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Abstract

There has been increasing interest in the application of artificial intelligence technologies to improve the
quality of support services in healthcare. Some constraints, such as space, infrastructure, and environmental
conditions, present challenges with assistive devices for humans. This paper proposed a wearable-based real-
time human activity recognition system to monitor daily activities. The classification was done directly on the
device, and the results could be checked over the internet. The accelerometer data collection application was
developed on the device with a sampling frequency of 20Hz, and the random forest algorithm was embedded
in the hardware. To improve the accuracy of the recognition system, a feature vector of 31 dimensions was
calculated and used as an input per time window. Besides, the dynamic window method applied by the
proposed model allowed us to change the data sampling time (1-3 seconds) and increase the performance
of activity classification. The experiment results showed that the proposed system could classify 13 activities
with a high accuracy of 99.4%. The rate of correctly classified activities was 96.1%. This work is promising for
healthcare because of the convenience and simplicity of wearables.
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1. Introduction
In recent years, the digital transformation in health-

care has taken place strongly, and four prominent
approaches have emerged: i) Using robots to interact
with patients, provide personalized services, and pro-
vide advice [1]; ii) Optimizing the use of personal
electronic wearable devices to monitor health status
and prevent diseases [2, 3]; iii) Using computer vision
in healthcare [4]; iv) Actively using artificial intelli-
gence and big data in the treatment of serious diseases
[5]. The above approaches require complex data ware-
houses and digital platforms, with high construction
and implementation costs. Thus, they were difficult to

∗Corresponding author. Email: nghiatd@ioit.ac.vn.

apply with real-time activity data and required the
establishment of spatial and infrastructure conditions
in advance. Wearable sensor technologies aimed to
develop into a system that allowed doctors and nurses
to monitor patients’ health remotely and promptly give
them useful advice. Wearable sensors [6] are sensors
located directly or indirectly on the body to mea-
sure raw signals such as accelerometers, gyroscopes,
angles, etc. from human activities. For the monitor-
ing of activities, inertial sensors such as accelerome-
ters and gyroscopes have been extensively employed.
Gyroscopes detect changes in orientation, such as rota-
tional displacement, velocity, and acceleration, whereas
accelerometer sensors measure changes in velocity and
displacement. Consequently, many researchers have
been interested in building wearable devices based on
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Fig 1. Wearable sensor locations on the body.

data obtained from inertial sensors to monitor daily
activities [7–12].

Internet of things (IoT) applications [13–15] in the
field of predicting human activities were growing
strongly. Many works on human activity recognition
(HAR) [16, 17] ways of increasing interest due
to its availability in practical applications such as
sports tracking systems [18]; monitoring systems and
prevention of sedentary conditions at work in the
office [19]. Moreover, sensors integrated with wearable
devices have many advantages, such as cost savings,
fast response time, cost savings, and low energy
consumption, making them suitable for wearable
applications [7, 12, 20–22].

Sensor placement (Fig 1) greatly affected the
performance of the recognition model [6, 11, 12, 15, 19,
20, 23, 24]. Sensors must be attached at an appropriate
location on the body. This was determined by the
activities that required monitoring. Smart watches are
usually worn on the left wrist. It is often less related
to activities that do not use the hand, such as sitting,
standing, lying down... Besides, the sensors attached to
the waist help with overall body movement monitoring
and major body movements. But data collected from
waist circumference is often less sensitive to activities
involving the use of hands, such as writing, holding,
grasping, etc. Therefore, recent works [25–28] have
combined many sensors in different locations to
increase the amount of information collected about
activities. However, carrying many wearable devices on
the body could cause discomfort. In addition, wearable
devices needed to be compact in size and light in weight
to create a comfortable feeling for the users, especially
for the elderly or those recovering from an accident.
These devices were worn on the body during treatment
to monitor the progress of daily activities and detect
abnormal activities. An example: a sudden change
in posture, such as lying down while walking. Not
only that, healthy people could use wearable devices

Fig 2. Machine learning algorithms were fed a set of relevant
features for analysis, while deep learning algorithms worked with
raw data and decided on their own the relevant features.

to monitor sports cycles, monitor living habits and
determine energy consumption for activities.

The performance of the recognition model improved
substantially when machine learning was utilized to
identify human activities [3, 6, 7, 10–12, 15, 19, 24,
29]. While the device’s integrated processors were
low-power microcontrollers, they had memory and
processing speed limitations. Besides, ML application
recognition models must be optimised and compiled
into the C/C++ language before being embedded in
the microcontroller. Thus, choosing an embeddable
machine learning algorithm on microcontrollers was a
big challenge. Embedded devices typically have limited
memory, processing power, power capacity, and more.
Since embedded systems were designed for specific
uses, there were limited resources left for machine
learning models. To solve this problem, we built a
human activity recognition model based on a machine
learning algorithm with low complexity, small size, and
embedding ability in microcontrollers.

Machine learning algorithms (Fig 2) based on
past experience, observations, and data to predict
future corresponding work instead of just following
established rules pre-programmed. In general, there
were four main approaches in the field of machine
learning, including: 1) Supervised learning [30, 31]; 2)
Unsupervised learning [32]; 3) Reinforcement learning
[33]; 4) Semi-supervised learning [34]. With HAR,
supervised learning algorithms would predict the label
(activity) of a new descriptive dataset based on the
correlation between that label and the previously
known as descriptive data. In mathematics, a set of
input data had the form χ = {x0, x1, x2, ..., xn} and a
set of labels had the form γ = {y0, y1, x2, ..., yn}. Where,
xi was a data descriptor vector for the label yi with
i = 1, 2, ..., N . Data pairs of the form (xi , yi) ∈ χ × γ
were divided into training and testing datasets. On the
training dataset, a correlation function was calculated
to map the elements of the set χ to a corresponding
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element of the set γ . From there, when new data x
was available, this function f would predict the label
y corresponding to y = f (x). However, this function did
not exist in practice, so the function f needed to be built
well enough for the best classification performance
so that y ≈ f (x). Building a good HAR model was
influenced by many factors, including the quality of
data describing the action, the size of the data window,
features used, the machine learning algorithm applied,
and the complexity of activities.

In addition, limited memory on wearables made
it difficult to process large amounts of data and an
increased number of activities. By using the dynamic
windowing approach, our study has concentrated on
enhancing data quality to capture the timeframe of state
change operations. In this study, a device was designed
like a belt, which can be worn on the waist in order
to classify many activities and cause less discomfort
for users. First, we collected accelerometer data for
each activity and extracted a set of 31 features (time
domain) per data window. Next, sets of features were
divided into training and testing sets at the rate of
75/25. The random forest algorithm was applied to
classify 13 routine activities. Finally, the appropriate
model would be installed on a microcontroller with
moderate performance (ESP32). Volunteers supported
us in completing research to assess the usefulness of
the dynamic window approach. Each device was able
to transmit activity data to the data server via wifi
or the internet. Through an application called "Human
Activity Classification" that we provide to the Google
Play store, users can track the activities of volunteers.
The activity information was logged on the data server
and backed up on the integrated memory card of each
device. Each volunteer would wear a belt-mounted
device. Since then, an internet-based remote activity
monitoring system has been developed. With this
method, we could evaluate the classification accuracy
of wearable devices in a real-time environment. As
a result, the experimental result was evaluated and
compared with a number of related works on the
classification of real-time HAR in the papers [12, 22,
35].

2. Related works
Various machine learning algorithms have been

applied to build activity recognition models in
many recent studies and achieved impressive results.
Research by Mannini et al. [25] suggested using
support vector machine (SVM) classifiers and activity
data collected from sensors located at the ankle
and wrist. The obtained results showed that the
data collected at the ankle was better (10%) than
the data collected at the wrist. Unlike them, Bali
and co-authors [29] combined information including

footsteps, gyroscope acceleration, and heart rate to
recognize human activities. The features were extracted
using the principal component analysis (PCA) method.
Classification algorithms were used in C4.5, random
forest (RF), K nearest neighbours algorithm (KNN), and
SVM. Both the k-nearest neighbors and Nave Bayes
classifiers were compared to the use of accelerometers
and gyroscopes separately by Aiguo et al. [36]. We
know from experiments that using both gyroscopes
and accelerometers together improves categorization
accuracy. Naive Bayes achieved a better overall accuracy
(90.1% and 87.8%) than KNN. A large number of
sensors could improve accuracy, but it would be
impractical to have to wear them all the time.
Adding more sensors would also make the system
more expensive. Another study by Biagetti et al.
[8] proposed a human activity recognition system
consisting of wireless sensor network nodes (biological
and accelerometer) and transmitted to a computer for
data analysis. Results when applying the KNN classifier
achieved an overall accuracy of 85.7%. In the study
[35], Yang and Zhang propose a wearable operationally
categorized system that resembles a wristwatch and is
worn on the hand. The time and frequency domain
characteristics of the accelerometer data are extracted,
followed by the use of the decision tree method. On the
STM32L low-power microcontroller, their modelling
can be executed in real time. Despite the short number
of activities (walking, sitting, jumping, bicycling, and
jogging), the accuracy is below 90%. Five biaxial
accelerometers were worn in a variety of positions on
the study team by Bao et al. [37] including the hip, wrist,
arm, ankle, and thigh. 20 activities were categorized
with an accuracy of 84% by the decision tree classifier.
The increased number of sensors, moving data, and
accelerometer set to the designated orientation were
the restriction, though. Many scientists in the last few
years have looked into the possibility of employing a
single accelerometer to collect the signal necessary for
activity recognition [38]. Piyush Gupta et al. [38] used a
belt-worn 3-axis accelerometer to construct an activity
identification and feature selection system. Using Nave
Bayes and KNN, they observed that wrapper-based
feature selection was superior than filter-based. Data
collection was limited to seven volunteers. All were
young (22–28). Thu and co-authors [12] built a real-
time recognition system for six activities on low-
performance microcontrollers. Their system used two
features (mean and standard deviation) in a combined
decision tree algorithm. The result achieved above,
92%, was quite good, but this result was lower than
the result achieved on their collected data (99%). The
difference came from the data itself and the limited
number of activities. For example: when switching from
a static state (lying) to a dynamic state (sitting up) or
from a dynamic state (sitting down) to a stationary state
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(sitting), these activities could be confused with the
activities in a state of walking or jogging.

3. System model

3.1. Wearable device
Frequently, the posture and velocity of human

movements alter. Different activities produced different
3-axis acceleration values according to where the
accelerometer was placed on the body [12, 23, 35]. In
this research, accelerometer signals from the MPU6050
sensor were collected. Fig 3 shows the block diagram
of the proposed system. The inertial sensor used was
the MPU6050, capable of measuring 6 axes, including
3 axes of acceleration and 3 axes of gyroscope. The
ESP32 was a power-saving microcontroller circuit
that integrated Wi-Fi and Bluetooth. Additionally, the
ESP32 was equipped with a 16MB flash memory, which
was widely used in IOT applications. Besides, the
ESP32 also supported the integration of embedding
mini machine learning algorithms through integrated
tools such as tensorflow, micropython. Therefore, this
was the ideal choice when integrating machine learning
algorithms such as random forest, support vector
machine, et cetera. In this work, the central processor
(ESP32) used I2C communication (inter-integrated
circuit) with MPU6050 and DS1307 (time integrated
circuit) to collect acceleration data over time at a
sampling rate of 20 Hz (20 samples per second).

A human activity usually lasts from 2 seconds to
3 seconds and this time is longer in the elderly or
people who have just recovered from an accident.
Besides, a sampling frequency of 50Hz or more did not
give a better result [36], and the performance of the
device depended on the accuracy when combining the
classification algorithm with data features. Acceleration
values were calculated according to the formula (1).
The source of use of the wearable device was a 3.7V-
2000 mah lithium battery, so the battery power it could
provide was 3.7V × 2000maH = 7400mWh.

3.2. Energy consumption
The average power consumption of the device in

each working hour was about 60mWh. The device
could work for up to 7400 : 60 ≈ 123.33 hours, which
is equivalent to 5.14 days.

Ai =

Sami

1024
× R −Oi

Si
(1)

In that, Ai was the acceleration value in the direction
i; Sami was the sampled value on the i-axis; R was the
reference suspension resistor; Oi was compensation and
Si was the sensitivity.

Fig 3. Structure of the wirelessly connected wearable device.

Fig 4. A voltage divider circuit diagram for battery power
calculation.

In order to limit power depletion during operation,
the device needed to be charged after a period of
continuous operation. The alarm information was
sent to users via the mobile application (Fig 5 left),
and the alarm sounds from the device. Because the
battery voltage (VBAT) was between 3.7V and 4.2V but
the microcontroller’s maximum withstand voltage was
3.3V, the battery voltage signal was passed through the
voltage divider circuit (Fig 4). Next, the capacity of the
battery was calculated by formula (2) as a percentage.
As a result, the battery reached 100% when the battery
voltage was 4.2V. The device stopped working when the
battery voltage dropped to 3.7V, or 0%. On the phone
application, the capacity warning icon needed to be
charged when the battery capacity was below 10%.

P erpin =
(
adc ∗ Vref

2re − 1
× R4 + R5

R5
− 3.7

)
× 100%

0.5
(2)

3.3. Mobile monitoring application
To collect activity data, the wearable device was

configured as a mini server, and users could connect
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Fig 5. Low battery warning on the app (left) and data logger
application interface (right).

to the device via wifi thanks to an interactive app
called “Accelerometer Gyrometer Logger”. It is publicly
shared on the Google Play store. This data was
stored on 2GB of expandable local memory, and this
memory communicated with the ESP32 via a standard
serial peripheral interface (SPI). Each collecting and
monitoring device was a node with its own address code
and communicated with the data server by using the
HTTP/GET protocol. Activity data was saved on the
MySQL database.

The application interface (Fig 5 right) provided
users with functions including: setting the sampling
frequency; labels corresponding to activity to be
collected; 3-axis accelerometer and 3-axis gyroscope;
function to delete the collected data when users made
a mistake in the operation or the data errors; battery
capacity notifications; and the logging function of
the collected data was controlled directly via the
START/STOP function button. Besides interacting with
the software, users could enable or stop the data logging
function by using a physical button on the device. In
addition, pressing the button for 5 seconds could delete
the recorded data. After that, the device would delete
the file and reboot.

4. Research methods
4.1. Sampling and pre-processing
Public dataset. The activities of daily living (ADLs)
dataset introduced in work [37] described 36 move-
ments, including 20 falls and 16 daily living activities.
Data of activities were collected by 17 volunteers (10
males and 7 females). Each volunteer performed each
activity in turn, and each action consisted of 5 or 6 tests
between 30 seconds and 60 seconds. When performing

Fig 6. Six tests with the activity of rising.

the activities, each volunteer would wear 6 devices at 6
corresponding positions: head, chest, waist, right wrist,
right, and right ankle. The collection device included
three sensors: an accelerometer, a gyroscope, and a
magnetometer with a sampling frequency of 25Hz.

Researchers [23, 38] investigated the fall state based
on this dataset and showed that the sensor data
collected at the waist position gave the best result.
However, the data included a number of similar
activities, so it was not necessary to distinguish the
details. For example, sit-down on the bed, chair, in
the air, or on the sofa. Thus, we would combine
these activities into a common action. For example:
walking forward and backward into walking; sit-down
on different surfaces such as sit-air, sit-bed, sit-sofa,
sit-chair into sit-down; tripping, sliding but controlled
states into tripover; coughing-sneezing.

The data collected in the public dataset needed to
be processed to improve classification accuracy. Fig 6
shows the rising activity after 6 tests over a period of
more than 250 seconds, with acc_x, acc_y, and acc_z
corresponding to acceleration on the x, y, and z axes.
With a sampling frequency of 25Hz, the data of the tests
was approximately 430 samples. In the first 150 data
samples, the volunteer was horizontal, barely moving
(static state), then he sat up for the next 2-3 seconds,
and finally sat motionless (static state).

Signal statistics in these tests showed the information
of activity was concentrated in signal regions on three
x, y or z axes and had a range of greater than 0.5m/s2.
Therefore, we determined the activity state was static
or dynamic on each signal segment of size 1 second
(time windows). After reducing the activity data in the
static state, the descriptive information of the actions
was more concentrated (Fig 7) than before processing.

Besides, non-normal values would be replaced
by interpolated values, which were determined by
averaging the adjacent signal magnitudes before and
after those values. The above process was applied
similarly to the remaining activities.
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Fig 7. Rising after pre-processing.

The public dataset contained the data for activities
that follow the same process: state-dynamic-static but
including repetitive and non-repeating activities. For
example, lying down (lie-down) was a non-repetitive
activity, volunteers had to rise and then did it again,
similar to activities like sit-down, rising, tripover,
and squatting. In contrast, activities such as walking,
jogging, and limp could be performed continuously.
Therefore, in order to improve the classification
performance, we classified three activities in a static
state, including sitting, standing, and lying. The data
for these activities was the data areas separated from
the data processing of non-repeating activities. For
example, the descriptive data for two activities sitting
and lying were the data areas in the static state
before and after the lie-down activity was performed.
Similarly, the data of standing was the signal area
before the sit-down activity took place. However, the
timing of the activities was not exactly the same. For
example, the squatting activity had a duration of up
to 5 seconds, while the transitions such as lie-down,
rising, and sit-down had a duration of 3 seconds. Unlike
them, activities that take place when a person moves,
such as jogging, walking, tripover, and limp only need
2 seconds to be classified. Therefore, we proposed using
different sized windows for each activity in order to
provide better activity information. 13 activities were
presented in Tab 1.

Private dataset. The private dataset was built based on
a group of volunteers wearing waist data collection
devices (Fig 8) and performing the following activities:
walking, jogging, squatting, bending, bend-p, limp,
tripover, sit-down, lie-down, rising, lying, standing, and
sitting. This group consisted of 20 students, including
12 males and 8 females. The recorded data had the
following format: activity, timestamp, sensor, values of
x, y, and z, frequency. Activity logger files with a type
of TXT were named with the activity and the time

Tab 1. Description activities.

Activity Description
Duration
time(s)

Walking
Walking normally, moving slowly,
walking forward and backward.

2

Jogging Jogging and running. 2
Squatting Squatting down then standing up. 5
Bending Bending about 90 degrees. 1

Bendp
Bending to pick up an object on
the floor

4

Limp Walking with a limp. 2

Tripover
Tripping or stumbling but then
stand up and walking normally

2

Sit-down
Certain acceleration onto a chair, a
sofa, air or bed.

3

Lie-down Sitting to lying on the bed. 3
Rising From lying to sitting 4

Lying
Lying horizontally, can turn
around horizontally.

1

Standing
Stand up and standing straight,
coughing or sneezing while stand-
ing.

1

Sitting
Sitting motionless, back against
the chair and body slightly tilted
back.

1

Fig 8. The wearable device (red) was attached to the waist and
secured by an elasticated strap. The x-axis of the accelerometer
was parallel to the earth’s gravity.

when it started to create the file. When performing data
collection, activities such as sit-down, lie-down, bendp,
squatting, and rising were performed as an unwritten
rule: nothing before starting in the short time, doing
activity, nothing after finishing. For example, rising
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included lying-rising-standing; lie-down included from
sitting-lying down to bed-lying.

The process of data collection activities was applied
at a different collection time. We set the survey time to 3
seconds for non-repetitive activities (squatting, bendp,
tripover, lie-down, sit-down, rising). Each activity took
place for a period of 3 seconds and was repeated in
subsequent discrete intervals. This would help our data
be centralised and avoid loss when activity data is
divided into time windows. The remaining activities,
such as bending, limp, sitting, standing, lying, walking,
jogging were surveyed at continuous intervals (30
seconds to 50 seconds). Collected data would be
segmented into 3 seconds fixed size windows because
this dataset has been sampled for limited periods of
time.

4.2. Data transformation
Data segmentation was one of the stages of the

receiving process. This phase allowed us to understand
the impact of signals by dividing activity data after
preprocessing. The data window had two approaches,
including dynamic and static windows.

Static window size. With this windowing approach,
the data of activities were segmented into equally
sized data windows as shown in Fig 9. The size of
windows was an important parameter for gathering
a lot of information in this approach. As the size
of the window changed, the amount of information
changed accordingly. If the window size was too large,
the processor would take too long to process the
information, and there was a chance that information
from other activities might appear. In addition,
choosing a window with a short size caught information
loss or misinformation with transitions occurring in a
short time. Therefore, this approach was suitable for the
classification of activities in a stationary state (sitting,
standing, lying, bending) and repetitive activities for a
long time (jogging, walking, limp).

Datasets used after preprocessing, removing noise,
would be segmented and labelled. The data segmenta-
tion was done on the computer, so the static windowing
method was applied at this stage. However, the size of
the window would depend on how long each activity
takes place. The window size applied to each activity
in the public dataset was shown in Tab 1. For example,
lie-down and sit-down were 3 seconds, squatting was
5 seconds, and rising was 4 seconds. Slightly different
from public data, activity data in private data was
segmented into fixed-sized windows of 3 seconds. The
number of observations after data segmentation was
presented in Tab 2.

Fig 9. The static window method would divide an activity’s data
into sliding windows of the same size over time.

Tab 2. Statistics of data windows for each activity on the dataset.

Activity
The number of windows

Public dataset Private dataset
Walking 1010 132
Jogging 321 76

Squatting 82 101
Bending 538 58
Bendp 91 106
Limp 439 121

Tripover 193 138
Sit-down 370 129
Lie-down 125 74

Rising 114 89
Lying 971 115

Standing 882 113
Sitting 1046 118

Dynamic window size. With this approach, the window
size was not constant with activity. In Fig 10, the data
of squatting (squat down then stand up) was split into
different sized windows to detect when this activity
took place. In practice, activities took place at different
time intervals, and applying dynamic windowing was
necessary to improve activity predictability. Therefore,
we applied the dynamic window method to the
proposed model in conducting experiments.

When conducting experiments, we used windows
of size 1 second to determine the static state or
the dynamic state. Static and dynamic windows were
determined by calculating range (H) by formula (9)
and average resultant acceleration (ARA) by formula
(12). Where ARA was the average of the square root
of the sum of the squares of the signal strength
on three axes. Research in [39] collected breathing
data when a person was in a stationary state. This
state was determined by X. Sun by calculating the
average resultant acceleration for the 3-axis acceleration
measured on the smartwatch. Accordingly, when a
person was not moving, the calculation results were
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Fig 10. Data correlation window.

Fig 11. After analyzing every second of data for signal changes,
the algorithm identified dynamic windows after 1–3 seconds.

approximately 10m/s2. Therefore, a time window was
defined as a static state if two conditions were satisfied:
H runs from 0 to 1m/s2 and ARA runs from 9.6 to
10m/s2.

The window size changed from 1-3 seconds had a
great influence on the classification results shown in
the study [40]. Therefore, in this study, we limited the
maximum number of seconds of data to 3 seconds to
identify an activity. This was understood that the data
window size would be automatically changed for each
activity until the next activity is in a static state or
the time between two consecutive activities should not
exceed 3 seconds. This algorithm is depicted in Fig 11.

4.3. Feature engineering
After converting to time windows, the data was

still difficult to apply directly to the machine learning
algorithm and not the entire sample of activity
data needed for the classification process. Therefore,
the data of activities was transformed into a new
dataset consisting of selected features in the time
domain compatible with the classification algorithms.

These features reflected the correlation between the
original data and each activity and helped to improve
the accuracy of the classification model. This work
considered 12 statistical features including: mean
(µ), standard deviation (σ ), median (Med), average
absolute difference (AAD), maximum value (Max),
minimum value (Min), range, root mean square
(RMS), correlation coefficient (Corr), average resultant
acceleration (AAD), correlation between the average of
the original signal series (µstart) and the average of the
final signal series (µstop) over a time window (CAOSS).
These features were extracted in three axes (x, y, z)
based on the respective formulas (3)-(13).

µXj
=

1
NW − 1

NW −1∑
i=0

xi (3)

σXj
=

√√√
1

NW − 1

NW −1∑
i=0

(xi − µXj
)2 (4)

MedXj
= xNW

2

with Xj was sorted (5)

AADXj
=

1
NW − 1

NW −1∑
i=0

|xi − µXj
| (6)

MinXj
= Minimum(x[i]) (7)

MaxXj
= Maximum(x[i]) (8)

RangeXj
= MaxXj

−MinXj
(9)

RMSXj
=

NW −1∑
i=0

|xi |2

NW − 1
(10)

Corr(Xj , Yj ) =

1
NW − 1

NW −1∑
i=0

(xi − µXj
)(yi − µYj )

σXj
σYj

(11)

ARAXj
=

1
NW − 1

√√√NW∑
i=0

(xi
2 + yi

2 + zi
2) (12)

CAOSS = µstop − µstart (13)

In that, Xj was jth data segment j; xi , yi , zi were
ith acceleration values on the 3 x, y, and z axes on
the Xj ; Nw was the number of samples on the window
Xj . Correlation coefficient (Corr(Aj , Bj )) was a function
that calculated correlation between pairs of axes: (x, y),
(y, z) và (x, z). In CAOSS, µstart and µstop were the
average values of signals on each x, y, and z axis into
the first and last second, respectively. The T-distributed
Stochastic Neighbour Embedding (t-SNE) [3, 7, 12] tool
made it simple to see how these features affected the
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Fig 12. Activities might be easily recognized by the use of
features. There was some confusion between the various activities
in the moving state, though.

system (Fig 12). To visualize high-dimensional data,
there was a technique called t-SNE. By converting
similarity between data points into joint probabilities,
it attempted to reduce the Kullback-Leibler divergence
between the joint probabilities of the low-dimensional
embedding and the high-dimensional data. Although
there were up to 13 activities that needed to be
classified, the number of activities that were confused
was minimal. The activities in the moving state were
where the confusion was most prevalent.

A feature vector with 31 dimensions was calculated
from 13 measurements on the x, y, and z axes of
the MPU6050 sensor (acceleration). These features
were extracted from each data segment (time window)
of each activity. Then, the features were merged
and created into a feature vector representing the
corresponding data segment. These feature vectors
would be divided into training and testing sets at the
rate of 75/25.

4.4. Recognition model
Random forest. While most data processing workloads
with machine learning algorithms run in the cloud,
there is another trend towards on-device machine
learning algorithms (on-device-ML). On-device-ML
means deploying machine learning models on embed-
ded devices for direct inference at the real-time data
source. Because the prediction and classification of
activities take place directly, these devices did not

Fig 13. The decision tree would build relationships between
features and activities.

need an external network and ensured that sensitive
data was not revealed on the public internet. Cloud-
based ML requires embedded devices to send data to
the cloud for inference. As a result, the cloud-based
computational model is virtually unlimited, but causes
latency. There is always a delay when transferring data
to and from embedded devices. Embedded systems
are often deployed in locations where connectivity is
limited, so it is not practical to operate ML for human
activity recognition systems as well as the reliability of
data in wireless transmission. Not all machine learning
algorithms could be applied to microcontrollers; they
needed to be miniaturized and optimized to run on
low-power devices without too much loss of accuracy.
Machine learning algorithms of suitable complexity and
size could be embedded on microcontrollers, including
decision tree (DT) and random forest (RF). Decision
tree [41] was an algorithm that could imitate human
thinking. This algorithm was based on the correlation
between data to understand the logic between input
and output data (Fig 13). Each tree node (rhombic)
represented a data feature threshold, each branch rep-
resented a rule, and each leaf (ellipse) represented an
activity or prediction label.

Decision tree models often suffer from the overfitting
problem that leads to false predictions. To fit the
data, it kept creating new nodes, and eventually the
tree became too complex. Hence, it worked greatly
on the training data but started making a lot of
errors on the testing data. These algorithms are often
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Fig 14. Many single decision trees are built that will work with
random data from a dataset. Thus, the results of object prediction
were aggregated based on the majority rule from these trees.

unstable when adding a new layer of data and are
not suitable for large datasets. Thus, it was difficult to
apply to microcontrollers when the number of output
predictions was large. Furthermore, not all of the
chosen features are appropriate for activity. This feature
might be effective for one activity but not for another.

Multiple decision trees were gathered using the
random forest technique to create a more robust model
(Fig 14). This algorithm uses the bootstrap technique
[42] to randomly select data from the dataset (random
sampling with replacement). As a result, each new
dataset might be duplicated, and a new decision tree
would be built on this dataset. The process of building
for each decision tree had a random element, so the
decision trees in the RF algorithm might be different.
The output prediction results that were aggregated
from many independent decision trees will give optimal
results.

Features are involved in and have an impact on
the outcome of activity prediction with RF. In this
research, the recognition model using the random forest
algorithm was built on the training data. The testing
data yielded the best recognition model, which would
then be converted into C/C++ and integrated into the
ESP32.

Human activity recognition using a random forest algorithm
for wearable devices. The feature set obtained after
feature extraction would be randomly divided into a
training set and a test set at a ratio of 75/25. The
recognition model was trained on a labeled training
dataset corresponding to each feature vector. Then, the
classification result based on the test data would help
to evaluate the built model. For the random forest
algorithm, we used the publicly shared sklearn library
to build the model. Besides, we used a parameter
n_estimators to set the number of single decision trees,
and each branch of a decision tree would work with 1
feature. In this work, our parameter set was 50. Fig 15
shows the process of building a classification algorithm
on a wearable device.

To build the best recognition model and achieve high
accuracy, the model was trained on the computer, and
the best model was transformed to be embedded in

Fig 15. Construction diagram of the recognition system.

the ESP32 microcontroller. The computer that had been
used to train the model and operate the algorithm had
the following configuration: Dell G515, 16GB ram, Intel
(R) Core I7-9750H processor, 256GB SSD, 1TB HDD.
The random forest model applied to the ESP32 was
illustrated in Fig 16. Activity 1 or activity 2 represented
1 of 13 daily activities. The final prediction result for
an activity was based on the prediction results of a
majority of individual decision trees. The recognition
model that gave the best results on the test dataset
was compiled into a library named “RF_acc.h”. This
was included in the embedded executable on the ESP32
processor. Accordingly, the ESP32 integrated into the
wearable would read the acceleration signal from
the MPU6050. After collecting enough data samples,
ESP32 would extract a vector of 31 features from
each window and perform classification based on this
feature vector. This process was performed every 1
second, corresponding to 20 data samples. If 1 second
windows were static, the system would classify the
activity immediately and continue to classify every 1
second, followed by the same rule. Conversely, if the
current window was in a dynamic state, the processor
would save 1 second of previous data and continue to
consider data windows in the next 1 data second. The
human activity recognition system would result when a
data window size reaches a maximum interval of 3s or
a next 1 second window in a static state. Thanks to the
soft change of the data sample size (dynamic window
size), activities were detected faster with less delay. At
the same time, our system could understand the start
time and end time of a forward activity (lie-down, sit-
down, rising, bendp, tripover).
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Fig 16. Random forest was implemented on the wearable.

4.5. Evaluation indicators
Confusion matrix.

ACC =
T P + TN

T P + FP + FN + TN
(14)

SEN =
T P

T P + FN
(15)

P P V =
T P

T P + FP
(16)

NPV =
TN

TN + FN
(17)

The recognition models in this study were evaluated
based on the following indicators: accuracy (ACC),
sensitivity (SEN ), negative predictive value (NPV ),
and positive predictive value (P P V ). These indexes
were calculated based on the parameters including true
positive (T P ), true negative (TN ), false positive (FP ),
and false negative (FN ) according to the corresponding
formula (14)-(17).

Considering an activity of sitting, T P was the
number of these activities that were correctly classified
as compared to the actual label, FN was the
number of these activities that were misclassified,
FP was the number of other activities that were
mistakenly classified as sitting, and TN was the number
of activities other than sitting that were correctly
classified. A specific example of the definition of
parameters T P , TN , FP , and FN is presented in Tab 3.
In this example, Sitting has T P = 100, FN = 3, FP = 7,
and TN = 120; Standing has T P = 50, FN = 6, FP = 2,
and TN = 170.

Tab 3. Example about evaluation parameters with sitting,
standing, and bending.

Human activity
Sitting Standing Bending

Predicted
Sitting 100 2 1

Standing 4 50 2
Bending 3 0 70

Cross validation. The input data must be large to achieve
a good type of recognition model. However, this was
unlikely because it could not determine how much data
was needed. The K-fold cross validation was applied
to provide a lot of data to train the client to validate
the model with multiple tests simultaneously. This
method would apply to proposed models and other
machine learning models such as decision tree (DT),
support vector machine (SVM), K nearest neighbours
(KNN), gradient boosted decision tree (GBDT). With
this method, the data was divided into k equal parts.
In which, training data was used (k − 1) parts, the rest
was testing data. The model output was evaluated based
on the results, including the mean (µ) and standard
deviation (σ ) of k times of data divisions. This research
applied cross-validation with k = 5 in the evaluation
process.

5. Results
5.1. Model performance
Performance evaluation on the public dataset. The classi-
fication result of the proposed model was presented
in the form of a confusion matrix (Fig 17). The result
of applying the best recognition model on the test
data (public dataset) reached 96.5%. Activities were
properly classified with maximum ratios like bending
(134/134), bendp (22/22), lie-down (31/31), standing
(220/220), sitting (261/261), lying (242/242). Slightly
lower result were the activities of limp (91/109),
tripover (38/47), rising (27/28), sit-down (88/91), walk-
ing (244/252), jogging (77/80), and the lowest was
squatting (13/20).

Activities were misclassified often due to too fast or
too long execution time or similarity to other activities.
For example, when a person was walking on crutches
with an injured leg, the movement speed was so slow
that it could be mistaken for standing. Squatting was
a combination of sitting down, sitting, standing up,
and standing for a period of time. This usually occurs
when a person exercises (gym). However, if this took
a long time, squatting could be mistaken for sit-down.
With the public dataset, sit-down activity (6/20) was
mistaken for squatting. In addition, the activities of
limp and walking were confused with each other due
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Tab 4. Evaluation of applying the RF algorithm on the public
dataset.

Activity ACC(%) SPE(%) PPV(%) NPV(%)
Walking 98.1 96.8 92.1 99.4
Jogging 99.4 96.2 92.8 99.8

Squatting 99.5 65 100 99.5
Bending 100 100 100 100
Bendp 100 100 100 100
Limp 98.2 83.5 90.1 98.7

Tripover 99.1 80.9 90.5 99.4
Sit-down 99.4 96.7 93.6 99.8
Lie-down 100 100 100 100

Rising 99.9 96.4 100 99.9
Standing 99.9 100 99.1 100
Sitting 100 100 100 100
Lying 100 100 100 100
All 99.5 93.5 96.8 99.7

to the similarity in posture or in people with minor
injuries in the leg, less hindering movement. Some other
activities were mistakenly classified as walking, but
the number of these activities was insignificant. For
example, 2/80 jogging, 3/47 tripover, 1/91 sit-down,
and 1/28 rising were mistaken for walking.

Details of the performance evaluation of the
proposed recognition model on the public data set
are described in Tab 4. The two indexes, ACC and
NPV , of all activities, were 98%. In particular, activities
such as sitting, bending, bendp, lie-down had the
indexes of ACC, SP E, P P V , and NPV were 100%.
This was followed by the figure for squatting, limp
and tripover activities, with ACC, P P V , and NPV over
90%. However, the difference lies in the SP E index.
The activities of limp and tripover had a SP E index
of over 80%, while squatting was only 65%. This was
consistent with our analysis of how long these activities
take. Overall, the proposed model had the indexes of
ACC, SP E, P P V , and NPV indexes over 93%, which
was good.

The result of the classification of activities when
applying 5-folds cross validation on the public dataset
was good (Tab 5). The proposed model had the best
result, stood at µ = 96%. This was greater than the
results for algorithms of GBDT, KNN and SVM, making
up 95.3%, 94.9%, and 94.2%, respectively. Yet, the
result for DT was the lowest, standing at 92.6%. Besides,
the recognition model using GBDT algorithm gives the
lowest standard deviation σ = 0.4%. The classification
results had a low standard deviation of 0.4%-0.7%. This
showed that the data from activities was less scattered
and had high reliability.

Tab 5. Evaluation of recognition models with 5-fold cross-
validation.

RF
(%)

DT
(%)

GBDT
(%)

SVM
(%)

KNN
(%)

Public
dataset

µ 96.0 92.6 95.3 94.2 94.9
σ 0.5 0.7 0.4 0.6 0.6

Private
dataset

µ 99.1 97.0 98.0 98.4 97.4
σ 0.6 0.8 0.8 0.5 0.8

Fig 17. Classification result for RF algorithm on public data.

Fig 18. Classification result for RF algorithm on the private
dataset.
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Tab 6. Result of applying the RF on the private dataset.

Activity ACC(%) SPE(%) PPV(%) NPV(%)
Walking 100 100 100 100
Jogging 100 100 100 100

Squatting 99.7 96.0 100 99.7
Bending 100 100 100 100
Bendp 100 100 100 100
Limp 100 100 100 100

Tripover 100 100 100 100
Sit-down 100 100 100 100
Lie-down 100 100 100 100

Rising 100 100 100 100
Standing 100 100 100 100
Sitting 100 100 100 100
Lying 99.7 100 96.6 100
All 100 99.7 99.7 100

Performance evaluation on the private dataset. The private
dataset gave a result of 99.7%. True to our previous
analysis, the limited time (3 seconds) method of
collecting activity data has helped our data to be highly
reliable. The negative impacts on classification results
were minimised. These negative impacts were caused
for three reasons: 1) One other activity interfered
when an activity took place over a long period of
time; 2) The time difference of an activity with each
volunteer; 3) The data sampling process had not been
well controlled leading to excess or lack of activity
data. These catches especially affect transitions such as:
rising, lie-down, sit-down, tripover, bending pick up
(bendp), squatting. If the timing of these activities could
not be unknown, the data describing them threatened to
degrade the performance of recognition models. Fig 18
shows most of the actions distinguished with a 100%
accuracy rate, except for squatting (24/25). However,
the classification results obtained were impressive. The
problems encountered when classifying on the public
dataset had almost been solved.

The classification results on the private dataset
showed the strong performance of the proposed model.
The evaluation indexes of ACC, SP E, P P V , and NPV
all reached over 96% (Tab 6). Except for squatting and
lying, all activities had indicators reaching 100%. This
was greater than the result for squatting with ACC =
99.7%, SP E = 96%, P P V = 100%, NPV = 99.7%, and
lying with ACC = 99.7%, SP E = 100%, P P V = 96.6%,
NPV = 100%. However, the results of the recognition
model evaluation on this dataset was impressive with
ACC = 100% and NPV = 100%.

The results when applying 5-folds cross validation
on this dataset were also gradually different when
they were applied on the public dataset. The proposed
model got the best results with 99.1%, but the standard

Tab 7. Evaluation of experimental result.

Activity ACC(%) SPE(%) PPV(%) NPV(%)
Walking 98.8 98.4 89.6 99.8
Jogging 99.3 95.1 96.7 99.5

Squatting 99.4 93.4 100 99.4
Bending 99.6 100 94.3 100
Bendp 99.3 93.0 98.1 99.4
Limp 99.4 96.6 96.6 99.7

Tripover 99.0 90.6 96.0 99.2
Sit-down 99.8 100 98.0 100
Lie-down 99.7 96.2 100 99.7

Rising 99.9 100 97.9 100
Standing 99.3 94.5 96.3 99.5
Sitting 99.1 96.5 93.2 99.7
Lying 99.6 100 94.4 100
All 99.4 96.5 96.2 99.7

deviation increased to 0.6%. Other recognition models
such as GBDT, SVM, KNN, and DT give results of
98%, 98.4%, 97.4%, and 97%, respectively. Similar to
the proposed model, the recognition models applying
algorithms such as DT, GBDT, and KNN had their
standard deviation increase by 0.8%. Unlike that, the
model applying the SVM algorithm had the standard
deviation reduced to 0.5%. However, the resulting
difference from 0.5%-0.8% was not significant. Overall,
the results of the proposed model evaluation on both
datasets were good.

5.2. Experimental evaluation

The experimental process was conducted on volun-
teers for a period of 30 seconds to 60 seconds, and
the sampling frequency was 20Hz. Volunteers wore
wearables suggested and performed all 13 activities
according to a predefined scenario. Transitions such as
sit-down, lie-down, rising, tripover, and bendp were
limited to a maximum execution time of 3 seconds.
The remaining activities took place in 10-15 seconds.
A portion of the experimental procedure for finding
mixed activity sequences was shown in Fig 19. Since
we concentrated on recognizing when activities were
started in a dynamic state, activities could be discrim-
inated against more quickly. When tested with the
real sequence of activities, the device was still able to
detect the activity with high accuracy even though the
sampling method for the activities was uniform and no
additional activities were present.

Overall, the proposed model reached 96.1%. The
results of classification versus actual observation were
presented as a confusion matrix as shown in Fig
20. Besides, transition activities were mistaken for
each other when the speed of them was so slow. For
example, 2/52 lie-down was mistaken for lying, and
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1/49 rising was mistaken for lying or sitting. This
was similar to squatting, where 1/61 squatting was
mistaken for rising or lie-down. However, the rate
of occurrence of these errors was not significant. In
general, the proposed model gave good classification
results. The experimental result helped to evaluate the
proposed model’s performance when the input was
real-time data (Tab 7). The classification accuracy with
activities (ACC) and the correct prediction rate of non-
occurrence actions (NPV ) were both above 99%. The
lowest correct prediction rate for actions (P P V ) was
89.6% for walking activity, while this reached 100% for
squatting and lie-down activities. A sensitivity (SP E) of
over 90% showed that it was feasible to apply dynamic
windowing methods to detect activities, especially with
state transition activities. For example, bendp and lie-
down activities had corresponding sensitivity indexes
of SP E = 93% and SP E = 96.2%. Mover, rising and sit-
down activities were both SP E = 100%. In general, the
proposed model had good evaluation indicators with
ACC = 99.4%, SP E = 96.5%, P P V = 96.2%, NPV =
99.7% in reality. These overall evaluation indicators
had a negligible difference with those calculated when
evaluating our model on public and private datasets.
In addition, the proposed model, when conducting
experiments, has achieved relatively uniform indexes of
over 90%.

The classification performance of our model has
significantly improved between the public dataset and
real-time data. For example, squatting and tripover
increased from 65% and 80.9% to 93.4% and 90.6%,
respectively. This result was possible thanks to the
sampling process having been improved to increase
the quality of the activities and applying the dynamic
window method to understand the activity process.

6. Discussion
This work attempted to develop a recognition model

for a real-time application that would recognize human
activity. The dynamic window technique was merged
and optimized with the applicable algorithm (random
forest). As a result, the human activity recognition
system is much more accurate. The result showed that
the ability to classify real-time activities on wearables
was good at 96.1%, although it was slightly lower than
the evaluation results on public and private data. The
first reason was the dispersion among feature vectors
in real-time data. Meanwhile, with public and private
datasets, activities were closely monitored and feature
quality was enhanced. Additionally, because activities
occur in sequential order in daily life, the acquired
data may be more homogeneous than real-time data. In
reality, training and testing datasets derived from real-
world scenarios may differ significantly. The existence
of so many emergent scenarios made it hard to gather an

exhaustive set of training data from all types of activity.
As a result, the samples of test data would be different
from those of training data.

The recognition model was unable to perform well
if the training dataset was insufficient. Therefore,
we tried to collect activity data for a limited time
and surveyed many volunteers. In addition, it was
a significant task to classify 13 activities. Previous
studies investigated some repetitive activities such
as sitting, lying, standing, walking, walking upstairs
and walking downstairs as in [43]; walking, jogging,
upstairs, downstairs, sitting, standing in [20, 44]. With
these activities, the application of static windows gave
good results [41, 45, 46]. However, with state transition
activities, the static window had a major drawback: it
was not able to determine the activity time because the
time of these activities was not the same.

Many related works in the field of HAR have been
interested in real-time classification capabilities and the
application of different classification algorithms (Tab 8).

Thu et al. [12] applied 2 features (mean and standard
deviation) to a 3-axis accelerometer on each time
window of size 6 seconds and combined it with
a decision tree algorithm. The result when applied
experimentally was 92%, and the accuracy was 95.2%.
Their device classified 6 activities, including sitting,
standing, lying, walking, and jogging, in real-time.
A three-level decision tree algorithm (DT) was built
as a recognition model suitable for low-performance
microcontrollers, but the classified activities were
repetitive activities over time and they had low
complexity. Besides, the time of 6 seconds for
each classifier applied was too long, leading to a
large delay if changing activities. As the number
of activities increased and more complex ones were
added, it was difficult for their model to achieve
high accuracy because of memory limitations and
usage features. Similar to Yang’s study [35], the stm32
microcontroller was used in his study to embed a real-
time recognition model using decision tree algorithm
(C4.5). In their study, they used up to 16 features
from 6 measures, including mean, magnitude of the
acceleration of the three axes, variance, cumulative,
skewness, and coefficients. The classification accuracy
for five activities, including sitting, walking, jumping,
jogging, and cycling, was 90% on average. This
established that the DT algorithm could not provide
perfect accuracy, as their idea was that data acquired
from several people would be trained and analyzed
jointly. Consequently, it is possible that their algorithm
is not optimal for the individual.

Embedding on a recognition model on low-
performance microcontrollers required optimization of
machine learning algorithms, the number of features
and time window size, so the results were not good
[12, 35]. In particular, the static window method in
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Fig 19. The actual sequencing of activities in an experiment.

Fig 20. The confusion matrix synthesized the experimental
results with the proposed recognition model embedded in a
wearable device.

those works had shown limitations on the quality
of features as well as limitations on the number of
activities that could be classified.

Another direction of real-time human activity
recognition was presented in the paper [22]. Suto et
al. tested the classification results between offline and
online with 15 features extracted from accelerometer
and gyroscope sensors. A wearable used was a
phone that ran the Android operating system. The
device was attached to the right ankle and was

performed by 3 volunteers (2 men and 1 woman).
The study investigated 3 methods, including artificial
neural networks (ANN), convolutional neural networks
(CNN), and 1NN (similar to KNN). Their results showed
that the ANN model was highly accurate. CNN was not
a good choice for the real-time classification problem
because the training time was too large. Applying a time
window of 3.88 seconds with 50% overlap had achieved
88.8% when performing real-time classification with 7
activities, including sitting, standing, walking, jogging,
running, and lying. The result for accuracy was low
for three activities of jogging (8.1%), cycling (13.5%),
and sitting (16.2%) when the first volunteer performed
the test. This showed data collected from the ankle
position was not the best choice. Results improved
in the next 2 volunteers reaching over 80% with
these actions. However, the recognition model using
the ANN algorithm was difficult to apply to the
real-time classifier directly on the microcontroller
platform because it had a large training time and high
complexity. The usability of this model on phones was
high, but the large phone size would cause discomfort
when placed at the ankle. Besides, the battery power on
the phone was not suitable for applications that would
operate continuously for a long time.

The application of real-time human activity recog-
nition on wearable devices was a problem with many
challenges in terms of microcontroller memory usage,
algorithm complexity, sampling rate, and time to sur-
vey an activity. We have used up to 31 features in
the time domain and used a highly complex random
forest algorithm to solve the classification problem of
13 routine actions. The results achieved 96.1% with
99.4% accuracy, showing high applicability in practice.
In addition, our model was aimed at complex problems
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Tab 8. Compare several related studies.

Comparison Accuracy
(%)

Result
(%)

Model) Features

Thu [12] 95.2 92 DT 6
Yang [35] 90.1 90.0 DT 16
Suto [22] - 88.8 ANN 15

Ours 99.4 96.1 RF 31

such as analyzing the movements and activities of many
different subjects, such as firefighters, searchers and
rescuers, and newcomers recovering from accidents.
The state of activity was closely related to their health
status. Especially for firefighters, their environment
often has influencing factors such as smoke, fire, and
high temperatures. Activities are often intense and
constantly changing. Monitoring the activities of fire-
fighters will help the commander to provide flexible
and timely support. In addition, the fire environment
is often unpredictable, so wearable-based monitoring is
a viable option.

7. Conclusion
This work presented a real-time activity recognition

system integrated onto wearable devices. The dynamic
window method and the random forest algorithm
were combined to create the system using a novel
methodology. We created a private dataset comprising
13 activities in addition to the public dataset, including
walking, jogging, squatting, bending, bendp, limp,
tripover, sit-down, lie-down, rising, standing, and
sitting. With the assistance of volunteers, this data
was gathered via the ESP32 integrated wearable and
the MPU6050 sensor (accelerometer). The suggested
recognition model was evaluated on these two datasets
using both the confusion matrix and 5-fold cross-
validation.

The recognition model building process consists of
two steps: First, we extracted feature vectors with
31 dimensions per time window of changed size.
These vectors were labeled and combined with the
random forest algorithm to build a recognition model
for 13 activities. Next, this model was embedded
on the ESP32 (a high-speed microcontroller) and
was tested with real-time data. Experimental results
showed that the features were highly correlated
with the activities to be classified by applying the
dynamic window method. Static activities (sitting,
standing, bending, lying) were quickly detectable after
just 1 second of data collection. Transition activities
(rising, sit-down, lie-down, squatting, tripover) were
classified with over 99% accuracy. The classification
results with real-time data reached 96.1%, and
the accuracy of 99.4% showed that the proposed

model had high performance. Research results were
shared at “https://github.com/daohieuictu/HAR-realtime-
random-forest”. To increase the recognition model’s
accuracy, we will combine different algorithms when
developing it in the future. Besides, we tend to
study the support system for firefighters with complex
behaviors (rolling, crawling) and survival states (falling,
unconscious).
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