSO has 
been effective in matching the supply and demand.  

The load demand ranges from 250 kW to 300 kW, 
showing a typical daily load fluctuation characteristic, 
with relatively high loads in the morning and evening 
and slightly lower loads at noon. The photovoltaic 
power generation output varies significantly over time, 
reaching a maximum value of 100 kW at noon (for 
example, the third period), because photovoltaic power 
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generation is greatly affected by the intensity of solar 
radiation. The wind power output fluctuates less and is 
generally stable between 110 kW and 150 kW, which 
shows that it is less affected by wind speed changes but 
still has certain fluctuations. The main grid electricity 
price varies with the time period, with the peak 
occurring in the fifth period (0.13 $/kWh) and the 
valley price occurring in the fourth period (0.09 
$/kWh), reflecting the guiding role of the dynamic 
electricity price mechanism on electricity consumption 
behavior. In an exact meaning, the simulation had the 
following assumptions as its inputs. It follows the 
dynamic price curve of electricity, which is set on a 
normal time-of-use tariff with a variety of peak and 
valley rates of 0.09 to 0.13 $/kWh. These projections 
of photovoltaic and wind generation renewable energy 
use previous weather behavior and daily profiles so that 
the characteristics of variation are realistic. It is based 
on these assumptions that the simulation situations in 
Figure 2 were developed. To be clear, the following 
assumptions were used as inputs in the simulation. It 
adopts a dynamic electricity pricing curve, the peak and 
valley values of which range between 0.09 and 0.13 
$/kWh and are based on a standard time-of-use tariff. 
The predicted photovoltaic and wind output are based 
on past weather trends and everyday profiles, thus 
providing very realistic fluctuation properties. Based 
on these assumptions, the simulation scenarios in 
Figure 2 are developed. 

The conditions of the boundary of the 
optimization model are defined as follows. First, grid 
support is said to be available with limited power 
exchange capacity, which is to ensure that there are 
certain limits within which the microgrid can import or 
export electricity. Second, the pricing of electricity is 
under a time-of-use contract that has both peak and 
valley tariffs upon which the cost is assessed. Lastly, 
the normal connection and availability of the main grid 
are assumed, and the islanded condition is only 
assumed on a case-by-case basis. These assumptions 
define the range of operation to which the optimization 
strategy is assessed. 

4. Results and Discussion

 4.1 Algorithm Performance Verification 

4.1.1 Comparison between the IPSO algorithm 
and the traditional PSO 
The microgrid optimization scheduling problem is 
selected for testing. The test scenario includes a typical 
load curve and distributed energy output characteristics 
for 24 hours, taking into account the dynamic 
electricity price mechanism. The traditional PSO 
algorithm and the improved PSO (IPSO) algorithm are 
used for optimization scheduling, and the test 
indicators include operating efficiency (optimization 
time) and comprehensive operating cost (unit: $). 
Operating efficiency indicates the time it takes for the 
algorithm to complete the optimization, and the 
comprehensive operating cost is the total economic 
cost after the optimized scheduling. A total of 15 
different optimization tasks are set in the test, and the 
results of the two algorithms for each task are recorded. 
The data are shown in Figures 3 and 4. 

Figure 3: Operational efficiency 

This figure shows how renewable use has 
increased, with IPSO highlighting its role towards 
sustainability. 

Figure 4: Comprehensive operating costs 
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This value reflects the savings and efficiency 
realized by IPSO over PSO.  

IPSO's operating efficiency in all 15 tasks is better 
than that of the traditional PSO algorithm, and the 
average optimization time is reduced by about 22.7%. 
The IPSO algorithm performs best in the 14th task, 
with an optimization time of 11.6 seconds, which is 4 
seconds less than PSO's 15.6 seconds. The IPSO 
algorithm is also significantly better than PSO in terms 
of comprehensive operating costs, with an average cost 
reduction of about 16.2%. In the 14th task, IPSO has 
the lowest optimization cost of $337.9, which is 16.5% 
less than PSO's $404.8. Overall, the IPSO algorithm 
has shown significant improvements in both operating 
efficiency and cost optimization. 

4.1.2 New energy consumption 
The dynamic output curves of wind power and 
photovoltaic power, as well as the 24-hour load demand 
distribution, are set, and the optimization effects of 
IPSO and traditional PSO algorithms are compared. 
The test indicator is the new energy consumption rate, 
that is, the ratio of the actual new energy power 
consumed to the total available new energy power. The 
test sets a total of 15 tasks, and records the new energy 
consumption rates of the two algorithms, respectively. 
The results are shown in Figure 5. 

Figure 5: Consumption rate 

The IPSO algorithm has a higher renewable 
energy absorption rate than the traditional PSO 
algorithm in all tasks, with an average absorption rate 
of 92.4%, while the average absorption rate of the PSO 
algorithm is 86.9%, an increase of 5.5 percentage 
points. In the eighth task, the IPSO absorption rate is 

93.3%, and the PSO absorption rate is 88.0%, an 
increase of 5.3%. Overall, the IPSO algorithm more 
effectively coordinates the matching of distributed 
energy and load, significantly reduces the phenomenon 
of wind and solar power abandonment, and improves 
the utilization efficiency of renewable energy. 

Table 4. Comparison of renewable utilization and 
CO₂ emissions (PSO vs IPSO)  

Scenario Renewable 
Utilization (%) 

CO₂ Emission 
(kg/day) 

PSO (Baseline) 86.9 27.5 
IPSO 

(Proposed) 
92.4 16.0 

Reduction +5.5% –11.5

As can be seen, the IPSO-based scheduling 
enhances the use of renewables by 5.5 percent and 
lowers CO₂ by about 11.5 kg/day compared to the 
traditional PSO. 

4.2 Model Validity Verification 
A multi-scenario simulation test is designed in the 
IEEE 33-node system, including a high-load scenario, 
a low-load scenario, a high-new energy output scenario, 
a low-new energy output scenario, and a dynamic 
electricity price scenario. In each scenario, the 
coordinated operation of distributed energy 
(photovoltaic and wind power), energy storage 
equipment, and the main grid is considered, and key 
indicators such as the system's comprehensive 
operating cost, load supply and demand balance 
deviation, voltage offset, and new energy consumption 
rate are recorded separately. Through the optimization 
of the IPSO algorithm, the economy and stability in 
each scenario are effectively balanced. The results are 
shown in Table 5. 
In the table, the results of the simulation of the multi-
scenario simulation are shown, which confirm the 
feasibility and power of the proposed optimization 
model.  
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Table 5: Multi-scenario simulation results 
verification 
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4
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0
.
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1.1 0.
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92.4 

The model shows a strong ability to balance 
economy and stability in multiple scenarios. In the 

high-load scenario, the system's comprehensive 
operating cost is high ($520.4), but the new energy 
consumption rate is still achieved at 91.8%, and the 
voltage offset and load balance errors remain at 1.2% 
and 0.5%, indicating that the model can still operate 
stably under high load pressure. In the low-load 
scenario, the comprehensive operating cost drops 
significantly to $310.7, and the new energy utilization 
rate is the highest (93.2%), indicating that the model 
prioritized the consumption of new energy at low loads, 
improving the economy. In the high-renewable energy 
output scenario, the utilization rate of new energy 
reaches 94.5%, and the comprehensive operating cost 
is relatively low at $450.2, indicating that the model 
effectively reduces the phenomenon of wind and solar 
power abandonment. In the low-renewable energy 
scenario, due to insufficient distributed energy output, 
the comprehensive cost rises to $580.9, and the 
utilization rate of new energy drops to 89.7%, but the 
load supply and demand balance error is still controlled 
within 0.6%, proving that the model can still ensure 
system stability when supply and demand are 
insufficient. In the dynamic electricity price scenario, 
the model flexibly responds to electricity price 
fluctuations through optimized scheduling, with a 
comprehensive cost of $490.3 and a new energy 
utilization rate of 92.4%, achieving simultaneous 
improvement in economy and stability. These results 
show that the optimization model can effectively 
balance economy and stability under different 
operating conditions. 

Comparison of IPSO with other optimization 
algorithms by their summary. 
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runtime 

Different
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Hybrid 
PSO-GA 

Good Medium
-Fast
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than 

GA/PS
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Improved 
performan

ce 

Improve
d Whale 
Optimiza
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(IWOA) 

Good Fast Good Low 
cost/runti

me 

Proposed 
IPSO 
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ent 

Fastest Very 
Good 

Best cost, 
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runtime 

5. Conclusion
This study focuses on the core challenges of multi-
source coordinated optimization scheduling of new 
energy microgrids. By integrating dynamic inertia 
weights and adaptive learning factor mechanisms in the 
algorithm, it effectively overcomes the limitation of 
traditional methods that are prone to local optimality, 
significantly improves the global exploration ability 
and convergence efficiency, and thus better copes with 
the impact of new energy output fluctuations on system 
operation. At the modeling level, the multi-scenario 
operation characteristics of distributed power sources 
(DERs), the dynamic response characteristics of energy 
storage systems (ESSs), and the constraints of new 
energy grid-connected operation are deeply integrated 
to achieve coordinated optimization of economy and 
stability. This method can coordinate the efficient 
operation of DERs and ESSs in multiple scenarios, 
significantly enhance the new energy absorption 
capacity, and ensure the real-time and reliable supply 
of load demand. Studies have shown that this method 
can effectively handle system complexity and 
uncertainty, and has good practical value and 

application prospects. When implementing this in 
reality, there are several factors that should be taken 
into consideration. They are communication latency, 
data granularity, system delays, and a continuous 
combination of the optimization strategies with the 
current SCADA and EMS platforms, which are all 
crucial to reliable operation. Traditional techniques of 
optimization, such as PSO, are disadvantaged by slow 
convergence and susceptibility to local optima, which 
restricts their usefulness in addressing the vagaries of 
renewable generation. The proposed IPSO-based 
strategy directly overcomes such challenges that 
suggest dynamic inertia weights and adaptive learning 
factors that enable global exploration to be more 
dynamic and convergence to be faster. To highlight 
how the proposed methodology will resolve the 
drawbacks that the traditional approaches have, it is 
possible to highlight these improvements and justify 
the significance of the solution that will be advanced in 
the given research. Through these problems, the quality 
and the effect of this research will be enhanced to a 
greater level because it will be in line with strict 
academic standards.  
The suggested IPSO solution can overcome such DER-
related limitations as intermittency and ramp limits, 
which provide stable and effective microgrid 
performance.  Although the developed IPSO-based 
scheduling model proves to be effective in general, it 
has multiple opportunities to be applied depending on 
the particular countries, climate conditions, and 
regulatory conditions. Future enlargements of the work 
may test the model in different policy contexts and in 
different microgrid deployments to increase the 
model's applicability in various regions worldwide. 
These gains (22.7% efficiency, 16.2% cost reduction) 
are validations that IPSO is practically better than 
merely the theoretical validation. 
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Nomenclature 

Abbreviation Full Form 

DER / DERs Distributed Energy 
Resource(s) 

ESS / ESSs Energy Storage 
System(s) 

PSO Particle Swarm 
Optimization 

IPSO Improved Particle 
Swarm Optimization 

IEEE Institute of Electrical 
and Electronics 
Engineers 

SOC State of Charge 
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