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Abstract

In its broadest sense, the term artificial intelligence indicates the ability of an artifact to perform the same
types of functions that characterize human thought. The goal of AI is to use algorithms, heuristics and
methodologies based on the ways in which the human brain solves problems. Artificial neural networks
recreate the structure of the human brain imitating the learning process. The Artificial neural networks
theory has provided an alternative to classical computing for those problems in which traditional methods
have delivered results that are not very convincing or not very convenient such as in the case of the
neutron spectrometry and dosimetry problem for radiation protection purposes, using the Bonner spheres
spectrometer as measurement system, mainly because many problems are encountered when trying to
determine the neutron energy spectrum of a measured data. The most delicate part of the spectrometry
based on this system is the unfolding process, for which several neutron spectrum unfolding codes have
being developed. However, these codes require an initial guess spectrum in order to initiate the unfolding
process. Their poor availability and their not easy management for the end user are other associated problems.
Artificial Intelligence technology, is an alternative technique that is gaining popularity among researchers
in neutron spectrometry research area, since it offers better results compared with the traditional solution
methods. In this work, "Synapse", a neutron spectrum unfolding code based on Generalized Regression
Artificial Neural Networks technology is presented. The Synapse code is capable to unfold the neutron
spectrum and to calculate 15 dosimetric quantities using the count rates, coming from a BSS as the only
entrance information. The results obtained show that the Synapse code, based on GRANN technology, is
a promising and innovative technological alternative for solving the neutron spectrometry and dosimetry
problems.
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1. Introduction
1.1. Artificial intelligence and neural networks
Learning and intelligence are intimately related to
each other [1]. Learning is an inherent feature of
human being and intelligence could be defined by its
intrinsic properties such as the ability to deal with new
situations, to solve problems, to answer questions, to
create plans, etc., [2].

Machines were constructed in order to provide a
means for humans to operate and achieve certain tasks,
or to replace the human effort in its entirety [3].

The principles of learning can be applied to machines
to improve their performance, and is one of the
newest fields in research, innovation and technological
development known as Artificial Intelligence (AI)
[4, 5], which is part of the new information and
communication technologies of the fourth industrial
revolution known as Industry 4.0.

AI seeks to understand intelligent entities and must
be able to store knowledge, to apply the stored
knowledge in problem solving and to acquire new
knowledge through experience [1].

The goal of AI is to use algorithms, heuristics and
methodologies based on the ways in which the human
brain solves problems [2, 3].

In the last decades, several technological trends have
been created for the development of systems based
on AI such as Expert Systems (ES) [6], Fuzzy Logic
(FL) [7], Genetic Algorithms (GA) [8], Artificial Neural
Networks (ANNs) [9], among others.

Recently, ANN are receiving more attention as
a connectionist approach for building intelligent
machines with structured models [9].

The central connectionist principle is that mental
phenomena can be described by interconnected net-
works of simple and uniform units [10].

Units are to a connectionist model what neurons
are to a biological neural network. It is important
to mention that most of connectionist models are
computer simulations executed on digital computers
[11].

The learning ability of a neural network is achieved
through applying a learning or training algorithm [12].
Training algorithms are mainly classified into three
groups: supervised, unsupervised and reinforcement
learning.

Multi-layer perceptron (MLP) trained with back-
propagation (BP) algorithm is the most used ANN in
modeling, optimization classification and prediction
processes [9–12].
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The ANNs theory has provided an alternative to
classical computing for those problems in which
traditional methods have delivered results that are not
very convincing or not very convenient.

The most successful applications of ANNs are: image
and voice processing, pattern recognition, planning,
adaptive interfaces for man/machine systems, predic-
tion, control and optimization, signal filtering [12–20].

Neutron spectrometry and dosimetry for radiation
protection purposes, using the Bonner Spheres Spec-
trometer (BSS) as the measurement system, is other
research area if interest [21, 22].

1.2. Neutron spectrometry with artificial neural
networks
Neutrons are produced by different ways and can be
found in nature or produced artificially [23]. In general,
neutrons are more difficult to detect than gamma rays
because of their weak interaction with matter and their
large dynamic range in energy, extending from few
thousandths of eV to several hundreds of MeV [24].

Also, they are in a broad variety of energy
distributions, named neutron-fluence spectrum or
simply neutron spectrum [25].

Because neutrons have mass but no electrical charge,
they cannot directly produce ionization in a detector,
and therefore, cannot be directly detected [26]. This
means that neutron detectors must rely upon a
conversion process where an incident neutron interacts
with a nucleus to produce a secondary charged particle
[26, 27]. These charged particles are then directly
detected, and from them, the presence of neutrons is
deduced [26–30].

Spectral information must generally be obtained
from passive detectors which respond to different
ranges of neutron energies such as the multi spheres
Bonner system or Bonner spheres system (BSS) [31],
which has been used to unfold the neutron spectrum
because it has an almost isotropic response, can cover
the energy range from thermal to GeV neutrons, and
is easy to operate [32]. However, the weight, time
consuming procedure, the need to use an unfolding
procedure and the low resolution spectrum are some of
the BSS drawbacks [33–35].

The measurement of the energy distribution of
the intensity of a neutron radiation field is very
important for radiation protection purposes, however,
the derivation of the spectral information is not simple
mainly because the unknown neutron spectrum is not
given directly as a result of the measurements [33–35].

If a sphere d has a response function Rd(E), and is
exposed in a neutron field with spectral fluence θE(E),
the sphere reading Md is obtained by folding Rd(E)
with θE(E), this means to solve the Fredholm integral
equation of the first kind shown in equation 1, [37].
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Md =
∫
Rd(E)θE(E)dE (1)

This folding process takes place in the sphere itself
during the measurement. Although the real θE(E) and
Rd(E) are continuous functions of neutron energy, they
cannot be described by analytical functions, and, as a
consequence, a discretised numerical form is used as is
showed in equation 2:

Cj =
∑

Ri,jθi − −− > j = 1, 2, 3, ..., m (2)

where Cj is jth detector’s count rate; Ri , j is the
jth detector’s response to neutrons at the ith energy
interval; θi is the neutron fluence within the ith energy
interval and m is the number of spheres utilized.

Once the neutron spectrum, θE(E), has been
obtained, the dose ∆, can be calculated using the
fluence-to-dose conversion coefficients δθE, as shown in
equation 3, [23–27].

∆ =
∫
δθEθE(E)dE (3)

The dose is also important mainly due it is the
variation of the intensity of neutron radiation as a
function of angle of incidence on a body situated in the
radiation field, however, the determination of neutron
dose in nuclear facilities, generally requires to know the
neutron energy spectrum incident on the body [23–30].

Equations 1 through 3 are ill-conditioned equations
system with an infinite number of solutions which
have motivated researches to propose new and
complementary approaches [38–42].

To unfold the neutron spectrum, θ, several methods
have been used and during the last years, attempts have
been made to develop new neutron spectrum unfolding
codes, however, some drawbacks of these codes are:
require an "initial spectrum", i.e., the spectrum that
results from the unfolding process depends on how
similar the initial spectrum is of the spectrum that is
being sough, the management is not easy for the end
user and their poor availability.

One more drawback is the computation of the
neutron detectors response matrices, which is not
a trivial task, since each value of the response
matrix must be calculated individually using Monte
Carlo simulations. The calculation of these values
is also affected by multiple factors, which generate
considerable error values.

At the time of writing this research work, only
the information published by the International Atomic
Energy Agency (IAEA) [67], is available in the form of
a compendium of neutron spectra. This is a collection
of a set of neutron spectra calculated in very different
experimental places and conditions that would be very
difficult to build by ourselves.

The compendium contains a large collection of
detector responses and neutron spectrum such as
neutron spectrum of isotopic neutron sources, nuclear
reactors, accelerators for medical use, reactors for
research in physics, cosmic rays, etc.

Also contains the BSS response of neutron detectors
based on 6LiI(Eu) and 3He, as well as the fluence to
dose conversion coefficients for 15 dosimetric quantities
and several survey instrument meters which, as before
mentioned, calculating each value is very complex.

Among researchers, AI technology has been proposed
as an alternative approach for solving the drawbacks
associated to the neutron spectrum unfolding problem
and is gaining popularity since it offers better results
compared with the traditional solution methods [43–
47].

In neutron spectrometry, the theory of ANN has
offered a promising alternative to the classic cal-
culations made with traditional approaches. Previ-
ous researches indicate that Feed Forward Back-
propagation Neural Networks (FFBPNN) perform well
and this kind of network has been the most popular
approach used in this research area [48–54].

In preliminary works, FFBPNN were used to solve
the neutron spectrum unfolding problem. Although
the results have been encouraging, the more serious
drawback of FFBPNN is the learning and architectural
parameter optimization as well as the large amount of
time inverted just to determine these parameters [48–
54].

Despite FFBPNN are very flexible, their process is
highly parallel and can be used to solve diverse prob-
lems [55, 56], the structural and learning parameters of
the network must be set before any training can begin
and there are no clear rules how to set them although
the optimal selection of these parameters, determine
the success of the training.

The estimation of the structural and learning
parameters are often determined using the trial-and-
error technique, that produces networks with poor
performance and generalization capabilities, which
affect its application in real problems.

Another drawbacks of FFBPNN are: the training
can require a substantial amount of time to gradually
approach good values of the weights.

The size of the training data has to be very large and
often it is almost impossible to provide enough training
samples as in the case of the neutron spectrometry
problem.

Adding new information requires retraining the
network and this is computationally very expensive
[57, 58].

Due to the aforementioned problems, alternatives
were sought to solve the associated drawbacks of
FFBPNN. An alternative was to use Generalized
Regression Artificial Neural Networks (GRANN), which
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falls into the category of Probabilistic Neural Networks
(PNN) a subclass of Statistical Neural Networks (SNN)
[59–61].

GRANNs have been successfully applied in other
optimization and classification problems. Due to the
intrinsic nature of this kind of network, is capable to
solve the parameter optimization problems of FFBPNN
architectures, since only one parameter is required to be
optimized.

The learning of FFBPNN can be described as trial and
error while GRANN use a statistical approach in their
prediction algorithm, which is capable of working with
only few training samples. Unlike FFBPNN, GRANN
use a statistical approach in their prediction algorithm
which is based on the Bayes strategy for pattern
recognition [59–61]. In this sense, the experience is
learned not by trial but by experience others made for
the neural network.

Opposite to FFBPNN, GRANN are very flexible and
new information can be added immediately with almost
no retraining. The biggest advantage is the fact that the
probabilistic approach of GRANN works with one-step-
only learning and uses a single common radial basis
function kernel bandwidth, σ , that is tuned to achieve
an optimal ANN learning [59–61].

In addition to the above mentioned, the time required
for training GRANNs, is significantly reduced from
hours to milliseconds, compared to the FFBPNNs
training process, since only one iteration is required to
train GRANNs.

In preliminary works, FFBPNN and GRANN were
trained and tested and the performance of both
architectures was compared in the solution of the
neutron spectrun unfolding problem. The results
obtained showed that GRANNs solve the parameter
optimization problems of FFBPNN, have a better
performance and solve the neutron spectrum unfolding
problem with greater efficiency.

However, scientific and technological tools have
not been developed that allow applying this type of
technology with efficiency in real experimental places
[64, 65].

In consequence, scientific computational tools are
needed in order to train, to test, to analyze, and to
validate GRANN technology in this research domain
and to use it in real experimental places.

In collaboration agreement with the OMADS com-
pany, an enterprise dedicated to the research, innova-
tion and technological development [66], the aim of this
research work was to study, to analyze, to design and
to implement Synapse, a neutron spectrum unfolding
code based on GRANN technology, which is capable
to unfold the neutron spectrum and to calculate 15
different dosimetric quantities using the count rates,
coming from a BSS, as the only entrance information.

The code solves the neutron spectrometry and
dosimetry problems with high performance and
generalization capacity. The results obtained show that
the Synapse code is a promising alternative which
can be used for solving the neutron spectromtery
and dosimetry problems and can be applied in real
experimental places.

2. Materials and methods

2.1. Generalized regression artificial neural networks
GRANN is a type of supervised Feed Forward Neural
Network (FFNN) introduced by Donald F. Specht in
1991 [62]. Opposite to FFBPNN, where data may be
propagated forward and backward many times until
an acceptable error is found, the training of GRANN
is very fast because the training data set propagates
forward only once [59–63].

The structure of the calculations for the probabilistic
density function in GRANN has striking similarities
to FFBPNN, however, inside the neurons, GRANN use
functions based on knowledge resulting from the Bayes
strategy for pattern classification. The strength of a
GRANN lies in the function that is used inside the
neuron. The regression performed by GRANN is given
by eq. 4:

E[Y /x] =
∫ ∞
∞
Y .f (Y /x)dy =

∫∞
∞ Y .f (x, Y )dy∫∞
∞ (x, Y )dy

(4)

For a non-parametric estimate of f (x, y), one
consistent estimator is the Gaussian function which is
a good choice for estimating the probability density
function, f . The probability estimator f̂ (x, y) is based
on sample values xi and yi of the random variables X
and Y given by eq. 5:

f̂ (x, y) =
1

2π(p+1)

2.σ (p+1)

.

.
1
n

n∑
i=1

{
exp

[
−

(X − Xi)T (X − Xi)
2σ2

]
exp

[
(Y − Yi)2

2σ2

]}
(5)

Were p is the dimension of the vector variable; n is
the number of training pairs xi → yi ; σ is the single
learning or smoothing parameter chosen during the
network training; Yi is a desired scalar output given by
the observed input xi .

The topology of GRANN consist of four layers. The
first layer is the input layer that is fully connected with
second layer. The input neurons are distribution units
which provide all the measurement variables X to all
neurons of second layer also known as pattern layer.
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The second layer is the first hidden layer and consists
of N processing elements or nodes, where N is the
number of sample within a training data set and each
node represents the input vector,Xi , associated with the
vector assigned with the jth sample in training data.

In each node, each input vector is subtracted from
the vector assigned to the node Xj . This difference es
then squared by the node and the result is feed into
a nonlinear kernel which is usually an exponential
function. The pattern unit output are passed to
the summation units of third layer which is called
summation layer.

The summation layer is the second hidden layer and
has two nodes. The input to the first node, as shows
eq. 6, is the sum of the pattern layer outputs, each
weighted by the observed output yj corresponding to
Xj. The input of the second node is the summation of
the pattern layer activation.

n∑
i=1

exp

− D2
i

2σ2

 (6)

The fourth layer also known as output layer, receives
the two outputs from the summation layer and divides
them to yield an estimate of Y, the prediction result.

Ŷ (χ) =

∑n
i=1 Yi exp

(
− D

2
i

2σ2

)
∑n
i=1 exp

(
− D

2
i

2σ2

) (7)

Opposite to FFBPNN, in GRANN architecture there
are no learning and architectural parameters to be
determined such as the number of hidden layers,
the training algorithm, learning rate, momentum,
among others. The only one parameter that must be
determined is the smoothing factor, σ , which is applied
after the training stage.

The choice of this parameter is very important
because affects the smoothing of the training samples.
In this sense, small values of σ tend to make each
training point distinct whereas large values force a
greater degree of interpolation between the training
samples [59–63].

In prior works, GRANN were used to solve the
neutron spectrum unfolding problem from the count
rates measured with the BSS.

The results obtained showed that the use of GRANN
to unfold the neutron spectra is a promising alternative
approach, however, one of the main drawbacks was
the lack of scientific and technological tools based on
this emerging technology, capable to be used in real
experimental places with high efficency. For this reason,
in this research work, the synapse code was developed.

2.2. Synapse code development
The Synapse code is composed of three main stages as
showed in Figure 1: The the GRANN methodology, the
neutron spectra unfolding code based on GRANN and
the rates count comming from BSS.

Figure 1. General view of the main stages for implementing the
Synapse code

2.3. Stage one: GRANN methodology
The GRANN methodology is a set of computer
algorithms programmed for training several GRANNs
in order to create the network architecture capable
to solve the neutron spectrometry and dosimetry
problems and for calculating the optimized value of the
smoothing factor, σ , which is used in a final GRANN,
programmed at the second stage, in order to unfold the
neutron spectrum based on the rates count measured
with a BBS in experimental places.

The GRANN methodology is composed by three
stages as illustrated in Figure 2: the pre-processing of
the information of trainig data, the training of several
GRANNs and the determination of the critical value of
the GRANN, the smoothing factor, σ .

Figure 2. Stage one, automatization process of GRANN
methodology

Pre-processing of the training information. Because
GRANN is a kind of FFNN with supervised training,
a data set with both, inputs and outputs, was required
to perform the GRANN training and testing. The data
set was obtained from the IAEA’s neutron spectrum
compendium [67].

The neutron spectrum reported on the IAEA
compendium, are defined in lethargy units, and are
expressed in 60 energy groups, ranging from thermal
neutrons to 630 MeV. As mentioned, the IAEA report
also contains information regarded with 15 dosimetric
quantities and several survey instruments.

The pre processing stage of the GRANN methodol-
ogy, showed in Figure 3, was implemented for build-
ing the input-output data sets used for training the
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GRANNs. The rate counts were used as entrance data
and the neutron spectrum, dosimetric quantities and
instrument survey readings are used as output data.

Figure 3. IAEA’s information extraction procedure and calculation
of GRANN training data set

Each neutron spectrum was converted from lethargy
to energy units using equation 8, and with this
information, the BS rates count were calculated.

φE(E) = φE(u) ∗ ln
(
Esup
Einf

)
(8)

Where φE(u) is the neutron spectrum expressed
in energy lethargy units, Esup is the superior energy
interval and Einf is the inferior energy interval.

As is showed in Figure 3, for calculating the rates
count, the neutron spectrum expressed in energy units,
extracted from the IAEA compilation, were multiplied
with each response matrix (RM).

The RM taken from the IAEA compilation were: the
RM for a 3He neutron detector, calculated by the PTB;
the RM for a 3He neutron detector, calculated by LALN;
and the RM for a 6LiI(Eu) neutron detector, calculated
by GSF.

As can be seen on Figure 3, by multiplying the
neutron spectrum data set with the fluence to dose
and instrument conversion factors, the values of 15
dosimetric quantities and 7 survey instruments were
calculated.

After performing the calculations, the rates count for
each neutron detector, the equivalent doses and the
instruments readings were obtained.

This information was embedded on the Synapse
code, and is used for unfolding the experimental
neutron spectrum, based on the rates count measured
experimentally, using the GRANN technology in which
the code is based.

GRANN training and smoothing factor, σ , determination.
Each time the Synapse code is used for unfolding a

real experimental neutron spectrum, the three general
stages are executed. These stages were automated
designing computer programming routines, under the
Matlab programming environment.

In order to train and test a GRANN capable to solve
the neutron spectrum unfolding problem, a data-set
with 251 neutron spectra, 15 dosimetric quantities and
7 measurement instruments, extracted from the IAEA’s
compilation, were used. 80 % of the whole data-set was
used at GRANN training stage and the remaining 20 %
was used at testing stage.

For calculating the spread value, the programmed
algorithms train and test 2000 GRANN, using the data
set calculated at pre-processing stage, with the aim
to calculate and to choose the optimized value of the
smoothing factor, σ .

Opposite to FFBPNN, GRANNs have a fixed network
architecture and the only one parameter to be
optimized is the smoothing factor. This feature lets to
add new information to the whole database in order to
extend the training examples by retraining the network
for increasing the knowledge.

The feature of retraining GRANNs, lets to experiment
by varying the features of the entrance and output
data, i.e., the measured rates count, and the spectrum,
equivalent doses and survey instruments respectively,
with the aim to reduce the number of BS used at
experimental measurements.

By reducing the number of BS in experimental places,
the time spent making experimental measurements,
and the weight of the whole BSS could be reduced.

To do a retraining using FFBPNNs, is very difficult,
mainly because each new training, requires to optimize
new learning and architectural parameters of the
network, whis is the more serious drawback.

As mentioned, the most important parameter for
training GRANNs, is the optimum selection of the
spread value, σ . A very large spread value could cause
over fit, while a very small value may cause a sub
adjustment of the trained network. Therefore, the value
of the spread constant is a parameter that has to be
selected optimally.

To make a very close adjustment of the data, a spread
value smaller than the typical distance between the
input vectors is used. To adjust more smoothly, a higher
spread value is used.

However, a very large spread value could cause an
over adjustment, while a very small value could cause
a sub adjustment. Therefore, the constant propagation
value can be considered as a regularization parameter
that has to be selected optimally.

In this research work, the cross validation technique
Leave-one-out [68], was automated as a programming
routine on the Synapse code, in order to choose the
optimum value of the spread constant.
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The designed computer programming routine selects
a single observation from the original sample, maintain-
ing it as the data to validate, and uses the remaining
observations as training data. The kernel spread con-
stant is selected in the range of 0 to 2 in steps of 0.01.

For training the GRANNs, 80 % of the whole data set
was used at training stage and the remaining 20 % at
testing stage. The average time to calculate the optimum
value of σ after trainig 2000 GRANNs, is 154 seconds
approximately.

As showed on Figure 4, the sum of the mean square
error (MSE), is calculated at training and testing stages.
After calculating all the testing MSE, the average value
is selected as the kernel spread constant or smoothing
factor σ .

Figure 4. GRANN training and determination of the smoothing
factor

Once each individual neural net is trained using
the calculated training data set, the sum of the MSE
between each spectrum calculated by the network
and the expected one is calculated. As soon as all
the MSEs are calculated, the mean is selected as the
corresponding value for the specific smoothing factor,
σ .

After calculating the optimized spread value, the next
stage involves training a final GRANN, as is showed in
Figure 5. After creating a final network, based on the
2000 GRANNs previously trained, the code is ready to
perform the unfolding of neutron spectrum measured
in experimental environments, using the rates count of
a BSS as the only entrance data.

Figure 5. Final GRANN used to unfold the experimental neutron
spectrum

The training time of the final GRANN is in the order
of milliseconds, with an average value 0.058 seconds,
which compared to the time used for training FFBPNN
is significantly lower.

2.4. Stage two: neutron spectra unfolding code based
on GRANN
Similarly to the stage one, the second stage is a set
of computer algorithms programmed for unfolding
the neutron spectrum based on an optimized GRANN
which uses as the only entrance data, the rates count
measured with a BBS, in real experimental places.

In this stage, as is showed in Figure 6, a final GRANN
is trained, using the smoothing factor calculated at
stage one, for unfolding neutron spectrum by using the
rates count measured in real experimental places with
a BSS as the only entrance data.

Figure 6. Stage two, neutron spectra unfolding code based on
GRANN methodology

It is important to mention that, in addition to
the neutron spectrum, the code was programmed for
calculating 15 dosimetric quantities and/or 7 survey
instruments values.

The Synapse code was fully automated designing
computer programming routines. A Graphical User
Interface (GUI) for the end user was also designed
with the aim to unfold neutron spectrum in real
experimental, work and research places.

2.5. Neutron spectrum unfolding with the Synapse
code
The unfolding of neutron spectrum in real experimen-
tal environments using the Synapse code is done as fol-
lows. Figure 7, shows the main window of the Synapse
code, where can be seen that the only piece of entrance
information, on the part of the end user, are the rates
count measured with a BSS with a neutron detector
based on 3He or 6LiI(Eu).

The first step to operate the Synapse code is
the selection of a working directory, for storing the
calculations made during the unfolding of the neutron
spectrum.

The selection or creation of the working directory is
done by clicking the button labeled as ”Folder”, located
on the upper left corner of the main window (Figure 7).

After clicking on the ”Folder” button, a window like
the shown in Figure 8 will open. This window lets to
select a working folder or, alternatively, create a new
one.

The main window of the Synapse code also has a
text box labeled as "Network Id" that allows assigning
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an identifier to the neutron spectrum unfolding that
is being carried out. This information will be stored
on a text file, to identify the training carried out, for
performing posterior analysis.

Figure 7. Main window of the Synapse unfolding code

Figure 8. Window for selecting the working folder in order to
store the generated information

The code is able to perform the unfolding of neutron
spectrum, from experimental environments, using one
of three RM extracted from the IAEA’s compendium,
which are embedded on the code: 6Li(Eu) − GSF, 3He −
P T B and 3He − LANL.

The main window has a drop-down selection menu,
labeled as ”System”, for selecting the desired RM which
will be used to train the embedded GRANN. According
to the selected RM, a different configuration of Bonner
spheres will be showed as shown on Figure 9.

An important feature of the Synapse code, that
demonstrates the prediction and classification power of
this technological tool, based on GRANNs, is the fact
that the end user does not have to use all the BS shown

in Figure 9. The code has the flexibility to allow to the
end user to make a selection of specific BS.

Figure 9. Drop-down selection menu for selecting different RM

Unlike the classical techniques, based on traditional
numerical methods, GRANNs use statistical methods
to perform the classification and prediction of the
output data in a single iteration, using the information
contained in the training databases.

Because of this, it has been observed that this type
of technology has the ability to classify spectra and
calculate equivalent doses using less information in the
entrance data, that is, fewer Bonner spheres.

At present, experiments are being carried out that
show that this type of technology is capable of
performing the unfolding of the spectrum using less
Bonner spheres as input data.

After selecting the desired BS of the chosen RM, a
text box under the BS labels is generated that allows
to write the readings taken experimentally with the
corresponding BSS, as is showed in Figure 10.

As can be noticed on Figure 10, prior to the
training of the GRANNs, in the right side of the main
window, there is no information about any trained
neural network. After performing the training, a graph
appears on the right side of the main window, as is
showed in Figure 12.

This graph shows the 2000 GRANN trained in order
to choose the smoothing factor that will be used in the
final GRANN.

Once the RM was selected, the appropriate number
of Bonner Spheres was chosen and the experimental
values measured with the BSS were entered, the end
user should click on the drop-down menu labeled as
"Train", shown in Figure 11, which has the possibility
to train GRANNs with the following options: single
spectra, single doses, single instruments, spectra and
doses, spectra and instruments, doses and instruments
and spectra, doses and instruments.

At present, because of difficulty of the programming
procedure, only the options single spectra, single
doses, single instruments and spectra and doses were
programmed on the code.
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Finally, the GRANNs of the Synapse code are ready
to be trained by clicking on the button labeled as
"Process".

After pressing this button, as is showed in Figure
12, the GRANN is trained and the neutron spectra,
equivalent doses or instrument survey, are calculated,
according to the selection made in previous stages.

As mentioned, on the right side of the main window
(Figure 12), a graph appears that shows the smoothing
factors calculated after training the 2000 GRANNs.

Figure 10. Entering the experimental values measured with BSS

As can be seen, the whole process on the part of the
end user, in order to unfold neutron spectrum based
on BSS measurements, is to create a working folder, to
select the RM of the desired neutron detector, to enter
the experimental measured rate counts and to select the
desired GRANN training.

After the GRANN training is done, the code generates
a text file with the information regarded to the training
performed.

2.6. Testing and validation of the Synapse code
The final stage of this research work was to apply the
designed Synapse neutron spectrum unfolding code, in
real experimental environments, with the aim of testing
and validating the results obtained with the trained
GRANN.

In order to validate the results obtained with
the Synapse code in experimental environments, the

Figure 11. Selection window for training a GRANN with several
options

Figure 12. Text boxes for writing the measured experimental rates
count

unfolded spectrum of both, a 239P uBe and a 252Cf
neutron sources were calculated and compared with
the reference neutron sources taken from the IAEA
compendium.
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Following the procedure previously described, the
RM of a 6Li(Eu) − GSF neutron detector was selected
as is showed in Figure 12.

After selecting the RM, the experimental rate
counts measured with a BSS with a 6Li(Eu) neutron
detector, property of the Unidad Académica de
Estudios Nucleares from the Universidad Autónoma de
Zacatecas, México, were introduced to the Synapse code
as is showed in Figure 12.

It is important to mention that this neutron detector
has 7 Bonner spheres with 0, 2, 3, 5, 8, 10 and 12 inches
of diameter. For this reason, only these Bonner spheres
were elected from the RM-GSF.

Finally, the GRANNs were trained, and the neutron
spectrum were calculated by the code.

3. Results
Figures 13 and 14 show the neutron spectrum unfolded
of a 239P uBe and 252Cf neutron sources respectively.

As mentioned, the rates count were measured with
the BSS property of the Unidad Académica de Estudios
Nucleares, México.

In Figure 13, the 239P uBe reference neutron spec-
trum, taken from the IAEA compendium, is showed on
red line. The spectrum unfolded with the Synapse code
is showed in blue line.

The results obtained by using the Synapse code,
were compared with the 239P uBe reference neutron
spectrum, taken from the IAEA compendium. As can
be seen, the calculated neutron spectrum agrees with
the shape and the peak of the maximum energy, when
compared with the target one.

Figure 14, shows the 252Cf reference neutron
spectrum, taken from the IAEA compendium on red
line, compared with the neutron spectrum, calculated
by the Synapse code, showed in blue line.

As can be seen, the neutron spectrum unfolded with
the Synapse code also agrees with the shape and the
peak of the maximum energy of the reference neutron
spectrum.

This demonstrates that the Synapse code, solves
with high efficiency and generalization capability the
neutron spectrum unfolding problem, by using AI
technology based on GRANNs.

The code can be applied with success for unfolding
neutron spectrum in real experimental places.

It is important to mention that, although the Synapse
code is an innovative and a highly technological tool,
based on complex technology, the code is easy, friendly
and intuitive for the end user, if compared with other
codes used nowadays.

From the results obtained after unfolding the neutron
spectrum of both, a 239P uBe and a 252Cf neutron
sources, can be seen that the Synapse neutron spectrum
unfolding code, based on GRANN technology is a

promising and innovative technological alternative
for solving the neutron spectrometry and dosimetry
problems, in high energy physics, for radiation
protection purposes, and that can be applied with
success in real experimental places.

Figure 13. Neutron spectrum unfolding of a 239P uBe neutron
source

Figure 14. Neutron spectrum unfolding of a 252Cf neutron
source

4. Discussion and conclusions
The use of AI technology in the neutron spectrometry
and dosimetry research domain, is a new solution
proposal. Previous researches indicate that FFBPNN
perform well and this kind of network has been the
most popular approach used in this research area.
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The neutron spectra unfolding and calculation of
equivalent doses, starting from the rates count coming
from a BSS, using FFBPNN technology, has received
much attention in recent years due the successful
results observed.

However, the intrinsic difficulties, associated with
the optimization of the learning and architectural
parameters of the networks, make difficult to apply the
theories of IA in the field of neutron spectrometry.

The anterior, has motivated the study and devel-
opment of alternative methodologies with the aim to
explore different types of ANN architectures such as
GRANNs, that have the characteristics of being non-
parametric, that is, unlike FFBPNN, in GRANN is not
required to determine and to optimize the entire set of
parameters that FFBPNN requires.

Opposite to FFBPNN, GRANN are very flexible and
new information can be added immediately with almost
no retraining. The biggest advantage is the fact that the
probabilistic approach of GRANN works with one-step-
only learning and uses a single common radial basis
function kernel bandwidth, σ , that is tuned to achieve
an optimal ANN learning.

Given the novelty of the approach, it was observed
the need of developing scientific and technological tools
for the end user, able to solve with high performance
and efficiency the problems associated with neutron
spectrometry and dosimetry.

Because the technology based on AI is an emerging
research domain, specifically using GRANNs, there is a
lack of scientific and technological tools to implement
it in work, experimental and laboratory environments,
in a flexible and efficient way.

In collaboration agreement with the OMADS com-
pany the Synapse neutron spectrum unfolding code,
based on GRANN technology, was developed.

The code is capable to unfold the neutron spectrum
and to calculate 15 different dosimetric quantities using
the count rates, coming from a BSS, as the only entrance
information.

The code solves the neutron spectrometry and
dosimetry problems with high performance and
generalization capacity, and the results obtained show
that is a promising alternative which can be applied in
the solution of these problems.

The Synapse code was fully automated with the aim
to unfold neutron spectrum in real experimental, work
and research places.

Each time the Synapse code is executed, three
general stages are performed. At stage one, in order to
calculate an optimized spread value, σ , 2000 GRANN
are trained and tested in an average time of 154 seconds
approximately.

Once the the optimized spread value is calculated,
at stage two and three, the code is ready to perform
the unfolding of neutron spectrum measured in

experimental environments, using the rates count of a
BSS, as entrance data. The training time of the final
GRANN is in 0.058 seconds average.

In order to use the Synapse code, which is fully
automated, the whole process is to create a working
folder, to select the RM of the desired neutron detector,
to enter the experimental measured rates count and to
select the desired GRANN training. After the GRANN
training is done, the code generates a text file with the
information regarded to the training performed.

In order to validate the results obtained with
the Synapse code in experimental environments, the
unfolded spectrum of both, a 239P uBe and a 252Cf
neutron sources were calculated and compared with
the reference neutron sources taken from the IAEA
compendium.

The neutron spectrum unfolded with the Synapse
code agree with the shape and the peak of the maximum
energy of the two reference neutron spectrum.

This demonstrates that the code, solves with high
efficiency and generalization capability the neutron
spectrum unfolding problem, by using AI technology
based on GRANNs, and can be applied with success
for unfolding neutron spectrum in real experimental
places.

Unlike the classical techniques, based on traditional
numerical methods, GRANNs use statistical methods
to perform the classification and prediction of the
output data in a single iteration, using the information
contained in the training databases.

Because of this, it has been observed that this type
of technology has the ability to classify spectra and
calculate equivalent doses using less information in the
entrance data, that is, fewer Bonner spheres.

By reducing the number of BS in experimental places,
the time spent for making experimental measurements
could be reduced and in consequence, the weight of the
whole BSS.

Despite the success of the results obtained with code,
some drawbacks were observed. The first one is that
the code was developed using the Matlab programming
environment.

The main drawback is that it is a private tool, and the
source code of AI technology is not available to modify
as one wish or need.

Another problem using this environment, is that
is not possible to create executable files with the
developed ANN technology.

This makes difficult to distribute copies of the code to
work-centers or laboratories. In this sense, for executing
the Synapse code, the end user must have a Matlab
licence which is very expensive.

One more drawback is that the Synapse code
cannot be executed using the new technologies
of information and communication such as cloud
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computing environments, which is a very promising
technological alternative.

The synapse code is executed on a standard laptop
computer with an i7 processor and 16 GB of RAM.
These features are fixed and cannot be modified. Using
cloud computing technology to execute the code, the
needs of hardware can be changed on the cloud.

Looking for a solution to the mentioned problems,
at present, in collaboration agreement wit the OMADS
company, work is being done in order to migrate the
Synapse code to open-source programming environ-
ments, in such a way it can be executed in a cloud
computing environment, using new technologies of
information and communication tools of the fourth
industrial revolution known as Industry 4.0.
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