Abstract

Within this specific record, our group study a two-way relay network (TWRN) that has a number of amplify-and-forward (AF) relays. In that, the best relay is selected to help the communication among sources. Our group first use the outdated channel state information (CSI) to analyze its effect on the system effectiveness in the Rayleigh fading atmospheres. Especially, we extremely preliminary acquire a restricted decreased connected for the outage probability and afterward current an asymptotic assessment for greater signal-to-noise ratio (SNR). Our group extra acquire a restricted decreased connected along with an asymptotic result on the symbol error rate (SER). Through these results, our group easily quickly obtain that diversity order remain at unity offered that the CSI is actually really outdated. Relative results reveal the rigidity on the effectiveness bounds along with the effects of outdated CSI on the system effectiveness. Simulation outcomes are likewise offered to corroborate the scholastic evaluation.

Keywords: Outage probability, two-way relay network (TWRN), relay selection, symbol error rate (SER).

Copyright © 2022 Jun Liu et al., licensed to EAI. This is an open access article distributed under the terms of the Creative Commons Attribution license, which permits unlimited use, distribution and reproduction in any medium so long as the original work is properly cited.

doi:10.4108/eetinis.v9i32.1909
1. Introduction

Because of the better spectral effectiveness, two-way communicating has actually really definitely received fantastic price on today years [1, 2]. On that particular two-way relay network (TWRN), 2 source nodes occupation info together which has the assist of one in addition to more relays in between. Reliable communicating therapies have actually been actually really definitely developed to use the essential benefits of TWRN.

The effectiveness of TWRN was actually typically assessed in the literature [3, 4]. Especially, outage opportunity was actually really analyzed in [5, 6]. SER of TWRN in Rayleigh fading systems was actually really acquired in [7, 8] was actually really made use of. To improve the body system effectiveness, the procedure of interact option was actually really advised on TWRN [? ]]. This approach chooses the absolute best interact via the immediate system troubles, in addition to hence may conveniently exploit the associates on those systems.

Nevertheless, the majority of the current jobs have actually presumed the ideal channel state information (CSI). As executing that choice in that body, a hold-up in between immediate on communicate choice as well as the immediate of real information gear box may exist. Such a hold-up might lead to out-of-date CSI in that network [9]. About the situation, the communicate which was chosen might certainly not stay the best during the time of information gear box. The outdated CSI is mainly caused by the Doppler frequency offset and channel state information feedback delay, and the channel estimation inevitably has errors, which would result in the relay selection control center can only obtain outdated CSI. The effect of out-of-date relay choice on one-way communicate system was commonly evaluated in the literary works. Nevertheless, the effects of out-of-date communicate choice that has several AF relays that has not actually certainly been actually thought about however to the very best of our understanding.

Within this specific record, our group analyze the impacts of obsolete relay option on the TWRN effectiveness over Rayleigh fading systems. In particular,In that, the best relay is selected to help the communication among sources. Our group first use the outdated channel state information (CSI) to analyze its effect on the system effectiveness in the Rayleigh fading atmospheres. Especially, we extremely preliminary acquire a restricted decreased connected for the outage probability and afterward current an asymptotic assessment for greater signal-to-noise ratio (SNR). Our group extra acquire a restricted decreased connected along with an asymptotic result on the symbol error rate (SER). Through these results, our group easily quickly obtain that diversity order remain at unity offered that the CSI is actually really outdated. Relative results reveal the rigidity on the effectiveness bounds along with the effects of outdated CSI on the system effectiveness. Simulation outcomes are likewise offered to corroborate the scholastic evaluation.

2. System Model

Fig. 1 shows that two-phase TWRN , which exits N AF relays1. Every one of nodes work at that establishing, in addition to are actually really tailored up together with a single airborne due to the measurement restriction in addition to power restriction. The systems have a transmission block while partner throughout blocks. Expect that in the l-th gear box obstruct, the communicate Rn is chosen for helping changing information interaction in Q as well as W. In the very initial stage, Q as well as W send out normalized indicators s1 as well as s2, specifically, while Rn gets

\[ y_r = o_{Q,R_n}(l)\sqrt{P_s_1} + o_{W}(l)\sqrt{P_s_2} + n_r \]  

(1)

in which \( o_{Q,R_n}(l) \sim CN(0,\varphi) \) as well as \( o_{W,R_n}(l) \sim CN(0,\omega) \) denote the networks of the Q-Rn as well as W-Rn wireless links, specifically. Notation \( P \) stands for

---

1We presume that N relays are actually really relatively closed along with one another in addition to on a same compilation. Those have really been actually really got with a lasting routing treatment for an communication among sources. Those structures are actually really am interesting style on that literary jobs in addition to ensures similar common system enhances for the relays.

---

Corresponding author. Email: junliu.thu@ieee.org
the transfer energy of the nodes in the network, as well as $n_i \sim CN(0, 1)$ is actually the additive sound at the communicate. Q as well as B get

$$y_Q = \omega_{Q,R_{w}(1)}n_Q + n_W = |\omega_{Q,R_{w}(1)}(l)\sqrt{P_S1} + \omega_{Q,R_{w}(1)}(l)n_r + n_Q + \omega_{Q,R_{w}(1)}(l)\omega_{W,R_{w}(1)}(l)\sqrt{P_S2},$$

$$y_W = \omega_{W,R_{w}(1)}n_Q + n_W = |\omega_{W,R_{w}(1)}(l)\sqrt{P_S2} + \omega_{W,R_{w}(1)}(l)n_r + n_Q + \omega_{Q,R_{w}(1)}(l)\omega_{W,R_{w}(1)}(l)\sqrt{P_S1},$$

in which $n_Q \sim CN(0, 1)$ as well as $n_W \sim CN(0, 1)$ denote the additive sound at resource Q as well as W, specifically. After terminating the self-interference in $y_Q$ as well as $y_W$, the point-to-point SNRs on that $l$-th obstruct at Q as well as B are actually specifically provided through

$$\text{SNR}_Q(l) = \frac{P^2|\omega_{Q,R_{w}(1)}(l)|^2|\omega_{W,R_{w}(1)}(l)|^2}{2P|\omega_{Q,R_{w}(1)}(l)|^2 + P|\omega_{W,R_{w}(1)}(l)|^2 + 1},$$

$$\text{SNR}_W(l) = \frac{P^2|\omega_{Q,R_{w}(1)}(l)|^2|\omega_{W,R_{w}(1)}(l)|^2}{P|\omega_{Q,R_{w}(1)}(l)|^2 + 2P|\omega_{W,R_{w}(1)}(l)|^2 + 1}.$$ 

According to that over point-to-point SNRs, our group get a interact $R_{w}$ for get the max of the very little SNR,

$$n^* = \arg \max_{n=1,\ldots,N} \min[\text{SNR}_Q(l), \text{SNR}_W(l)].$$

As $\text{SNR}_Q(l)$ in addition to $\text{SNR}_W(l)$ might be securely upper via $P \min \left[|\omega_{Q,R_{w}(1)}(l)|^2, |\omega_{W,R_{w}(1)}(l)|^2\right]$ and $P \min \left[|\omega_{Q,R_{w}(1)}(l)|^2, |\omega_{W,R_{w}(1)}(l)|^2\right]$ particularly, our group can easily quickly improve that selection as

$$n^* = \arg \max_{n=1,\ldots,N} \min[|\omega_{Q,R_{w}(1)}(l)|^2, |\omega_{W,R_{w}(1)}(l)|^2].$$

To perform option online, our group accept a distributed option method, which can easily quickly decrease the selection over in addition to therefore is actually really easy to implement. When the option is actually really performed slower compared with the system coherence chance, the selected $R_{w}$ according to the systems on that $l$-th block certainly definitely be actually really used on the info change on that subsequent $l_{\text{th}}$ block. The channel variation is

$$\omega_{Q,R_{w}(l)}(l) = \omega_1^l|\omega_{Q,R_{w}(1)}(l)| + \sqrt{1 - \omega_1^2}|\omega_1(1)_l),$$

$$\omega_{W,R_{w}(l)}(l) = \omega_2^l|\omega_{W,R_{w}(1)}(l)| + \sqrt{1 - \omega_2^2}|\omega_2(1)_l),$$

in which $\omega_1(l)_l \sim CN(0, \psi)$ in addition to $\omega_2(l)_l \sim CN(0, \omega)$ are arbitrary white light tinted noise. $\omega_1$ represents the correlation coefficient between $\omega_{Q,R_{w}(1)}(l)$ in addition to $\omega_{Q,R_{w}(l)}(l)$, in addition to $\omega_2$ is the weight factor between $\omega_{W,R_{w}(1)}(l)$ and $\omega_{W,R_{w}(l)}(l)$. $\omega_1 = 0$ in addition to $\omega_1 = 1$ stand for the completely obsolete in addition to perfect CSI atmospheres, particularly.

For the $l$-th gear box obstruct along with chosen communicate $R_{w}$, the end-to-end SNRs at 2 resources are actually specifically provided through

$$w_1 = \frac{P_{2W}}{2P_l + P_{1W} + 1},$$

$$w_2 = \frac{P_{2W}}{P_l + 2P_{1W} + 1},$$

in which $l \triangleq |\omega_{Q,R_{w}(1)}(l)|^2$ in addition to $v \triangleq |\omega_{W,R_{w}(1)}(l)|^2$ denote the system enhances of the selected $Q-R_{w}$ in addition to W-R_{w} internet web links in the $l$-th block, particularly. Originating from (10) in addition to (11), we will analyze the outage opportunity in addition to SER for every $Q\rightarrow W$ and $W\rightarrow Q$ circulations.

### 3. Outage Probability Analysis

#### 3.1. Lower bound

That outage opportunity might is the opportunity which the point-to-point SNR reduces listed here an SNR restrict $t_{th}$. View $P_{1\text{out}}$ in addition to $P_{2\text{out}}$ denote the opportunity, particularly,

$$P_{1\text{out}} = \text{Prob}(w_1 < t_{th}),$$

$$P_{2\text{out}} = \text{Prob}(w_2 < t_{th}).$$

As $w_1$ as well as $w_2$ could be firmly higher bounded through[10]

$$w_1 \leq P \min(l, \frac{v}{2}),$$

$$w_2 \leq P \min(l, \frac{v}{2}).$$

And then, $P_{1\text{out}}$ is

$$P_{1\text{out}}^l = \text{Prob}[P \min(l, \frac{v}{2}) < t_{th}]$$

$$= 1 - \text{Prob}[\min(l, \frac{v}{2}) \geq \frac{t_{th}}{P}],$$

$$= F_l(\frac{t_{th}}{P}) + F_v(2\frac{t_{th}}{P}) - F_l(\frac{t_{th}}{P})F_v(2\frac{t_{th}}{P}),$$

in which $F_l(x)$ as well as $F_v(x)$ denote the advancing thickness functions (CDFs) of $l$ as well as $v$, specifically. Likewise, the reduced tied of $P_{2\text{out}}$ is actually provided through

$$P_{2\text{out}}^l = F_l(\frac{2t_{th}}{P}) + F_v(\frac{t_{th}}{P}) - F_l(\frac{2t_{th}}{P})F_v(\frac{t_{th}}{P}).$$

The looks of $F_l(x)$ as well as $F_v(x)$ are actually the theorem:
Theorem 1. CDFs on i as well as v are actually provided through

\[
\begin{aligned}
F_i(x) &= 1 - \sum_{n=0}^{N-1} b_n \tau e^{-\frac{x}{\psi}\frac{n}{\psi(n+1)}} e^{-\frac{x}{\psi(n+1)}} \frac{x}{\psi(n+1)} e^{-\frac{x}{\psi(n+1)}} \\
F_v(x) &= 1 - \sum_{n=0}^{N-1} b_n \tau e^{-\frac{x}{\psi}\frac{n}{\psi(n+1)}} e^{-\frac{x}{\psi(n+1)}} \frac{x}{\psi(n+1)} e^{-\frac{x}{\psi(n+1)}} .
\end{aligned}
\]  

with

\[
\begin{aligned}
b_n &= \phi(x)(N-1)^n (N-1)^\frac{n}{n+1} \\
\tau &= \frac{\phi(x)}{\psi+\omega} \\
c_1 &= \phi(x)(1-x)^2 + \frac{\alpha^2 \tau}{\phi+x} \\
c_2 &= \omega(1-x)^2 + \frac{\alpha^2 \tau}{\phi+x}.
\end{aligned}
\]

Proof. See Appendix A.

Using Theorem 1 on (18) as well as (19) can easily yield the reduced bounds of \(P_{1_{out}}\) as well as \(P_{2_{out}}\) as

\[
P_{1_{out}}^b = 1 - \sum_{n=0}^{N-1} \sum_{m=0}^{N-1} b_n b_m \tau^2 e^{-\frac{n}{\psi} + \frac{2 \tau}{\psi}} + \frac{n \psi m}{\omega(n+1) \psi(m+1)} e^{-\frac{2 \tau}{\psi} + \frac{2 \tau}{\psi(m+1)}} + \frac{m \tau}{(m+1)(n+1)} e^{-\frac{2 \tau}{\psi} + \frac{2 \tau}{\psi(m+1)}} .
\]

\[
P_{2_{out}}^b = 1 - \sum_{n=0}^{N-1} \sum_{m=0}^{N-1} b_n b_m \tau^2 e^{-\frac{n}{\psi} + \frac{2 \tau}{\psi}} + \frac{n \psi m}{\omega(n+1) \psi(m+1)} e^{-\frac{2 \tau}{\psi} + \frac{2 \tau}{\psi(m+1)}} + \frac{m \tau}{(m+1)(n+1)} e^{-\frac{2 \tau}{\psi} + \frac{2 \tau}{\psi(m+1)}} .
\]

3.2. Asymptotic outage probability

From the being successful simulation outcomes, it will certainly definitely verify that outage opportunity on (22) as well as (23) are actually really into the accurate worths, our group presently include acquirement about outage opportunity when move power is big. The asymptotic appears on \(F_i(x)\) in addition to \(F_v(x)\) are actually really offered because of the following theorem.

Theorem 2. The asymptotic \(F_i(x)\) and \(F_v(x)\), which have small \(|x|\) are

\[
F_i^{asy}(x) = \begin{cases} 
\frac{n_1 x^n}{(\tau^n) \psi+\omega} & \text{If } \omega_1 < 1 \\
\frac{(\tau^n) \psi+\omega}{\omega_1} & \text{If } \omega_1 = 1.
\end{cases}
\]

\[
F_v^{asy}(x) = \begin{cases} 
\frac{n_2 x^n}{(\tau^n) \psi+\omega} & \text{If } \omega_2 < 1 \\
\frac{n_2 x^n}{(\tau^n) \psi+\omega} & \text{If } \omega_2 = 1.
\end{cases}
\]

with

\[
\eta_1 = \frac{\psi(1-\omega_1^2) + \omega_1 N!}{(\psi + \omega)(1-\omega_1^2)} \tau^\frac{\psi(1-\omega_1^2) + \omega_1 N!}{(\psi + \omega)(1-\omega_1^2)}
\]

\[
\eta_2 = \frac{\omega_1(1- \omega_2^2) + \psi_1 N!}{(\psi + \omega)(1-\omega_2^2)} \tau^\frac{\omega_1(1- \omega_2^2) + \psi_1 N!}{(\psi + \omega)(1-\omega_2^2)}
\]

in which \(\tau()\) is the Gamma function [11].

Proof. See Appendix B.

Through Theorem 2 on (18) as well as (19), we acquire the asymptotic outage possibility along with a large \(P\) as

\[
P_{1_{out}}^{asy} = \begin{cases} 
\frac{n_1 x^n}{(\tau^n) \psi+\omega} & \text{If } \omega_1 < 1, \omega_2 < 1 \\
\frac{n_1 x^n}{(\tau^n) \psi+\omega} & \text{If } \omega_1 < 1, \omega_2 = 1 \\
\frac{N^2 \psi m n}{\psi+\omega} & \text{If } \omega_1 = 1, \omega_2 < 1 \\
\frac{N^2 \psi m n}{\psi+\omega} & \text{If } \omega_1 = 1, \omega_2 = 1.
\end{cases}
\]

\[
P_{2_{out}}^{asy} = \begin{cases} 
\frac{n_2 x^n}{(\tau^n) \psi+\omega} & \text{If } \omega_1 < 1, \omega_2 < 1 \\
\frac{n_2 x^n}{(\tau^n) \psi+\omega} & \text{If } \omega_1 < 1, \omega_2 = 1 \\
\frac{N^2 \psi m n}{\psi+\omega} & \text{If } \omega_1 = 1, \omega_2 < 1 \\
\frac{N^2 \psi m n}{\psi+\omega} & \text{If } \omega_1 = 1, \omega_2 = 1.
\end{cases}
\]

Originating from the over asymptotic outage opportunity, our group can easily quickly find that the body system finish range acquisition about \(N\) might be got simply at good CSI atmospheres. Nevertheless, the body system range with either \(\omega_1 < 1\) and even \(\omega_2 < 1\) is this actually really because definitely certainly there certainly definitely has an inaccurate relay option together with an obsolete CSI. This inaccurate option will certainly definitely leading the entire body system effectiveness.

4. SER Analysis

Allow \(P_{1,\epsilon}\) as well as \(P_{2,\epsilon}\) denote the typical SER due to the coherent discovery at resources \(Q\) as well as \(W\), specifically. For the linear inflection plans, \(P_{1,\epsilon}\) as well as \(P_{2,\epsilon}\) could be acquired through

\[
P_{1,\epsilon} = \frac{1}{\sqrt{2\pi}} \int_0^\infty F_1(\frac{x^2}{\lambda}) e^{-\frac{x^2}{\lambda}} dx,
\]

\[
P_{2,\epsilon} = \frac{1}{\sqrt{2\pi}} \int_0^\infty F_2(\frac{x^2}{\lambda}) e^{-\frac{x^2}{\lambda}} dx.
\]
in which $F_1(x)$ in addition to $F_2(x)$ denote the CDFs of $w_1$ in addition to $w_2$, particularly, in addition to $\lambda$ is actually really the inflection constant. Changing $\tau_{th}$ with $x$ in (22) and (23) creates the decreased bounds of $F_1(x)$ and $F_2(x)$. Utilizing the decreased bounds on (29) and (30) in addition to refixing the required integrals yields the lower bounds of SER as

$$
\begin{align*}
P_{1,\text{out}}^{\text{asy}} &= \frac{1}{2} - \frac{1}{2} \sum_{m=0}^{N-1} \sum_{n=0}^{N-1} \frac{b_{m}b_{n} \tau^2}{(m \omega + \tau)(n \psi + \tau)} \left\{ \frac{1}{1 + \frac{2}{\lambda \rho} + \frac{4}{\lambda \rho^2}} + \frac{1}{\psi(m + 1)} \frac{1}{1 + \frac{2}{\lambda \rho} + \frac{4}{\lambda \rho^2}} \right. \\
&\left. + \frac{mn}{(m + 1)(n + 1)} \frac{1}{1 + \frac{2}{\lambda \rho} + \frac{4}{\lambda \rho^2}} \right\} \\
\end{align*}
$$

$$
\begin{align*}
P_{2,\text{out}}^{\text{asy}} &= \frac{1}{2} - \frac{1}{2} \sum_{m=0}^{N-1} \sum_{n=0}^{N-1} \frac{b_{m}b_{n} \tau^2}{(m \omega + \tau)(n \psi + \tau)} \left\{ \frac{1}{1 + \frac{2}{\lambda \rho} + \frac{4}{\lambda \rho^2}} + \frac{1}{\omega(n + 1)} \frac{1}{1 + \frac{2}{\lambda \rho} + \frac{4}{\lambda \rho^2}} \right. \\
&\left. + \frac{mn}{(m + 1)(n + 1)} \frac{1}{1 + \frac{2}{\lambda \rho} + \frac{4}{\lambda \rho^2}} \right\} \\
\end{align*}
$$

(31)

(32)

Our group extra option $\tau_{th}$ with $x$ in (27) in addition to (28), in addition to obtain the asymptotic appears of $F_1(x)$ in addition to $F_2(x)$. Afterward utilizing the asymptotic expressions on (29) in addition to (30) in addition to refixing the required integrals yields the asymptotic SER together with huge move power $P$ as

$$
\begin{align*}
P_{1,\text{out}}^{\text{asy}} &= \begin{cases} 
\frac{\eta_1 + \eta_2}{2 \lambda \rho} & \text{if } \omega_1 < 1, \omega_2 < 1 \\
\frac{\eta_1}{2 \lambda \rho} & \text{if } \omega_1 < 1, \omega_2 = 1 \\
\frac{\eta_2}{2 \lambda \rho} & \text{if } \omega_1 = 1, \omega_2 < 1 \\
\frac{1}{\lambda \rho} \left( \psi + \omega_1 \right) & \text{if } \omega_1 = 1, \omega_2 = 1 \\
\left( \frac{1}{\lambda \rho} \right)^N - 1 \cdot 3 \cdot (2N - 1) & \text{if } \omega_1 < 1, \omega_2 = 1 \\
\end{cases} \\
\end{align*}
$$

(33)

$$
\begin{align*}
P_{2,\text{out}}^{\text{asy}} &= \begin{cases} 
\frac{2 \eta_1 + \eta_2}{2 \lambda \rho} & \text{if } \omega_1 < 1, \omega_2 < 1 \\
\frac{\eta_1}{2 \lambda \rho} & \text{if } \omega_1 < 1, \omega_2 = 1 \\
\frac{\eta_2}{2 \lambda \rho} & \text{if } \omega_1 = 1, \omega_2 < 1 \\
\frac{1}{\lambda \rho} \left( \psi + \omega_1 \right) & \text{if } \omega_1 = 1, \omega_2 = 1 \\
\left( \frac{1}{\lambda \rho} \right)^N - 1 \cdot 3 \cdot (2N - 1) & \text{if } \omega_1 < 1, \omega_2 = 1 \\
\end{cases} \\
\end{align*}
$$

(34)

Originating from the over asymptotic appears of SER, our group can easily quickly also observe that the body system range acquisition total up to $N$ simply together with a perfect CSI; otherwise, in obsolete CSI atmospheres, it is actually really unity.

5. Numerical and Simulation Results

For value the assessment, our group current show some results within this specific location. That common system enhances on two hops are actually really readied for unity to guarantee $\psi = \omega = 1$, in addition to the BPSK inflection is actually really used together $\lambda = 2$.

Fig. 2 unveils the influence on various worths on $\omega_1$ as well as $\omega_2$ for that outage opportunity versus move power $P$. Note that $\omega_1 = \omega_2 = 0$ in addition to $\omega_1 = \omega_2 = 1$ stand for the completely obsolete in addition to perfect CSI atmospheres, particularly. We can easily quickly observe that for either comparable $\omega_1$ in addition to $\omega_2$ and even unequal $\omega_1$ in addition to $\omega_2$, the decreased bounds of $P_{1,\text{out}}$ and $P_{2,\text{out}}$ are actually really incredibly into that results in addition to that converge to accurate ones on greater SNR location, that verifies acquired decreased about on $P_{1,\text{out}}$ as well as $P_{2,\text{out}}$ along with that asymptotic appears.

Figs. 3 as well as 4 screen the system efficiencies versus the transmit energy $P$, in which $N$ differs coming from 1 to 5 as well as $\omega_1 = \omega_2 \in [0, 0.8, 1]$. Within this particular symmetrical configuration, the efficiency will certainly be exact very same for each instructions. Fig. 3 as well as Fig. 4 represent the outage possibility as well as SER, specifically. As noted coming from these 2 numbers, there’s no efficiency increase coming from more relays when $\omega_1 = \omega_2 = 0$, as the communicate choice ends up being comparable to arbitrary choice in totally out-of-date CSI atmospheres. When $\omega_1 = \omega_2 > 0$, more relays can easily assist to enhance the outage possibility as well as SER, as the network high top premium of the selected A-R,$P'$ as well as B-R,$P'$ web links is actually improved.
Industrial Networks and Intelligent Systems

Outage probability $P_{1,out}$

Symbol error rate $P_{2,e}$

Figure 3. Outage probability versus the transmit power $P$ with various values of $N$.

Figure 4. SER versus the transmit power $P$ with various values of $N$.

6. Conclusions

Within our particular function, our team evaluated the effect of outdated CSI with a TWRN as well as several AF relays. Our team can obtained the better bounds as well as SER on Rayleigh fading networks. Simulation results confirmed this academic research. In particular, the system diversity order of $N$ could be achieved with the perfect CSI. In contrast, the system diversity is limited to unity in outdated CSI environments, which reveals that the impact of CSI on the system performance is significant.

As to the future works, we can extend the current study to multi-way directional relaying and study the associated performances. The readers can obtain the data of this work through the contact to either of the following emails: junliu.thu@ieee.org, yzhang.thu@ieee.org, jingwang.thu@ieee.org, taociui@ieee.org, lzhang.lee@ieee.org, chaoli.eecs@ieee.org, kchen.huawei@ieee.org, hhuang.huawei@ieee.org, xzhou.huawei@ieee.org, wzhou.huawei@ieee.org, zhaowang.ericsson@ieee.org, lisun@ieee.org, sfeng@ieee.org, dqxie@ieee.org, dahua@ieee.org, jianghong@ieee.org, jiangtaou@ieee.org, yunli.ericsson@ieee.org, haixiang@ieee.org, Kaimen.Dube@ieee.org, Abbarbas.Muazu@ieee.org, Nakilavai.Rono@ieee.org, yjiang@ieee.org, dengdan.ustc@hotmail.com, swlai@ieee.org, zihao@hotmail.com, yaoiyao@ieee.org, dwu@ieee.org, fushengzhu.gdcni@hotmail.com, luchen_CSPG@hotmail.com, wenzhou.au@gmail.com, and zhusongliu@ieee.org. Upon receiving the email, the author will provide the data of this work in the first time. In addition, the authors are pleased to discuss with the readers about the future researches on the topic in this paper.

F.1. Proof of Theorem 1

Allow $t_1 \triangleq |\theta_{Q,R} (l)|^2$ represent the network gain on chosen $Q-R_n$ web link on the $l$-th obstruct. Additionally, $\theta_n \triangleq |\theta_{Q,R} (l)|^2$ as well as $\psi_n \triangleq |\psi_{W,R} (l)|^2$ are actually utilized to stand for the network increases of the $A-R_n$, as well as $B-R_n$ web links on the $l$-th obstruct, specifically. CDF of $t_1$ actually is

$$F_{t_1}(x) = \text{Prob}(t_1 \leq x)$$

where $Z_n = \max_{m=1,\cdots,N,m \neq n} \min(\theta_{m}, \psi_{m})$.

About that, $F_{t_1}(x)$ in (F.2) is computed as

$$F_{t_1}(x) = N \text{Prob}(\theta_1 \leq x, \theta_1 \geq Z_1, \psi_1 \geq Z_1).$$

Details that $\theta_1$ as well as $\psi_1$ comply with rapid distribution along with imply of $\psi$ as well as $\omega$, specifically. And the probability thickness work (PDF) of $Z_1$ is actually

$$f_{Z_1}(Z_1) = \sum_{n=0}^{N-1} (-1)^{n-1} \left( \frac{N-1}{n} \right) \frac{\tau e^{-\frac{\psi_1}{\tau}}}{\tau + n \omega},$$

An then, $F_{t_1}(x)$ as

$$F_{t_1}(x) = N \int_0^x \left[ \int_z^x f_{t_1}(\theta_1) d\theta_1 \int_{\theta_1}^x f_{\psi_1}(\psi_1) d\psi_1 \right] f_{Z_1}(z) dz$$

$$= \sum_{n=0}^{N-1} b_n \left[ \frac{1}{n+1} (1 - e^{-\frac{\psi_1}{\tau}}) - \frac{\tau}{\tau + n \omega} (e^{-\frac{\psi_1}{\tau}} - e^{-\frac{\psi_1}{\tau + n \omega}}) \right].$$
in which $b_n$ is defined in (21). The PDF of $t_1$ is

$$f_{t_1}(x) = \sum_{n=0}^{N-1} \frac{b_n}{(n\omega + \tau)\psi} e^{-\frac{x}{\psi} + n\omega e^{-\frac{x}{\psi}}}.$$  

(F.8)

PDF of $f_{\theta t_1}(l|t_1)$ is

$$f_{\theta t_1}(l|t_1) = \frac{1}{\psi(n\omega + \tau)\psi} e^{-\frac{2\sqrt{\omega^2 + \psi^2}}{(1 - \omega^2)^2\psi}}.$$  

(F.9)

in which $I_0(x)$ signifies the zero-order customized Bessel work of the very initial type [11]. Coming from (F.8) and (F.9), our team after that compute the PDF of $t$ as

$$f_t(x) = \int_0^\infty f_{t_1}(t_1)f_{\theta t_1}(l|t_1)dl_1$$

$$= \sum_{n=0}^{N-1} \frac{b_n}{(n\omega + \tau)\psi} + \frac{n(n+1)\omega x}{\psi(n\omega + \tau)\psi} e^{-\frac{x}{\psi}}.$$  

(F.10)

in which [9, eq. (6.614.3)] is actually utilized in final equal rights. Coming from the over formula, one can easily produce the CDF of $t$, as revealed in (20). Likewise, our team can easily acquire the CDF of $\nu$ as revealed in Theorem 1.

F.2. Proof of Theorem 2

To show Theorem 2, our team think about the derivation of the asymptotic $F_t(x)$ along with little $|x|$ when it comes to $\alpha_1 < 1$ as well as $\alpha_1 = 1$ as observes:

$$\alpha_1 < 1.$$  

By utilizing the Taylor’s collection growth, our team can easily approximate $e^{-\frac{x}{\psi}}$ and $e^{-\frac{x}{\psi}}$ as [11]

$$e^{-\frac{x}{\psi}} \approx 1 - \frac{x}{\psi},$$  

(F.12)

$$e^{-\frac{x}{\psi}} \approx 1 - \frac{x}{\psi}.$$  

(F.13)

After that our team can easily acquire the asymptotic articulation for $F_t(x)$ in (20) as

$$F_t(x) \approx 1 - \sum_{n=0}^{N-1} \frac{b_n}{n\omega + \tau} \left[ 1 - \frac{x}{\psi} + \frac{n\omega}{\psi(n+1)} - \frac{n\omega x}{\psi(n+1)\psi} \right].$$  

(F.14)

Note that

$$\sum_{n=0}^{N-1} \frac{b_n}{n\omega + \tau} \left[ 1 + \frac{n\omega}{\psi(n+1)} \right] = \sum_{n=0}^{N-1} \frac{b_n}{n+1} = 1.$$  

(F.15)

in which [9, eq. (0.155.1)] is actually being applied. Our team can easily additional compose $F_t(x)$ as

$$F_t(x) = \sum_{n=0}^{N-1} \frac{b_n}{n\omega + \tau} \left[ \frac{x}{\psi(n+1)} + \frac{n\omega x}{\psi(n+1)\psi} \right]$$

$$= \frac{x}{\psi(1 - \omega^2) + \omega} \sum_{n=0}^{N-1} \frac{b_n}{n + \frac{\sigma}{\alpha_1}} (\psi + \omega).$$

(F.16)

in which $\eta_1$ is actually specified in (26) as well as our team use \(\sum_{n=0}^{N-1} \frac{(-1)^n(N_1 - 1)!}{n!} = \frac{(N-1)!}{\eta_1 \tau} [11, Proposition 2.3] in the last equality.

$$\alpha_1 = 1.$$  

When $\alpha_1 = 1$, $F_t(x)$ in (20) ends up being

$$F_t(x) = \sum_{n=0}^{N-1} \frac{b_n}{n\omega + \tau} \left[ 1 - e^{-\frac{x}{\psi(n+1)}} - \frac{\tau}{\omega} e^{-\frac{x}{\psi}} - e^{-\frac{x}{\psi}} \right].$$  

(F.17)

By utilizing Taylor’s collection estimation of $e^x \approx \sum_{n=0}^{\infty} \frac{e^x}{n!}$ for little $|x|$, our team can easily first compute $J = \sum_{n=0}^{N-1} \frac{b_n}{n\omega + \tau} (1 - e^{-\frac{x}{\psi}})$ as

$$J = \sum_{n=0}^{N-1} \frac{b_n}{n\omega + \tau} \left[ - \frac{x}{\psi} - \frac{n\omega}{\psi(n+1)} + \frac{\tau}{\omega} e^{-\frac{x}{\psi}} \right]$$

$$= \frac{x}{\psi} N, \quad (N \geq 1).$$  

(F.18)

in which eqs. (0.154.3)-(0.154.4) in [11] are actually been applicable. In a comparable method, our team can easily compute \(\sum_{n=0}^{N-1} \frac{b_n}{n\omega + \tau} (e^{-\frac{x}{\psi(n+1)}}) = \frac{x}{\psi(n+1)}\).

Brushing this outcome along with eq. (F.19) leads to the asymptotic articulation of $F_t(x)$ along with $\alpha_1 = 1$ in Theorem 2.

In a comparable method, our team can easily obtain the asymptotic articulation of $F_t(x)$, as displayed in Theorem 2. Thus, the evidence of Theorem 2 is finished.

F.3. Acknowledgements

The work in this paper was supported by the NSFC with grant number 61871235.

F.4. Copyright

The Copyright was licensed to EAI.

References


