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Abstract

With the advancement of deep learning, single-image super-resolution (SISR) has made significant strides.
However, most current SISR methods are challenging to employ in real-world applications because they
are doubtlessly employed by substantial computational and memory costs caused by complex operations.
Furthermore, an efficient dataset is a key factor for bettering model training. The hybrid models of CNN and
Vision Transformer can be more efficient in the SISR task. Nevertheless, they require substantial or extremely
high-quality datasets for training that could be unavailable from time to time. To tackle these issues, a solution
combined by applying a Lightweight Bimodal Network (LBNet) and Patch-Mosaic data augmentation method
which is the enhancement of CutMix and YOCO is proposed in this research. With patch-oriented Mosaic data
augmentation, an efficient Symmetric CNN is utilized for local feature extraction and coarse image restoration.
Plus, a Recursive Transformer aids in fully grasping the long-term dependence of images, enabling the global
information to be fully used to refine texture details. Extensive experiments have shown that LBNet with the
proposed data augmentation with zero-free additional parameters method outperforms the original LBNet
and other state-of-the-art techniques in which image-level data augmentation is applied.
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1. Introduction
The main objective of single image super-resolution
(SISR) is to restore the corresponding high-resolution
(HR) image with rich details and improved visual
quality from a degraded low-resolution (LR) image.
Because of their powerful feature extraction ability,
convolutional neural networks (CNN)-based SISR
methods have recently surpassed traditional methods.
[1], for example, developed the Super-Resolution
Convolutional Neural Network (SRCNN). Afterward,
with the introduction of ResNet [2] and DenseNet
[3], a plethora of CNN-based SISR models, such as
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VDSR [4], EDSR [5], and RCAN [6], were proposed. All
these methodologies demonstrate that the deeper the
network, the more effectively it performs. Nonetheless,
due to limited storage and computing capabilities,
these methods are challenging to implement in real-
world environments. Therefore, research into a model
that can acquire better performance while maintaining
the network’s lightweight has become promising. A
recursive mechanism, such as DRCN [7] or DRRN [8],
is one of the most common approaches. The other is
to establish lightweight structures, such as CARN [9],
FDIWN [10], and PFFN [11]. Although these models
lower the number of model parameters to some extent
through multiple techniques and structures, they also
degrade performance, making it difficult to reconstruct
high-quality images with rich details.

Vision Transformer has recently become a hot
research topic. It can model the image’s long-term

1

EAI Endorsed Transactions  
on Industrial Networks and Intelligent Systems  Research Article 

EAI Endorsed Transactions on 
Industrial Networks and Intelligent Systems 

Online First

https://creativecommons.org/licenses/by-nc-sa/4.0/
mailto:<nqtoan@g.hongik.ac.kr>
mailto:<hieutq10@fpt.edu.vn>


N. Q. Toan, T. Q. Hieu

dependence, and this powerful representation ability
can aid in the restoration of the image’s texture details.
Most methods, however, use Transformer to substitute
all original CNN structures which is inappropriate
because CNN’s capability to extract local features is
indispensable. These features can retain their stability
under various viewing angles, it is effective for image
comprehension and reconstruction. Hence, merging
CNN and Transformer to maximize the effectiveness
of both is highly recommended for efficient image
reconstruction.

Furthermore, neural networks for SISR, without
question, require massive datasets to attain acceptable
performance. It can sometimes be difficult to gather
or improve the quality or quantity of qualified data
samples. Most standard data augmentations are con-
ducted at the image-level resulting in overall perfor-
mance gains for both generality and robustness. Image-
level augmentation typically preserves semantics glob-
ally, following human cognitive intuition. Humans, on
the other hand, can recognize objects based on only a
portion of the information. Patches, or image insider
information, are powerful natural signals. Several low-
level vision [12][13] and high-level vision [14][15][16]
works used patches prior to the deep learning era. A
major element of Vision Transformer (ViT) recently has
been the splitting of a single image into multiple non-
overlapping patches as input for neural networks [17].
Notwithstanding, research on how to implement non-
image-level data augmentations (i.e., patch-oriented) is
rare.

The proposed Patch-Mosaic could play a vital role
in augmenting datasets for training computer vision
models by providing a zero-parameter yet efficient
method, it is hypothesized that it is suitable to
launch a strategy for conducting augmentations out
of the image-level. An image can be viewed as a
patchwork of several patches. We can perform a specific
augmentation on these pieces individually and then
combine the transformed randomly pieces back into
a single image via the Mosaic data augmentation
method introduced in YOLOv4 [18], an improvement
of CutMix [19], which combines four training images
in specific ratios into one. Mosaic accomplishes this
by resizing each of the four images, putting them
together, and then selecting a random cutout from the
stitched images to create the final Mosaic image. This
strategy increases diversity at both the local region and
overall image-levels, and it may also encourage neural
networks to attain the same cognitive ability as humans
in recognizing objects from partial information. As a
result, it aids in boosting the dataset for significantly
better training and model performance. In summary,
the main contributions are as follows

• Patch-Mosaic data augmentation is proposed as
a data augmentation method for improving SISR
model performance.

• Using Patch-Mosaic in conjunction with
Lightweight Bimodal Network (LBNet) [20]
to improve model capabilities in popular test
sets in scenarios of the low computational cost
required application.

2. Related work

2.1. Single-image Super-resolution
CNN-based. SISR methods based on CNN have
advanced significantly in recent years [21]. For
example, SRCNN [1] was the first to employ CNN to
SISR and achieve competitive performance at the time.
EDSR [5] significantly improved model performance by
incorporating residual blocks [2]. RCAN [6] developed
an 800-layer network and introduced the channel
attention mechanism. Several lightweight SISR models
have been introduced in recent years, in addition
to these deep networks. For example, [9] used the
cascade mechanism to propose a lightweight Cascaded
Residual Network (CARN). Using the distillation and
selective fusion strategy, [22] proposed an Information
MultiDistillation Network (IMDN). MADNet [23]
improved multi-scale feature representation and
learning by employing a dense lightweight network.
[24] proposed a simple but effective deep lightweight
SISR model capable of generating convolutional kernels
adaptively from each position’s local information.
Nevertheless, the effectiveness of these lightweight
models is low in quality as they prevent access to larger
receptive fields and global information.

Transformer-based. Many Transformer-based methods
for computer vision tasks have recently been proposed,
promoting the development of SISR. [25] proposed a
pre-trained Image Processing Transformer for image
restoration. [26] proposed a SwinIR that produced
excellent results by directing the Swin Transformer
directly to the image restoration task. [27] proposed an
Effective Super-resolution Transformer (ESRT) for SISR
using a lightweight Transformer and feature separation
strategy to decrease GPU memory consumption.
Nevertheless, none of these models take into account
the fusion of CNN and Transformer, making it
difficult to strike the best balance of model size and
performance.

2.2. Patches in data augmentation
Patches are commonly used as strong signals in tra-
ditional and learning-based vision tasks. Examples
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of applications include texture synthesis [28], bag-of-
features-based classification [14][15][16], image denois-
ing [13], super-resolution [29], image-to-image transla-
tion [30][31]. CNNs have recently adopted it and ViTs
as input for classification networks [32][17].

Patches are also utilized for data augmentation.
[33] only uses Gaussian Blur on a subset of the
images. [34] creates large labeled instance datasets by
cutting and pasting object instances onto backgrounds.
[35] overlays 2D object images onto images of real-
world environments. CutMix [19] integrates one image
patch with a patch from another. PAA [36] extends
the AutoAug [37] configuration by searching for
augmentation policies in pre-defined patches. Through
patch-based negative augmentation, [38] improves the
robustness of ViTs. YOCO [39] applied patch data
augmentation by cutting images into 2 pieces, then
processing augmenting methods individually, then
combining 2 images in the original one. Even so, no
previous research has looked into how to perform the
same augmentation on a non-image-level and Mosaic
together.

3. Methodology
3.1. Lightweight Bimodal Network (LBNet)
Network Architecture. The Lightweight Bimodal Net-
work (LBNet) [20], as shown in figure 1, is primarily
composed of Symmetric CNN, Recursive Transformer,
and reconstruction module. Symmetric CNN is con-
ducted for local feature extraction, whereas Recur-
sive Transformer is designed to learn image long-term
dependence. ILR, ISR, and IHR are the input LR image,
reconstructed SR image, and corresponding HR image.
A 3×3 convolutional layer is employed at the model’s
head for shallow extracting features.

Fsf = fsf (ILR), (1)

Fsf is the extracted shallow features, while fsf ()
denotes the convolutional layer. The shallow features
will then be transmitted to Symmetric CNN for local
extracting the features.

FCNN = fCNN (Fsf ), (2)

where fCNN () is the Symmetric CNN and FCNN is
the extracted local features. One of the most important
components of LBNet is symmetric CNN made up of
several pairs of parameter-sharing Local Feature Fusion
Modules (LFFMs) and channel attention modules. The
following section will go over all of these modules.

Following that, the Recursive Transformer will be
given all of these features for long-term dependence
learning.

FRT = fRT (FCNN ), (3)

where fRT () represents the Recursive Transformer
and FRT is the feature improved by global information.
Finally, the refined FRT and shallow Fsf features are
combined and passed to the reconstruction module for
the reconstruction of the SR image.

ISR = fbuild(Fsf + FRT ), (4)

where fbuild() represents the reconstruction mod-
ule constituted of a 3×3 convolutional layer and a pixel-
shuffle layer.

LBNet is optimized with the L1 loss function [40]
throughout training. The training dataset is given{
I iLR, I

i
HR

}N
i=1

,it is processed by

θ∗ = argminθ
1
N

n∑
i=1

|F(I
i
LR − I

i
HR)|, (5)

where θ denotes the LBNet parameter set, F(ILR) = ISR
denotes the reconstructed SR image, and N represents
the number of training images.

Symmetric CNN and Recursive Transformer. Symmetric
CNN is a type of CNN that is specifically designed
for extracting local features. It consists primarily of
paired parameter-sharing Local Feature Fusion Mod-
ules (LFFMs) and Channel Attention (CA) modules.
The parameter-sharing of every two symmetrical mod-
ules can enhance parameter and performance balance.
Moreover, each pair of parameter-sharing modules will
be merged via the channel attention module to fully
utilize the extracted features.

Symmetric CNN is a dual-branch network, as
illustrated in figure 1. The shallow feature Fsf will be
transferred to the top branch first, and the outputs of
each LFFM in the top branch will be used as input to
the corresponding LFFM in the down branch. The entire
operation can be formulated as having:

FT ,1
LFFM = f T ,1

LFFM (Fsf ), i = 1, (6)

FT ,i
LFFM = f T ,i

LFFM (FT ,i−1
LFFM ), i = 2, ..., n, (7)

FD,i
LFFM = f D,i

LFFM (FD,i−1
LFFM + f i

CA(FT ,i
LFFM ), i = 2, ..., n, (8)

where f T ,i
LFFM () and f D,i

LFFM () denote the i − th LFFM
in the top and bottom branches, respectively. The i −
th channel attention module is denoted by f i

CA(). It
is important to highlight that when i = 1, FD,1

LFFM =
f D,1
LFFM (FT ,n

LFFM + f 1
CA(FT ,1

LFFM )). Furthermore, the weight-
sharing method is applied to the paired modules,
resulting in f D,i

LFFM () = f T ,i
LFFM (). Finally, the values of

all of these LFFMs are concatenated, and a 1×1
convolutional layer is employed for feature fusion and
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Figure 1. Structure of Lightweight Bimodal Network (LBNet)

compression. Therefore as result, the most efficient
features extracted at various levels will be forwarded to
the following section to learn the long-term dependence
of images.

Symmetric CNN relies mainly on LFFM. Figure 2
shows that LFFM is essentially an improvement of
DenseBlock [3]. In contrast to DenseBlock, (1) FRDAB
is applied to substitute for the original convolutional
layer to strengthen feature extraction; (2) a 1×1 group
convolutional layer is used before each FRDAB to
reduce the dimension; and (3) local residual learning
is created to better information transmission. The full
operation of LFFM is as follows:

F1
FRB = f 1

FRB(Fm−1
LFFM ), (9)

F2
FRB = f 2

FRB(f 1
gc([F

m−1
LFFM , F1

FRB])), (10)

F3
FRB = f 3

FRB(f 2
gc([F

m−1
LFFM , F1

FRB, F
2
FRB])), (11)

Fm
LFFM = f m−1

LFFM + f1×1([Fm−1
LFFM , F1

FRB, F
2
FRB, F

3
FRB]), (12)

where Fi
FRB is the output of the i − th (i = 1,2,3)

FRDAB module in LFFM. f i
gc() represents the j − th (j

= 1,2) group convolutional layer followed by FRDAB.
The input and output of the m − th LFFM module are
denoted by Fm−1

LFFM and Fm
LFFM , respectively.

FRDAB, as shown in 2, is a dual-attention block
that is specifically designed for feature improvement.
The multi-branch structure is created specifically for
feature extraction and utilization. The feature will be
passed to two branches in this section, and each branch
will use a different value of convolutional layers to
modify the size of the receptive field to acquire different
scaled features. Following that, channel attention is
used to extract channel statistics for re-weighting in the
channel dimension, and spatial attention is applied to
re-weight the pixel based on the feature map’s spatial
context relationship. At last, the addition operation
combines the results of these two attention operations.
The final features obtained using this method will have
a firmer suppression of the smooth areas of the input
image.

Symmetric CNN is intended for the extraction of local
features. Notwithstanding, this is far from sufficient
to reconstruct high-quality images because the depth
of the lightweight network makes having a large
enough receptive field to achieve global information
difficultly. To tackle this issue, a Recursive Transformer
and Transformer to learn the long-term dependence of
images (RT) are employed. Unlike previous methods,
a recursive mechanism is applied to fully train
the Transformer without significantly increasing GPU
memory requirement or model parameters. Figure
1 depicts that RT comes before the reconstruction
module, which is made up of two Transformer Modules
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Figure 2. Local Feature Fusion Module (LFFM) and Feature Refinement Dual-Attention Block (FRDAB) architecture

(TM) and 2 convolutional layers. The finished operation
of RT is represented as

FRT = f3×3(f ⟳
TM2(f3×3(f ⟳

TM1(FCNN )))), (13)

where f3×3() and fTM () signify the convolutional
layer and TM, respectively. The recurrent connection
is denoted by ⟳ indicating the output of TM will be
functioned as its new input and looped S times. Only
the encoding part of the standard Transformer structure
is utilized which is inspired by ESRT [27] for the TM.
As illustrated in 3, TM is primarily made up of two
layer normalization layers, one Multi-Head Attention
(MHA), and a Multi-Layer Perception (MLP) (MLP).
Defining the input embeddings as Fin and the output
embeddings Fout can be formulated by

Fmid = Fin + fMHA(fnorm(Fin)), (14)

Fout = F1 + fMLP (fnorm(Fmid)), (15)

The layer normalization operation is represented by
fnorm(). The MHA and MLP modules are depicted by
fMHA() and fMLP (). MHA’s input feature map, like
ESRT’s [27], is projected into Q, K, and V via a
linear layer to reduce GPU memory consumption. In
the meantime, a feature reduction strategy is used to
reduce the Transformer’s memory consumption further.
According to [41], each MHA head may undertake a
scaled dot product attention, concatenate all outputs,
and then conduct a linear transformation to result
in the output. The scaled dot product attention is
demonstrated as

Attention(Q,K, V ) = sof tmax(
QKT√
dk

)V . (16)

The Transformer can be fully trained and utilized
using this strategy without increasing the model’s
parameters or GPU memory consumption.

3.2. Patch-Mosaic

This section outlines the proposed Patch-Mosaic
method. Let X ∈ RC×H×W represent an image and
a() denotes data augmentations, with a() : RC×H×W −→
RC×H×W , X∗ = a(X). Here, X∗ is the augmented
image, and a() may be any data augmentation or a
combination of data augmentations. Unlike image-level
augmentation, which applies the augmentation directly
to the image X∗ = a(X), Patch-Mosaic initially cuts
the image into four equally sized patches, with equal
probability in either the height or width domain, as

[X1,2,3,4] = cutH,W (X), Xi ∈ RC×H
2 ×

W
2 (17)

Afterward, within each patch, a() is processed
separately, and the augmented pieces are integrated
back together using the Mosaic augmentation method
as

X∗ = Mosaic[a1(X1), a2(X2), a3(X3), a4(X4)] (18)

Randomness determines augmentations
including random probabilities of being applied,
random implementation, and random magnitudes.
a1(), a2(), a3(), and a4() are all instances of a(), but
despite using the same data augmentation a(), they
may differ significantly, enhancing diversity at both the
local region and holistic image-levels.
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Figure 3. Transformer Module (TM)

In YOLOv4[18] the Mosaic data augmentation algo-
rithm refers to the CutMix[19] data augmentation tech-
nique, which is a further improvement of CutMix. Gen-
eral methods of data augmentation are divided into 5
categories (1) Geometric transformation (Horizontal
flip and Vertical flip), (2) Photometric transformation
(Color jitter and Gaussian blur), (3) Information drop-
ping (Random erasing and Cutout), (4) Search-based
(AutoAug and RandAug), and (5) Mixbased (Mixup
and CutMix). CutMix splices two images and sends
the spliced images to the neural network for training.
The Mosaic data augmentation algorithm utilized four
images for Mosaics to produce a combined image com-
prising four original images that improved model train-
ing efficiency. Simultaneously, the Mosaic data aug-
mentation algorithm has different options in a single
original image. It can train multiple objects in the same
composite image, which the original data enhancement
algorithm cannot do. The workflow from conducting
the Patch-Mosaic data augmentation algorithm on the
DIV2K [5] dataset is depicted in figure 4.

4. Experiment
The machine with an AMD Ryzen Threadripper 2950X
@ 4.40 GHz, RAM 64GB DDR4 2666MHz, NVIDIA
GeForce GTX 2080 Ti 12GB x 2, and CUDA are used to
train all the networks. The operating system is Ubuntu
20.04.4. Overall, the model has 32 input and output
channels, three (n = 3) LFFMs, and the Transformer
module recurses twice (S = 2).

4.1. Dataset
DIV2K [5] is used as the training set. Five benchmark
test datasets are used for evaluation to validate the
effectiveness of the proposed Patch-Mosaic with LBNet.
Set5 [42], Set14 [43], BSDS100 [44], Urban100 [45],
and Manga109 [46] are five benchmark test datasets
used to validate the effectiveness of the proposed Patch-
Mosaic with LBNet. Table 1 summarises the dataset and
augmentation information for training models.

4.2. Evaluation metrics
Peak Signal-to-Noise Ratio (PSNR) and Structural
Similarity (SSIM) are used as performance indicators
for SR images on the Y channel of the YCbCr color
space. These evaluations were demonstrated using two

images. They are referred to as image 1 and image 2.
Image 1 is the original degraded image from the test
dataset, while image 2 is a reconstruction of image
1. SSIM is a method for determining how similar
two images are. The SSIM values range from -1 to
1. PSNR is used to make comparisons of image 1’s
quality to image 2’s quality calculated using the mean
squared error (MSE). The mean square error (MSE) of
an estimator represents the average of the squares of
the estimation errors, or the discrepancy between the
estimate and what is evaluated, lower MSE is better
performance. Unlike, the higher the value of PSNR and
SSIM, the more high-quality the reconstructed image
is, as determined by equation 19, 20 and 21. The
ground truth (reference) is represented by Y , and the
reconstructed images are described by Y ∗:

MSE =
1
ab

a∑
i=1

b∑
j=1

(Y ∗(i, j) − Y (i, j))2 (19)

P SNR(Y , Y ∗) = 10log10
2552

MSE
(20)

The SSIM assessment between images PY ∗ and PY is
summarized as follows:

SSIM(PY ∗ , PY ) =
(2µP Y ∗µP Y + c1)(2σY ∗σP Y + c2)

(µ2
P Y ∗ + µ2

P Y + c1)(σ2
P Y ∗ + σ2

P Y + c2)
(21)

where σP Y (σP Y ∗ ) and µP Y ∗(µP Y ) denotes the knowl-
edge and standard deviation of patch PY ∗(PY ). Minor
constants are defined as c1 and c2. Therefore, SSIM’s
average score patch-based over the image is SSIM
(Y ∗,Y ).

4.3. Result
Compared to SISR SOTA models using image-level
data augmentation methods, LBNet with the proposed
Patch-Mosaic achieved better performance. A detailed
comparison of the top 5 most common datasets with a
4x scale (Set5 [42], Set14 [43], BSDS100 [44], Urban100
[45], and Manga109 [46]) with LBNet [20], SwinIR [26],
and ESRT [27] is shown in table 2. The results clearly
show that LBNet (trained on DIV2K) with Patch-Mosaic
acquired competitive results using the same parameters
as LBNet. These results demonstrate the efficacy of the
proposed Patch-Mosaic.
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Figure 4. Illustration of the proposed Patch-Mosaic data augmentation

Table 1. Summary of dataset and augmentation method

Method + Dataset and data augmentation method

SwinIR [26] DIV2K [5], Flickr2K [47] + Image-level
ESRT [27] DIV2K [5] + Image-level
LBNet [20] DIV2K [5] + Image-level
LBNet [20](Patch-Mosaic) DIV2K [5] + Patch-Mosaic

Table 2. Comparison with other SOTA methods (x4). With the Patch-Mosaic technique, LBNet can achieve better results with the
same parameters as the original network

Method Params Set5 Set14 BSD100 Urban100 Manga109

SwinIR [26] 897K 32.44/0.8976 28.77/0.7858 27.69/0.7406 26.47/0.7980 30.92/0.9151
ESRT [27] 751K 32.19/0.8947 28.69/0.7833 27.69/0.7379 26.39/0.7962 30.75/0.9100
LBNet [20] 742K 32.29/0.8960 28.68/0.7832 27.62/0.7382 26.27/0.7906 30.76/0.9111
LBNet [20](Patch-Mosaic) 742K 32.98/0.9070 29.25/0.7919 28.20/0.7502 27.07/0.8101 31.55/0.9256

5. Conclusion
In this study, a novel approach to data augmenta-
tion called Patch-Mosaic was introduced as a means
to enhance the performance of single-image super-
resolution (SISR) models. This technique was specif-
ically applied to the Lightweight Bimodal Network

(LBNet), which utilizes a Symmetric CNN for local
feature extraction and a Recursive Transformer for
capturing long-term image dependencies. The Sym-
metric CNN employs a Local Feature Fusion Module
(LFFM) and a Feature Refinement Dual-Attention Block
(FRDAB) to optimize feature extraction and utilization.
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Figure 5. Visual comparison between LBNet trained with Patch-Mosaic versus SwinIR, ESRT, and original LBNet with image-level
data augmentation method

The Recursive Transformer, on the other hand, trains
the Transformer fully through its recursive mechanism,
thereby enabling the Transformer to learn global con-
stants and enhance features. In short, the Patch-Mosaic
method effectively combines patch-level image aug-
mentation with mosaic-generating data techniques to
enhance the performance of lightweight SISR networks
while reducing computational costs. The results of this
study highlight the significance of data augmentation in
improving the performance of super-resolution models.
Notwithstanding, this research only conducted Patch-
Mosaic with 4 patches (an image extracted for 4 patches,
then a combined image includes 4 mosaic-augmented
patches). In future research, working with more patches
could be employed, it may have the potential to better
the task of data augmentation for SISR.
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