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Abstract

INTRODUCTION: New energy microgrids face significant challenges in multi-source coordinated dispatching, primarily
due to the high uncertainty in renewable energy output. Traditional optimization methods often suffer from local optimality
and extended computation times, limiting their effectiveness in real-time or complex environments. There is a critical need
for enhanced strategies to improve both the economic efficiency and operational robustness of microgrids.

OBJECTIVES: This paper aims to propose and validate an optimization dispatching strategy based on an Improved Particle
Swarm Optimization (IPSO) algorithm. The core objectives are to reduce the system's comprehensive operating cost,
increase computational efficiency, and enhance the absorption rate of new energy within microgrid systems.

METHODS: The IPSO algorithm enhances the conventional PSO by incorporating dynamically adjusted inertia weights and
adaptive learning factors, improving its global search ability and convergence speed. A multi-source collaborative
optimization model is formulated with a primary objective of minimizing the total operating cost. The model accounts for
fluctuations in load demand and constraints related to the charging and discharging efficiency of the energy storage system
(ESS). The strategy is implemented and tested with consideration of Distributed Energy Resources (DERS)..

RESULTS: The improved IPSO algorithm demonstrated a 22.7% improvement in computational efficiency. It also achieved
an average 16.2% reduction in the system’s comprehensive operating cost and increased the average absorption rate of new
energy to 92.4%.

CONCLUSION: The proposed IPSO-based optimization strategy significantly enhances the economic and operational

efficiency of new energy microgrids. By effectively integrating DER characteristics and operational constraints, this method

provides a viable technical pathway for advancing the utilization of renewable energy and improving the overall performance

of microgrid systems.
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1. Introduction

Microgrids achieve local production and efficient
consumption of energy by organically integrating load-
side resources [22]. However, the inherent intermittent
and volatile nature of renewable energy generation
makes it difficult to effectively cope with the high
uncertainty and complexity challenges faced by system
operation. Distributed Energy Resources (DERs) in
microgrids increase the reliability and create
difficulties like intermittency and ramp constraints;
thus, their coordination is essential after their access by
relying on conventional scheduling strategies. Within
this context, it is especially important to minimize the
total operational costs of microgrids, particularly with
the growing penetration of intermittent and variable
renewable energy resources, leading to increased
operational costs otherwise. Therefore, exploring better
multi-source coordinated scheduling strategies to
improve the economic efficiency and stability of
microgrid operation has become an important focus of
current research.

This study proposes a multi-source collaborative
optimization scheduling mechanism based on an
improved particle swarm algorithm. This mechanism
significantly improves the global optimization ability
and environmental adaptability of the algorithm by
embedding a dynamic adjustment strategy in the
optimization algorithm. At the same time, closely
combined with the actual operating characteristics of
distributed power sources, an optimization model with
the minimization of comprehensive operating costs as
the core goal is constructed, and the load demand
dynamics, energy storage system  response
characteristics, and new energy grid connection
constraints are uniformly incorporated into the
modeling framework [23]. This design can achieve
efficient collaborative operation between distributed
energy and energy storage systems, and provides a
practical solution for the refined optimization operation
of new energy microgrids. The core innovation of this
study is that in view of the tendency to converge to

local optima and computational efficiency bottleneck

of conventional optimization methods, an improved
algorithm design is proposed to significantly improves
the dispatching performance; further, in the process of
modeling and  optimization, the operating
characteristics and system constraints of new energy
are fully considered, and the complex characteristics of
multi-source coordination of microgrids are deeply
integrated, to effectively achieves the coordinated
optimization of system operation economy and stability.
This achievement not only opens up an innovative
technical path for the optimal dispatch of new energy
microgrids but also lays a solid theoretical and practical
foundation for promoting the efficient utilization of
distributed energy and the in-depth development of
microgrid technology [18-19].

The rest of the paper is structured in the following
way. Section 2 provides the related work reviewed in
the microgrid optimization and scheduling. Section 3
describes the suggested methodology, the design of the
enhanced particle swarm algorithm, and the multi-
source collaborative optimization model. The results
and analysis of the simulation are discussed in Section
4. Lastly, Section 5 would provide a conclusion of the
paper and future research directions.

The importance of decentralized energy systems
and microgrids in the global economy as a possible
solution for sustainable energy is increasing. Many
countries are implementing facilitatory policies and
regulatory frameworks that are productive to realize the
integration of renewables and establish more resilient
grids, and encourage more organized development of
microgrids. Such tendencies in the international sphere
emphasize the necessity of resolving the issue of the
coordination of DER and also point to the topicality of

the study even more.

2. Related Work

Research on microgrid operation optimization and new
energy consumption efficiency improvement has
emerged continuously, and scholars have proposed a
variety of solutions, providing important references for

microgrid optimization. Zhang et al. [1] took the
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minimum network loss, minimum voltage offset and
maximum energy utilization rate as the objective
function, combined with the constraints of distributed
power output, rural microgrid operation and energy
storage, and established a rural microgrid source-grid-
load-storage model with distributed power sources; in
the multi-objective particle swarm algorithm, the grid
vector pruning strategy of e-dominance relationship
was introduced to accelerate the convergence
efficiency of the algorithm. Yao et al. [2]
comprehensively considered the system operation
economy and carbon emission environmental benefits
of the microgrid group, and proposed a low-carbon
day-ahead scheduling model for interactive microgrid
groups based on distributed shared energy storage. Lin
et al. [3] established photovoltaic, wind turbine
probability models and load probability models based
on the normal distribution probability model, and based
on this, developed the scenario construction of the
virtual power plant microgrid. Taking the operation
cost, renewable energy consumption, and
environmental cost as the optimization objectives, a
source-load coordinated optimization scheduling
model was established. Zhang et al. [4] proposed a two-
stage robust multi-park microgrid and shared energy
storage cooperative game model based on source-load
uncertainty to improve the economic efficiency of the
power system with shared energy storage. The
simulation results show that the coordinated
optimization operation of shared energy storage and
each park microgrid can reduce the operating costs of
each entity. Li et al. [5] proposed a two-layer
optimization configuration method for microgrids to
improve the local consumption capacity of renewable
energy and solve the problem of seasonal energy
imbalance. Li [6] studied the control and scheduling of
isolated microgrids. Krishna et al. [7] proposed a new
algorithm to provide multiple break-even solutions. Jia
et al. [8] established a microgrid economic operation
optimization model considering demand response with
price uncertainty. Ben et al. [9] developed a demand-
side management algorithm that integrates the
capabilities of the energy consumption scheduler. The

algorithm achieves optimal energy sharing by relying

on appropriate energy cost parameters and appropriate
multi-source devices. Zhang et al. [10] used the
innovativeness of the Bi-ELECTRE method to explore
how to measure the interaction between bipolar scale
indicators when evaluating renewable energy
alternatives for microgrids and how to determine the
optimal renewable energy combination for microgrids.
The above studies still have shortcomings in dealing
with the volatility of renewable energy output,
improving the efficiency of optimization algorithms,
and the adaptability of multi-source collaborative
scheduling models. This paper proposes a method of
improving particle swarm optimization combined with
multi-source collaborative optimization modeling to
improve the economy and stability of microgrids.

The convergence acceleration method is based on
the e-dominance grid vector pruning strategy, which
was first suggested by Zang. Under this method, the
objective space is broken up into discrete e-sized grids.
The solutions are assigned to a grid cell, each about the
objective values. In case two or more solutions belong
to the same grid, only the solution with superior
dominance properties is maintained, and the redundant
solutions are culled. This step is the pruning process,
which will shrink the size of the solution archive and
avoid overcrowding of solutions around the small area.
As a result, more efficient guidance of the search
process in the objective space increases the rate of

convergence and does not lose diversity in solutions.

3. Method
3.1 Algorithm Design

3.1.1 Dynamic inertia weight

In the design of the improved particle swarm algorithm
(IPSO), a dynamic inertia weight mechanism is
introduced. The core idea of this mechanism is to
continuously adjust the value of the inertia weight
according to specific rules. This dynamic adjustment
aims to effectively balance the exploration ability of the
particle swarm in the entire search space (global search)
and the development ability in a specific area (local

search). The dynamic adjustment process of the inertia
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weight is:
W:Wmax'(wmax'wmm)' zin (1)

The inertia weight w is set to a large value. At this
time, the particles mainly rely on their own historical
optimal positions when updating their speed, which
significantly enhances the ability of the particle swarm
to explore the entire search space (global search) and
helps avoid the algorithm from converging to a
suboptimal solution (local optimum) too early.

As the iteration process progresses, the inertia
weight w gradually decreases according to preset rules
(such as linear decrease). At lower weight values, the
particle speed update is more guided by the current
local optimal solution (individual optimal or global
optimal), thereby improving the algorithm's ability to
perform fine searches near potential optimal areas
(local search accuracy). The update formula for particle
speed is:

vlawrep (e (@) @)

Different inertia weight ranges (w,,,, and w,,;,)
are set for comparison, and the data are shown in Table
1.

This table illustrates the inertia weight ranges of
the IPSO on which the dynamic parameter adaptation

is based.

Table 1: Different ranges of inertia weight
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Different configurations of dynamic inertia
weights are significantly better than the case of a fixed
weight (0.5). As the inertia weight range is adjusted, the
average number of iterations and running time are
significantly reduced, and the objective function value
(i.e., the optimization goal) is also significantly
improved. Especially when the inertia weight range is
Wiax=1.0,wni,=0.2 The algorithm shows high
convergence accuracy and efficiency, which shows that
the dynamic inertia weight mechanism is particularly
suitable for complex scenarios in multi-source
optimization scheduling of new energy microgrids.

The algorithm balances local and global search
using the use of a dynamic inertia weight. In the initial
iterations with a larger inertia weight, particles can
search the solution space widely and increase their
global search to prevent premature convergence. The
inertia weight reduces as the iterations continue to run,
thereby restricting the range of exploration that the
particle can cover but enhancing local search capacity,
which tends to converge closer to the global optimum.
This dynamic adaptation will provide a successful

balance between exploration and exploitation.
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3.1.2 Adaptive learning factor

The social learning and the cognitive factors are often
treated as constant in the traditional PSO. But fixed
learning factors tend to decrease algorithmic flexibility.
When the search is in its infancy, more exploration is
needed to identify the global optimum area. When the
factors of constant learning are used, the particles can
converge too early to the local optima, resulting in poor
global exploration. Thus, changing the aspects of
adaptive or dynamic learning can improve the tradeoff
between earlier iterations' exploration and later
iterations' exploitation, which will in turn improve

convergence performance.

In IPSO, in order to further improve the
algorithm's search capability, an adaptive learning
factor strategy is adopted. The learning factors ¢; and
¢, In the traditional particle swarm algorithm are
usually fixed. Fixed learning factors may lead to
insufficient flexibility in the search process, weak
exploration of the global optimal solution in the early
stage, and excessive reliance on its own optimal
solution in the later stage, resulting in insufficient local
search capabilities. Therefore, in this study, an adaptive
learning factor is introduced to improve the accuracy of
local search during iteration by dynamically adjusting
the values of ¢; and c¢,. The dynamic adjustment

formula of the adaptive learning factor is as follows:

3)

Cl:C17max'(climax'climin)'

~i~

t
C2=C2 min +(C27max'c27min) T (4)

In the early stage of the algorithm, the value of ¢
is large, while the value of ¢, is small, and the
particles rely more on their own historical optimal
solution, thereby enhancing the global search ability.
Combined with the particle speed update after the
adaptive learning factor, by adding the adaptive
learning factor, the particles can automatically adjust.
Table 2 compares the range of different learning. The
adaptation plan is dynamically adjusted in the
intercession of the iterations, aiming at balancing the
evolution between exploration and exploitation. In the

early stages, the learning factors are adjusted to

concentrate on global exploration, where the particles
are allowed to scour extensively within the solution
space. As the iterations increase, the exploration weight
decreases, and the exploitation one increases and steers
the particles to reduce their search areas in promising
areas. A control logic of the number of iterations
establishes this change to have a smooth and systematic
transition between exploration and exploitation,
thereby improving the efficiency of this table which
compares the various ranges of learning factors,
depicting how adaptive factors can facilitate enhanced

exploration/exploitation balance.

Table 2: Comparison of different learning
factor ranges
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3.2 Multi-source Collaborative
Optimization Scheduling Model

3.2.1 Objective

The microgrid has distributed energy resources (DERs),
which consist of distributed generation and storage
systems to aid load demand and enhance reliability.
Nevertheless, DERs have some intrinsic drawbacks,
which include the intermittency of renewable energy,
ramp-rate constraints, and availability inconsistency.
These properties render their integration very difficult
yet very important for stability assurance, economic
viability, and dependability of performance of the
microgrid. It is based on this that the optimization
objective below is formulated.

First, a mathematical optimization model based on
time series is constructed, assuming that the microgrid
operation time is divided into multiple discrete time
periods. f€T, in which the system state is considered
static in each time period [11-12]. The objective
function can be expressed as the weighted sum of the
operating costs [13-14]. The process is as follows:

MinimizeCipa=Lier (Con+CosstCarias)  (5)

These cost items are time-related variables, so the
optimization process must consider dynamic changes
in the time dimension [15]. In addition, the model can
also add constraint weights to the objective function to

further improve the utilization rate. By introducing a

penalty term  Cpenayy,, Quantitative penalties are
imposed on behaviors such as wind and solar power
abandonment [16]. The improved form of the objective
function is as follows:
MinimizeCiyy1= Xer (Cgcn,t+Ccss,t+Cgrid,t+Cpcnalty,t)
(6)
The construction of this objective function fully
considers the dual needs of economy and
environmental protection, and provides a basis for
subsequent constraints and scheduling strategies [20].
During the scheduling process, the output power of
each distributed power source needs to be coordinated
with the charging and discharging power of the energy
storage system and meet the immediate balance
relationship of load demand, while the main grid, as an
auxiliary resource, provides support for the supply and
demand balance of the entire microgrid [21]. By
solving the optimization model [17], it is possible to
minimize the operating cost of the microgrid and
maximize the utilization rate of new energy based on
meeting multiple constraints, thereby improving the

overall operating efficiency of the microgrid.

3.2.2 Constraints

In the multi-source collaborative optimization
scheduling model, a series of constraints must be
introduced. These constraints cover multiple aspects
such as distributed energy power output, energy storage
system operating characteristics, power balance, and
equipment operating restrictions to ensure that the
optimization results meet the actual operating
requirements [24]. The first is the power balance
constraint, the core of which is to ensure that in each
time period, the power generation in the microgrid and
the interaction with the main grid power can jointly
meet the load demand. The power balance constraint

can be expressed as follows:
PgenitPess M Pgria,~Pload s VIET (7
The power output of distributed energy is limited
by its physical characteristics and weather conditions,
and its upper limit of power generation is determined
by the maximum available power. The constraints are:
0=Pgen, <P yen max,: VIET ®)

Energy storage systems are also limited by
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capacity and charge and discharge power. The state of
energy storage is usually represented by its state of
charge (State of Charge, SOC,), which must be
guaranteed to operate within the preset upper and lower
limits. The constraints of energy storage systems
include power limits and state of charge limits,
specifically:
Pess min<Pess max»30Cinin<SOC,SSOC 04, VIET
©)

The state of energy storage is typically referred to

as its state of charge, which is mentioned multiple times.

Please keep it as is (when introducing constraints of
ESS) and amend or eliminate elsewhere. Alternative
recommendation: The SOC is considered the major
measure of storage condition in this research. The state
of energy storage is usually represented by its state of
charge, which must be guaranteed to operate within the
preset upper and lower limits. The constraints of the
energy storage system include power limit and state of
charge limit, specifically:
Priq 200TP g1 <0,|Pyrid | <Pgrid max, VIET  (10)
In order to intuitively show the restrictions on
system operation, the available power of distributed
energy and the operating parameters of the energy
storage system are listed in Tables 1 and 2. In Figure 1,
the available power of distributed energy is a predicted
value based on typical weather conditions and
equipment capacity, showing the maximum power
output of photovoltaic and wind power in different time

periods.

100 Solar Power (kW)

Power (kW)

o ) B w 3

150 ~e— wind Power (kw)

Power (kW)

Total Power Limit (kW)

Time Periods

Figure 1: Data at different times

This value represents the convergence of PSO and
IPSO, as it is true to say that IPSO is more quickly and
steadily optimized.

Energy Storage System (ESS) is an important
factor in the effectiveness of absorbing the fluctuation
of generation by renewable energy, particularly in the
aspect of coordination of multiple sources. It also
minimizes intermittency, as a backup of surplus power
is stored and discharged during periods of scarcity, and
it also provides capacity reserve, frequency control,
and ramping capacity. This contribution to stability
justifies the fact that the explicit consideration of ESS
properties such as capacity and charge/discharge limits
is required in the scheduling algorithm of the
optimization model.

Table 3 shows the operating constraint parameters
of the energy storage system, including maximum
charge and discharge power, upper and lower limits of
charge state, and efficiency parameters. These
parameters determine the behavior range of the energy
storage system in optimal scheduling.

This table shows the operating constraint
parameters of the ESS, which are essential in ensuring

the stability of the system and efficient scheduling.
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Table 3: Operating constraint parameters of
the energy storage system

Parameter Value Unit
Name Range
P s smax 80 kW
Pegs min -80 kW
SOCax 90 %
SOCpin 20 %
Ness 95 %

The above data reflects the physical constraints of
the system. The power output of distributed energy is
mainly affected by weather conditions, while the
operating range of the energy storage system is
determined by the equipment capacity and efficiency.
These constraints play a key role in optimizing
scheduling and ensuring the feasibility and safety of the

generated scheduling plan in actual operation.

3.2.3 Simulation scenario

This study selects the IEEE 33-node distribution
system as the basic simulation platform. As a typical
distribution network structure, this system can
effectively simulate the collaborative operation
characteristics of multiple energy sources in the
microgrid by configuring distributed power sources
(DERs), energy storage devices (ESS), and load nodes.
The simulation designs a variety of typical scenarios,
including conventional load, high load, low renewable
energy output, and dynamic electricity prices. These
scenarios aim to comprehensively test the scheduling
optimization ability and system robustness of the
model under different operating conditions and
constraints by changing factors such as the output level
of distributed power sources, load demand, operating
status of energy storage systems, and grid electricity
prices [25] Valivarthi (2018) promoted the Wavelet
Transform-PSO approach, ranging from anomaly
detection to ensuring accuracy and security in a cloud-
based healthcare system. This portrays PSO's flexibility,
paving the way for us to propose IPSO-based

scheduling for microgrids, where efficient data

handling and secure optimization are a must [26][27].
The IEEE 33-node distribution system is selected since
it is a popular reference point of study in the
distribution network. It offers a trade-off between the
simplicity of computing the results and the realism of
the system, enabling the results to be directly compared
to other literature work.

The renewable energy output and load demand are
dynamically simulated using a time series model based
on measured or predicted data. The simulation covers
24 hours with a time resolution of 1 hour. At the same
time, the main grid electricity purchase and sales price
curve is set to ensure that the economic characteristics
of different scenarios (especially dynamic electricity
price scenarios) are accurately reflected. Figure 2
shows the key parameters, such as load demand,
photovoltaic power generation output, wind power
generation output, and main grid electricity price of

some nodes in each time period in the simulation.

rrrrrrrrrrr

Figure 2: Key parameters of some nodes at
different time periods in the simulation

This figure indicates the time scheduling
outcomes with the various sources and how IPSO has

been effective in matching the supply and demand.

The load demand ranges from 250 kW to 300 kW,
showing a typical daily load fluctuation characteristic,
with relatively high loads in the morning and evening
and slightly lower loads at noon. The photovoltaic
power generation output varies significantly over time,
reaching a maximum value of 100 kW at noon (for

example, the third period), because photovoltaic power
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generation is greatly affected by the intensity of solar
radiation. The wind power output fluctuates less and is
generally stable between 110 kW and 150 kW, which
shows that it is less affected by wind speed changes but
still has certain fluctuations. The main grid electricity
price varies with the time period, with the peak
occurring in the fifth period (0.13 $/kWh) and the
valley price occurring in the fourth period (0.09
$/kWh), reflecting the guiding role of the dynamic
electricity price mechanism on electricity consumption
behavior. In an exact meaning, the simulation had the
following assumptions as its inputs. It follows the
dynamic price curve of electricity, which is set on a
normal time-of-use tariff with a variety of peak and
valley rates of 0.09 to 0.13 $/kWh. These projections
of photovoltaic and wind generation renewable energy
use previous weather behavior and daily profiles so that
the characteristics of variation are realistic. It is based
on these assumptions that the simulation situations in
Figure 2 were developed. To be clear, the following
assumptions were used as inputs in the simulation. It
adopts a dynamic electricity pricing curve, the peak and
valley values of which range between 0.09 and 0.13
$/kWh and are based on a standard time-of-use tariff.
The predicted photovoltaic and wind output are based
on past weather trends and everyday profiles, thus
providing very realistic fluctuation properties. Based
on these assumptions, the simulation scenarios in
Figure 2 are developed.

The conditions of the boundary of the
optimization model are defined as follows. First, grid
support is said to be available with limited power
exchange capacity, which is to ensure that there are
certain limits within which the microgrid can import or
export electricity. Second, the pricing of electricity is
under a time-of-use contract that has both peak and
valley tariffs upon which the cost is assessed. Lastly,
the normal connection and availability of the main grid
are assumed, and the islanded condition is only
assumed on a case-by-case basis. These assumptions
define the range of operation to which the optimization

strategy is assessed.

4. Results and Discussion

< EAI

4.1 Algorithm Performance Verification

4.1.1 Comparison between the IPSO algorithm
and the traditional PSO

The microgrid optimization scheduling problem is
selected for testing. The test scenario includes a typical
load curve and distributed energy output characteristics
for 24 hours, taking into account the dynamic
electricity price mechanism. The traditional PSO
algorithm and the improved PSO (IPSO) algorithm are
used for optimization scheduling, and the test
indicators include operating efficiency (optimization
time) and comprehensive operating cost (unit: $).
Operating efficiency indicates the time it takes for the
algorithm to complete the optimization, and the
comprehensive operating cost is the total economic
cost after the optimized scheduling. A total of 15
different optimization tasks are set in the test, and the
results of the two algorithms for each task are recorded.

The data are shown in Figures 3 and 4.

‘
Task Number

Figure 3: Operational efficiency

This figure shows how renewable use has
increased, with IPSO highlighting its role towards

sustainability.

1 2 H a 5 ©

7 5 5
Task Number

Figure 4: Comprehensive operating costs
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This value reflects the savings and efficiency
realized by IPSO over PSO.

IPSO's operating efficiency in all 15 tasks is better
than that of the traditional PSO algorithm, and the
average optimization time is reduced by about 22.7%.
The IPSO algorithm performs best in the 14th task,
with an optimization time of 11.6 seconds, which is 4
seconds less than PSO's 15.6 seconds. The IPSO
algorithm is also significantly better than PSO in terms
of comprehensive operating costs, with an average cost
reduction of about 16.2%. In the 14th task, IPSO has
the lowest optimization cost of $337.9, which is 16.5%
less than PSO's $404.8. Overall, the IPSO algorithm
has shown significant improvements in both operating

efficiency and cost optimization.

4.1.2 New energy consumption

The dynamic output curves of wind power and
photovoltaic power, as well as the 24-hour load demand
distribution, are set, and the optimization effects of
IPSO and traditional PSO algorithms are compared.
The test indicator is the new energy consumption rate,
that is, the ratio of the actual new energy power
consumed to the total available new energy power. The
test sets a total of 15 tasks, and records the new energy
consumption rates of the two algorithms, respectively.

The results are shown in Figure 5.

- Rate () mm Rate ()

Task Number

s [ 25
Consumption Rate (%)

Figure 5: Consumption rate

The TIPSO algorithm has a higher renewable
energy absorption rate than the traditional PSO
algorithm in all tasks, with an average absorption rate
of 92.4%, while the average absorption rate of the PSO
algorithm is 86.9%, an increase of 5.5 percentage

points. In the eighth task, the IPSO absorption rate is

93.3%, and the PSO absorption rate is 88.0%, an
increase of 5.3%. Overall, the IPSO algorithm more
effectively coordinates the matching of distributed
energy and load, significantly reduces the phenomenon
of wind and solar power abandonment, and improves

the utilization efficiency of renewable energy.

Table 4. Comparison of renewable utilization and
CO; emissions (PSO vs IPSO)

Scenario Renewable CO: Emission
Utilization (%) | (kg/day)
PSO (Baseline) 86.9 27.5
IPSO 92.4 16.0
(Proposed)
Reduction +5.5% -11.5

As can be seen, the IPSO-based scheduling
enhances the use of renewables by 5.5 percent and
lowers CO: by about 11.5 kg/day compared to the
traditional PSO.

4.2 Model Validity Verification
A multi-scenario simulation test is designed in the
IEEE 33-node system, including a high-load scenario,
a low-load scenario, a high-new energy output scenario,
a low-new energy output scenario, and a dynamic
electricity price scenario. In each scenario, the
coordinated of distributed

operation energy

(photovoltaic and wind power), energy storage
equipment, and the main grid is considered, and key
indicators such as the system's comprehensive
operating cost, load supply and demand balance
deviation, voltage offset, and new energy consumption
rate are recorded separately. Through the optimization
of the IPSO algorithm, the economy and stability in
each scenario are effectively balanced. The results are
shown in Table 5.

In the table, the results of the simulation of the multi-
scenario simulation are shown, which confirm the
feasibility and power of the proposed optimization

model.
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Table 5: Multi-scenario simulation results high-load scenario, the system's comprehensive
verification operating cost is high ($520.4), but the new energy
consumption rate is still achieved at 91.8%, and the
Sce T Vol Lo Ren voltage offset and load balance errors remain at 1.2%
nari 0 tag ad ewa and 0.5%, indicating that the model can still operate
0 t e Ba ble stably under high load pressure. In the low-load
a Dev la Utili scenario, the comprehensive operating cost drops
1 iati ne zati significantly to $310.7, and the new energy utilization
C on e on rate is the highest (93.2%), indicating that the model
0 (%) Er (%) prioritized the consumption of new energy at low loads,
s ro improving the economy. In the high-renewable energy
t r output scenario, the utilization rate of new energy
( ( reaches 94.5%, and the comprehensive operating cost
$ % is relatively low at $450.2, indicating that the model
) effectively reduces the phenomenon of wind and solar
Hig 5 1.2 0. 91.8 power abandonment. In the low-renewable energy
h 2 scenario, due to insufficient distributed energy output,
Loa 0 the comprehensive cost rises to $580.9, and the
d ) utilization rate of new energy drops to 89.7%, but the
4 load supply and demand balance error is still controlled
Low 3 0.8 0. 93.2 within 0.6%, proving that the model can still ensure
Loa 1 system stability when supply and demand are
d 0 insufficient. In the dynamic electricity price scenario,
the model flexibly responds to electricity price
7 fluctuations through optimized scheduling, with a
Hig 4 1.0 0. 94.5 comprehensive cost of $490.3 and a new energy
h 5 utilization rate of 92.4%, achieving simultaneous
Ren 0 improvement in economy and stability. These results
ewa ) show that the optimization model can effectively
ble ) balance economy and stability under different
Low 5 1.4 0. 89.7 operating conditions.
Ren 8 Comparison of IPSO with other optimization
ewa 0 algorithms by their summary.
ble
9 Algorith | Globa | Converg | Handlin | Performan
Dyn 4 1.1 0. 92.4 m 1 ence g ce
ami 9 Searc Speed | Uncerta | (Cost/Runt
¢ 0 h inty ime)
Pric ) Abilit
ing 3 y
Genetic | Mediu | Slow Average | Higher
The model shows a strong ability to balance Algorith | m cost,
economy and stability in multiple scenarios. In the m (GA) longer
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runtime
Different | Good | Medium | Average | Moderate
ial cost/runti
Evolutio me
n (DE)
Hybrid | Good | Medium | Better | Improved
PSO-GA -Fast than performan
GA/PS ce
o
Improve | Good Fast Good Low
d Whale cost/runti
Optimiza me
tion
(IWOA)
Proposed | Excell | Fastest Very Best cost,
IPSO ent Good lowest
runtime

5. Conclusion

This study focuses on the core challenges of multi-
source coordinated optimization scheduling of new
energy microgrids. By integrating dynamic inertia
weights and adaptive learning factor mechanisms in the
algorithm, it effectively overcomes the limitation of
traditional methods that are prone to local optimality,
significantly improves the global exploration ability
and convergence efficiency, and thus better copes with
the impact of new energy output fluctuations on system
operation. At the modeling level, the multi-scenario
operation characteristics of distributed power sources
(DERs), the dynamic response characteristics of energy
storage systems (ESSs), and the constraints of new
energy grid-connected operation are deeply integrated
to achieve coordinated optimization of economy and
stability. This method can coordinate the efficient
operation of DERs and ESSs in multiple scenarios,
significantly enhance the new energy absorption
capacity, and ensure the real-time and reliable supply
of load demand. Studies have shown that this method
can effectively handle system complexity and

uncertainty, and has good practical value and

application prospects. When implementing this in
reality, there are several factors that should be taken
into consideration. They are communication latency,
data granularity, system delays, and a continuous
combination of the optimization strategies with the
current SCADA and EMS platforms, which are all
crucial to reliable operation. Traditional techniques of
optimization, such as PSO, are disadvantaged by slow
convergence and susceptibility to local optima, which
restricts their usefulness in addressing the vagaries of
renewable generation. The proposed IPSO-based
strategy directly overcomes such challenges that
suggest dynamic inertia weights and adaptive learning
factors that enable global exploration to be more
dynamic and convergence to be faster. To highlight
how the proposed methodology will resolve the
drawbacks that the traditional approaches have, it is
possible to highlight these improvements and justify
the significance of the solution that will be advanced in
the given research. Through these problems, the quality
and the effect of this research will be enhanced to a
greater level because it will be in line with strict
academic standards.

The suggested IPSO solution can overcome such DER-
related limitations as intermittency and ramp limits,
which provide stable and effective microgrid
performance. Although the developed IPSO-based
scheduling model proves to be effective in general, it
has multiple opportunities to be applied depending on
the particular countries, climate conditions, and
regulatory conditions. Future enlargements of the work
may test the model in different policy contexts and in
different microgrid deployments to increase the
model's applicability in various regions worldwide.
These gains (22.7% efficiency, 16.2% cost reduction)
are validations that IPSO is practically better than

merely the theoretical validation.
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Abbreviation Full Form

DER / DERs Distributed Energy
Resource(s)

ESS /ESSs Energy Storage
System(s)

PSO Particle Swarm
Optimization

IPSO Improved Particle
Swarm Optimization

IEEE Institute of Electrical
and Electronics
Engineers

SOC State of Charge
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