
Information Outage Probability and Constrained
Capacity of Moderate-Length Codes over AWGN
Channels∗

Lan K. Nguyen1, Duy H. N. Nguyen2, Richard Wells3, and Nghi H. Tran4,∗

1Linquest Corporation, CA, USA
2Department of Electrical and Computer Engineering, San Diego State University, CA, USA
3University of Idaho, Idaho, USA
4Department of Electrical and Computer Engineering, University of Akron, OH , USA

Abstract

We study the information outage probability (IOP) and constrained capacity of moderate-length codes over
AWGN channels based on M-ary phase-shift keying signals. The IOP provides an important benchmark
for performance evaluation of moderate-length codes. We analytically compute the IOP and compare it
with numerical simulations using the DVB-S2 error-correcting code with numerous code rates employed in
Protected Tactical Waveform (PTW). Numerical results confirm the tightness of the analytical results.

Received on 03 October 2021; accepted on 01 November 2021; published on 03 November 2021

Keywords: Moderate-length codes, Mutual information, Outage capacity, DVB-S2, SATCOM.

Copyright © 2021 L. Nguyen et al., licensed to EAI. This is an open access article distributed under the terms of
the http://creativecommons.org/licenses/by/3.0/Creative Commons Attribution license, which permits unlimited use,
distribution and reproduction in any medium so long as the original work is properly cited.

doi:10.4108/eai.3-11-2021.171755

1. Introduction
From the information theoretic measure, channel
capacity provides a fundamental understanding of the
performance on a signaling type over a channel. It
addresses the problem of efficient data transmission
over the channel. Channel capacity is closely related
to mutual information, which provides a reduction
in uncertainty about the channel input given the
knowledge of the channel output. Wide classes of
channels have been studied based on probability theory
such as ergodic theory or laws of large numbers. In
order to establish the channel capacity or ergodic
channel capacity result, the code block length is
allowed to grow without bound. Channel capacity is
related to the average mutual information only in
the limit of infinite-length codewords. If the coding
length is required to be infinite for the average
mutual information to converge, then one might infer
that the real value of interest is not the average

★A part of this work was presented at IEEE Military Communications
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mutual information, but the mutual information itself.
Also, recent results on channel capacity for a general
class of channels; the average mutual information is
not sufficient for that purpose [2]. This observation
motivates us to study mutual information itself, which
then provides insight into the performance of finite-
length codewords.

In the early development of information theory,
mutual information between the channel input and
output is treated as a random variable [2–4]. The failure
probability or the information outage probability (IOP),
is defined as the probability of this random variable
drops below the code rate R [5]. The IOP is simply
referred as the outage probability in this paper. A
formal approach of IOP was presented in Feinstein’s
Lemma [4], which states that a code exists with maximal
codeword error probability that is incrementally higher
than the IOP. Feinstein’s Lemma suggests that the IOP
could be used as a benchmark for the codeword error
probability. In previous works, authors focused IOP on
fading channel [6, 7]. In this model, each codeword is
divided into K timeslots, each of duration T , and each
timeslot is transmitted through a fading channel. The
signal to noise ratio (SNR) is assumed to be constant
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in each timeslot but may vary from one timeslot to the
next timeslot. The overall mutual information is found
by averaging across K timeslots [8–10]. In general,
IOP does not provide a lower decoding bound [8, 11].
It bounds on the maximum probability of error, not
the average probability of error. It provides a good
performance benchmark of the achievable decoding
error rates. For this reason, the performance bound
simply means the performance benchmark in this
paper.

In the regime of finite-length codes, the IOP also
appeared in the literature in the context of information
spectrum methods [2, 8, 12–15]. The IOP is simply
the cumulative distribution function (cdf) of the
mutual information rate random variable, evaluated
at code rate R. The main utility of the cdf is that
it can be analytically obtained by the Gaussian Q-
function, instead of simulating the actual code. It,
however, provides a performance guidance for the code
designers.

In the regime of moderate-length codes where the
number of symbols per codeword is n > 1000, the
IOP for QPSK, LTE turbo code is discussed in [11].
A numerical method for BPSK, LTE turbo code is
discussed in [16]. As shown in [11, 16], in order to
achieve maximum AWGN capacity, the input signal is
assumed to follow a Gaussian distribution function.
Results shown in [11, 16] indicate that the IOP is about
0.7 dB and 1.2 dB better than the block error rate
(BLER), respectively. Motivated by these results, we
study the performance of Protected Tactical Waveform
(PTW) [17, 18], which employs M-PSK signals, using
Second Generation Digital Video Broadcasting Satellite
(DVB-S2) forward error correcting (FEC) code with
numerous code rates, and a fixed length of 16, 200
coded bits. DVB-S2 FEC is based on the concatenation
of BCH (Bose-Chaudhuri-Hocquengham) and LDPC
(Low Density Parity Check) codes. PTW has been
adopted by the Air Force to use over the commercial
and Military Satellite Communication (MILSATCOM)
systems. PTW supports very high data rates while
providing secured and anti-jam protection, as well as
low probability of intercept and detection (LPI/LPD)
[19] capability.

The IOP results obtained by previous studies [11, 16]
are satisfactory only for the codes which operate in the
region of low to moderate SNR where the maximum
capacity or Shannon capacity matches the constrained
capacity. These results rely on Gaussian distribution
assumption of the input signal. However, the Gaussian
input assumption results in loose performance bound
for high modulation orders where FEC operates in
high region of SNR [20]. The main contribution of
the paper is to provide a general solution for the
IOP for a wide range of SNR, which includes high
orders of modulation and high code rates. We do

not rely on the Gaussian distribution of the input
signal. A uniform distribution is realistic and used
in the paper. To best of our knowledge, this paper
is the first work that examines the IOP by relaxing
the Gaussian input assumption. We show that the IOP
provides a very tight performance bound, specifically,
the theoretical performance benchmark for PTW, a
future Military Standard waveform for MILSATCOM.
In the preliminary work reported in [1], we presented
our approximation approach to find the IOP and
constrained capacity of moderate-length codes. In this
work, we provide more thorough investigation and
comparison between the proposal approach to results
achieved by Gaussian signaling. In the simulation
section we show the Gaussian assumption results in
very loose performance bound for codes that operate in
the region of high SNR; it exceeds 3.6 dB for 8-PSK with
code rate 8/9, while our approach results in a very tight
bound, less than 0.3 dB. The results of this paper can be
extended to study the performance for a wide class of
codes.

The outline of the paper is as follows: In Section II,
a review of mutual information, average mutual infor-
mation, and mutual information rate. The calculation
of IOP is based on additive Gaussian noise (AWGN)
channels. There are two parts: Part I when input M-
PSK signal is assumed to follow a Gaussian distribution;
Part II, we relax the Gaussian distribution of the input
signal and a more realistic uniform distribution is used.
In part II, we show that the received signal is a Gaussian
mixture. Therefore, maximum capacity is not achieved
in the region of high SNR. In addition, for high orders
of modulation, e.g., QPSK or higher, there is no closed
form solution for the average mutual information and
the information rate random variable. The calculation
of IOP is based on the constrained capacity of the M-
PSK signals. We present approximation and numerical
integration methods to compute the constrained capac-
ity. Details of these methods are discussed in sections II
and III of the papers. Finally, simulation results using
PTW which employs DVB-S2 FEC code with numer-
ous code rates and the IOP obtained in Section II are
presented in Section 2, followed by some concluding
remarks in Section 3.
Notations: We use capital letters to denote random

variables, small letters to indicate sample values, bold
letters to indicate vectors of sample values. To simplify
the analysis, complex baseband signaling is considered.
In addition, codeword error rate and block error rate are
used interchangeably.

2. System and Channel Model

We consider a one-to-one communication link. At the
receiver, the discrete time output signal of the additive
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white Gaussian channel noise is given by

Y = X + N (1)

where X denotes the Gray-coded M-PSK transmitted
symbols, and N denotes the additive white Gaussian
noise (AWGN).

The probability density function (pdf) of the complex
AWGN is given by

fN (n) =
1

πN0
e−
|n|2
N0 (2)

where N0 denotes the noise power density. The mutual
information between samples x and y is given by

i(x; y) = log
(
fY |X(y|x)
fY (y)

)
(3)

where log(·) denotes the natural logarithmic function,
fY |X(y|x) denotes the conditional pdf of Y given X; it is
given by

fY |X(y|x) =
1

πN0
e−
|y−x|2
N0 . (4)

The mutual information i(x; y) is a random variable
with unit of nats/channel use. The average mutual
information is given by

I(X;Y ) = E{i(x; y)} (5)

where E{·} denotes the expectation operator. The
average mutual information (5) can also be expressed
as

I(X;Y ) = lim
n→∞

1
n

n∑
k=1

i(xk ; yk). (6)

The above expression suggests that the average mutual
information can be estimated based on the mutual
information of the input and output vectors of length
n [8], i.e.,

1
n
i(xn; yn) =

1
n

n∑
k=1

i(xk ; yk) (7)

where n denotes the number of symbols per codeword.
The expression on the right-hand side (RHS) of (7) is
also known as the mutual information rate. Mutual
information rate is a random variable.

2.1. Part I: Gaussian Distributed Input
Suppose the input random variable X is a zero-mean,
complex Gaussian random variable, the pdf of X is
given by

fX(x) =
1

πEs
e−
|x|2
Es (8)

where Es denotes the symbol energy. Since both signal X
and noise N are zero-mean complex Gaussian random
variables, the output signal Y is also a zero-mean
complex Gaussian random variable, and the pdf of Y
is given by

fY (y) =
1

πEs + N0
e−

|x|2
Es+N0 . (9)

Substituting (4) and (9) into (3), the mutual information
is

i(x; y) = log
(
1 +

Es

N0

)
+
|y|2

Es + N0
−
|y − x|2

N0
. (10)

Substituting (10) into (5), the average mutual informa-
tion is

I(X;Y ) = E{i(x; y)} = log(1 + γ) (11)

where the signal to noise ratio (SNR) is given by

γ = SNR =
Es

N0
. (12)

The channel capacity or the Shannon capacity for the
AWGN is given by [3]

C0(γ) = sup
fX (x)

I(X;Y ) = log(1 + γ). (13)

As shown in (11) and (13), for AWGN channel, the
maximum capacity C0 is obtained when the pdf of X
follows a Gaussian distribution.

Given that (10), (11), and (13), the mutual informa-
tion rate random variable shown in (7) can be shown to
have the same distribution as random variable Zn; it is
given by

Zn = C0 + Wn (14)

where

Wn =
1
n

n∑
k=1

(
|Yk |2

Es + N0
− |Nk |2

N0

)
(15)

where n denotes the number of symbols per codeword.
Since Y and N are zero-mean Gaussian random
variables, |Y |2 and |N |2 are chi-square distributed
random variables. For two degrees of freedom (complex
data), chi-square distribution becomes exponential
distribution. Furthermore, for n = 1, the difference of
two exponentially distributed random variables is a
zero-mean Laplacian random variable with variance
[8, 21]

σ2
w =

2γ
γ + 1

, for n = 1. (16)

Again, γ is the SNR, given by (12). Using Central Limit
Theorem, for large n (n > 100), Wn is approximated by
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a Gaussian random variable. The distribution of the Zn
can be approximated as

Zn ∼ N
(
C0,

2γ
n(γ + 1)

)
. (17)

Proposition 1. For infinite length codeword, the mutual
information rate random variable Zn is the Shannon
capacity.

Proof. Taking the limit of the variance of the mutual
information rate random variable Zn as the codeword
length approaches infinity, one obtains

lim
n→∞

Var(Zn) = lim
n→∞

2γ
n(γ + 1)

= 0. (18)

The mutual information rate random variable con-
verges to the Shannon capacity. This result is consistent
with (11) and (13).

The cumulative distribution function of Gaussian
random variable Zn is given by

FZn
(z) = Q

 C0 − z√
2γ/n(γ + 1)

 , (19)

where Q(x) is defined as

Q(x) =
1
√

2π

∫ ∞
a

exp
(
− t

2

2

)
dt. (20)

Define the code rate as

Rc ≜
k
m
, (21)

where k denotes the number of information bits and
m denotes the number of coded bits per codeword.
Code rate Rc is normally specified in communications
systems.

The effective code rate in bits/symbol is given by

Re = Rc log2 M. (22)

The outage probability Po is the probability that the
mutual information rate is less than the code rate Re.
The outage probability for Zn is given by

Po = P [Zn ≤ Re] = FZn
(Re), (23)

or

Po = Q

 C0 − Re√
2γ/π(γ + 1)

 . (24)

2.2. Part II: Uniform Input Distribution
For M-PSK communication systems, Gaussian distribu-
tion assumption for the input signal is not realistic. A
more realistic distribution for X is uniform distribution;
the pdf of X is given as

fX(x) =
K∑
k=1

p(xk)δ(x − xk) (25)

where

p(xk) = 1/M, (26)

δ(·) denotes the Dirac delta function, M denotes the
size of the M-PSK alphabet, and xk denotes the M-PSK
transmitted symbol, a member of the M-PSK alphabet.

The pdf of the output random variable Y is the
convolution of (2) and (25); it is given by

fY (y) =
1
M

∫ ∞
−∞

M∑
k=1

δ(u − xk)fN (y − u)du

=
1
M

M∑
k=1

fN (y − xk), (27)

or

fY (y) =
1
M

M∑
k=1

e−
|y−xk |

2

N0

πN0
. (28)

The mean value of the output signal is

E{Y } =
1

MN0π

M∑
k=1

∫ ∞
−∞

ye−
|y−xk |

2

N0 dy

=
1
M

M∑
k=1

xk = 0, (29)

and the output signal power is

E{Y 2} =
1

MN0π

K∑
k=1

∫ ∞
−∞

y2e−
|y−xk |

2

N0 dy

= N0 +
1
M

M∑
k=1

|xk |2 = Es + N0, (30)

where

Es =
1
M

M∑
k=1

|xk |2. (31)

The variance of the output signal is then given by

V ar{Y } = E{Y 2} − [E{Y }]2 = Es + N0. (32)
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Figure 1. Mixture random variable Y for QPSK data symbol.

Equations (28), (29), and (32) indicate that the output
random variable Y is a zero-mean Gaussian mixture of
M Gaussian distributions, with variance Es + N0.

Fig. 1 depicts the distribution of Gaussian mixture
Y for QPSK data symbol on a constellation diagram.
In this figure, Gaussian noise is sitting on top of each
constellation point.

Substituting (4) and (28) into (3), the mutual
information is

i(x; y) = logM −
|y − x|2

N0
− log

 K∑
k=1

e−
|y−xk |

2

N0

 . (33)

Substitute (33) into (5), the average mutual information
is given as

I(X;Y ) = logM − 1 − IYX (34)

where

IYX =
1

MN0π

M∑
j=1

∫ ∞
−∞

e−
|y−xj |2

N0 log

 M∑
k=1

e−
|y−xk |

2

N0

dy. (35)

Due to the presence of a mixture of Gaussian
components, for high order of modulation, QPSK or
higher (M ≥ 4), there is no closed form expression for
IYX and the average mutual information [22–24].

The constrained capacity of M-PSK signal that has
finite alphabet M, uniformly distributed, it is given by

Ccon = I(Y ;X) ≤ C0. (36)

As discussed in Section 2.1, under Gaussian input
assumption, the outage probability is governed by the
channel capacity. For uniform distribution assumption
of the input signal, the outage probability is governed
by the constrained capacity. For M-PSK signal, no
closed form expression of the constrained capacity.
An approximation, a numerical, and a Monte-Carlo
simulation solution of the constrained capacity will be
used.

Modulation a b L

QPSK 1 0.63 1
8-PSK 0.6130 0.1955 2

0.3855 0.8992
Table 1. Approximation parameters of (37) for QPSK and 8-
PSK modulations.

Figure 2. Approximation of Constrained Capacity for QPSK and
8-PSK and Shannon capacity.

2.3. Method 1: Approximation Constrained Capacity
for M-PSK Signals
An exponential approximation that reduces the compu-
tational burden is given as [25]

Ccon(γ) ≈ log2 M

1 −
L∑
i=1

aie
−biγ

 , (37)

where γ denotes the SNR, ai , bi , L are curve fitting
parameters. Approximation parameters for QPSK and
8-PSK are summa-rized in Table 1.

Fig. 2 depicts the approximate of the constrained
capacity for QPSK and 8-PSK modulations and the
Shannon capacity.

2.4. Method 2: Numerical Integration Constrained
Capacity for M-PSK Signals
To evaluate (35) via numerical integration, make a
change of variables

s =
yR − xj,R√

N0
, and s =

yI − xj,I√
N0

, (38)

where YR and YI denote the real and imaginary parts of
sample y, respectively; and xj,R and xj,I denote the real
and imaginary parts of sample xj , respectively.
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Figure 3. Numerically integration of constrained capacity for
QPSK and 8-PSK, and Shannon capacity.

Substituting (38) into (35), one obtains

IYX = − 1
Mπ

M∑
k=1

∫ ∞
−∞

∫ ∞
−∞

e−s
2−t2

h(s, t) dsdt (39)

where

h(s, t) = log


M∑
k=1

e
−
(s+ xj,R−xk,R√

N0

)2

+
(
t+

xj,I−xk,I√
N0

)2 . (40)

Using the Gauss-Hermite quadrature [26] to numeri-
cally integrate (39), one obtains

IYX ≈ −
1

Mπ

N∑
j=1

wj

N∑
i=1

vih(si , tj ), (41)

where si and tj are roots of the Hermite polynomial and
vi and wj are associated weights.

Substituting (41) into (34), one obtains

Ccon(γ) = I(Y ;X)

≈ logM − 1 − 1
Mπ

N∑
j=1

wj

N∑
i=1

vih(si , tj ). (42)

Fig. 3 depicts the numerical integration of constrained
capacity for QPSK and 8-PSK modulations and the
Shannon capacity.

Follow a similar development to that described in
Section 2.1 of the paper, the distribution of the mutual
information rate random variable Zn between the input

and output vectors of length n can be expressed as

Zn = logM − Vn, (43)

where

Vn =
1
n

n∑
k=1

|Nk |2

N0
+

1
n

n∑
k=1

log

 M∑
j=1

e−
|Yk−xj |

2

N0

 . (44)

Define

|Yk − xj |2 ≜ |Yk |2 + β|Xj |2 (45)

where

|β| ≤ 1. (46)

For a single ring constellation of M-PSK signals, we
have

|xj |2 = Es, for j = 1, 2, . . . ,M. (47)

Substituting (45) and (47) into (44), after some algebra,
one obtains

Vn = logM − βγ − 1
n

n∑
k=1

|Yk |2

N0
+

1
n

n∑
k=1

|Nk |2

N0
. (48)

Substituting (48) into (43), one obtains

Zn = βγ +
1
n

n∑
k=1

|Yk |2

N0
− 1
n

n∑
k=1

|Nk |2

N0
. (49)

Define

Wn ≜
1
n

n∑
k=1

|Y ′k |
2

N0
− 1
n

n∑
k=1

|N ′k |
2

N0
, (50)

where

Y ′k =
Yk√
N0

and N ′k =
Nk√
N0

. (51)

Since Yk is a zero-mean Gaussian mixture, Y ′k is also
a zero mean Gaussian mixture, variance equals γ + 1,
while N ′k is a normalized Gaussian random variable,
zero mean, variance equals 1. Therefore, Wn is also a
zero-mean random variable.

Given (5), (36), (43)–(49), in the mean of (49), one
obtains

Ccon(γ) = βγ. (52)

Since |β| ≤ 1, we have

Ccon(γ) ≤ C0(γ) = log(1 + γ) ≤ γ. (53)

Substituting (50) and (52) into (49), one obtains

Zn = Ccon + Wn. (54)
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Again, Ccon is obtained by either approximation or
numerically methods as given either by (37) and (42),
respectively, and Wn is given by (50). The mean of the
mutual information rate random variable is governed
by the constrained capacity. Again, similar to part I,
for n = 1 and in the limit where Y follows a Gaussian
distribution, W is a Laplacian random variable, with
variance depends on γ . When Y is a Gaussian mixture
of M Gaussian distributions, the variance of W is M
times the variance of a single Gaussian distribution, i.e.,

σ2
W =

2Mγ

γ + 1
. (55)

For large n, (n > 100), using Central Limit Theorem,
Wn follows a Gaussian distribution. The mutual
information rate random variable Zn shown in (44) can
be expressed as

Zn ∼ N
(
Ccon(γ),

2Mγ

n(γ + 1)

)
. (56)

Comparing this result against part I, although the
distribution of the mutual information rate random
variable Zn is Gaussian; however, the mean shifts
toward the constrained capacity and the variance is M
times larger.

Proposition 2. For infinite length codeword, the mutual
information rate random variable Zn is the constrained
capacity.

Proof. Similar to Part I, taking the limit of the variance
of the mutual information rate random variable Zn as
the codeword length approaches infinity, one obtains

lim
n→∞

V ar(Zn) = lim
n→∞

2Mγ

n(γ + 1)
= 0. (57)

Thus, the mutual information rate random variable
converges to the constrained capacity.

The outage probability Po is the probability that the
mutual information rate is less than the code rate Re.
The outage probability for Zn is given by

Po = P [Zn ≤ Re] = FZn
(Re), (58)

or

Po = Q

 Ccon−Re√
2Mγ/n(γ + 1)

 . (59)

Again, Re is given by (22). For M-PSK signals, the IOP
shown in (59) is applicable for the entire SNR region.
Equation (59) provides the performance benchmark for
moderate-length codes. Numerical simulation of the
DVB-S2 FEC with various code rates and the IOP are
discussed in the simulation section of the paper.
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Figure 4. BLER and Po for QPSK, code rate Rc = {1/4,1 /3}.

As shown above, the mean of the mutual information
rate random variable Zn is a function of constrained
capacity. The performance of the outage probability is
sensitive to the expected capacity, the degree in which
the approximation, numerical integration, and Monte-
Carlo simulation methods converge to the expected
capacity. We will discuss the performance of the outage
probability and numerical results in Section 3 of the
paper.

3. Simulation Results
Computer simulations for Quadrature Phase Shift
Keying (QPSK) and 8-Phase Shift Keying (8-PSK), using
DVB-S2 FEC with a fixed length of 16, 200 coded
bits, code rates Rc of 1/4, 1/3, 1/2, 2/3, 3/4 and 8/9 are
considered. Details information of the DVB-S2 FEC and
the constellations of QPSK and 8-PSK are defined in
[27].

Fig. 4 depicts the outage probability Po using numer-
ical integration, approximation, Gaussian assumption,
and simulated BLER for QPSK with low code rate Rc ={
1/4,

1 /3
}
.

Fig. 5 depicts the outage probability Po using numer-
ical integration, approximation, Gaussian assumption,
and simulated BLER for QPSK with moderate code rate
Rc = {1/2,2 /3}.

Fig. 6 depicts the outage probability Po using numer-
ical integration, approximation, Gaussian assumption,
and simulated BLER for 8-PSK with high code rate
Rc = {3/4,8 /9}.

As shown in Figs. 4-6, the outage probability curves

• are loose for the Gaussian input distribution
assumption. The performance bound increases for
either high order of modulation or code rate.
Relative to simulated curve, the bound exceeds
3.5 dB for 8-PSK, rate 8/9. It is a direct result of
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Figure 5. BLER and Po for QPSK, code rate Rc = {1/2,2 /3}.
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Figure 6. BLER and Po for QPSK, code rate Rc = {3/4,8 /9}.

the Shannon capacity that exceeds the constrained
capacity, SNR > 5 dB;

• are tight for the numerical constrained capacity
method. An interesting observation is for 8-PSK,
rate 8/9, the outage probability curve crosses
the simulated curve. In this SNR region, the
constrained capacity is slightly underestimated; it
shifts the outage probability curve to the right and
causing its slope more gradual, not as steep as the
simulated curve;

• are also tight for the approximate constrained
capacity method; with the exception of 8-PSK rate
3/4 where the numerical method is tighter for
about 0.5 dB. In this case, the constrained capacity
is slightly overestimated.

Table 2 summarizes the performance for all methods
at BLER equals 10−4. Results shown in Table II indicate
that both the numerical and approximation constrained

Modulation Rc ∆Int(dB) ∆Apx(dB) ∆Gsn(dB)
QPSK 1/4 0.73 0.29 1.11
QPSK 1/3 0.52 0.18 0.85
QPSK 1/2 0.78 0.50 1.18
QPSK 2/3 0.35 0.30 1.20
8-PSK 3/4 0.48 0.96 2.57
8-PSK 8/9 −0.27 0.27 3.62

Table 2. Performance bound in dB for the outage probability Po,
using numerical integration, approximation, and Gaussian input
distribution assumption at BLER = 10−4.

capacity methods provide the tight bound for the
outage probability.

4. Conclusion
Feinstein’s lemma for the IOP is a practical approach
and an important benchmark of achievable rate to
predict the performance of moderate length codes. In
this paper, we presented an approach to compute the
IOP for M-PSK signals using DVB-S2 FEC with a fixed
length of 16, 200 coded bits with numerous code rates
for AWGN channel. Computer simulation, using PTW
waveform which employs QPSK and 8-PSK signaling,
DVB-S2 FEC with a fixed length of 16, 200 coded bits
with numerous code rates were presented to compare
the BLER against the outage probability under Gaussian
and uniform distributions of the input signals. With
the Gaussian inputs distribution assumption, the IOP
results in the loosest bound. The bound exists 3.5 dB for
8-PSK, rate 8/9. When the code is operating in the high
SNR region Shannon capacity exceeds the constrained
capacity. Therefore, for high order of modulation and
high code rate, one should not assume Gaussian input
distribution. The bound is tight for the numerical
constrained method. The performance bound in the
range of −0.27 to 0.78 dB for BLER of 10−4. For 8-
PSK, rate 8/9, the outage probability curve intersects
with the simulated curve. In this region, the numerical
constrained capacity is slightly underestimated; it shifts
the outage probability curve to the right and causing
its slope to be more gradual than the simulated
curve. The bound is also tight and consistent for the
approximate constrained capacity method. However,
the bound peaks for 8-PSK, rate 3/4. In this case, the
constrained capacity is slightly overestimated; it causes
the outage proba-bility curve shifts to the left, which
result in a performance bound of 0.96 dB at BLER of
10−4. For the approximation constrained method, the
performance bound is in the range of 0.18 to 0.96 dB
for BLER of 10−4. An interesting observation is that one
can use the simulated curve to benchmark the rate of
convergence for the constrained capacity. Comparing
all the methods, for QPSK and 8-PSK with all the
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code rates under consideration, both the approximation
and numerical methods for constrained capacity yield
good predictor for the performance bound of moderate-
length codes. The IOP technique presented in the paper
can be extended to predict the theoretical benchmark
for a wide class of moderate-length codes.
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