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Abstract

In this study, we propose a new approach to determine intrusions of network in real-time based on statistical
process control technique and kernel null space method. The training samples in a class are mapped to a
single point using the Kernel Null Foley-Sammon Transform. The Novelty Score are computed from testing
samples in order to determine the threshold for the real-time detection of anomaly. The efficiency of the
proposed method is illustrated over the KDD99 data set. The experimental results show that our new method
outperforms the OCSVM and the original Kernel Null Space method by 1.53% and 3.86% respectively in
terms of accuracy.
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1. Introduction
Security policies are very important in computer
systems to prevent the outside attacks. However, it can
be said in general that the existing security policies
are not strong enough to guarantee this function
as more and more new types of attacks appear
beyond the capabilities of these security systems. It is
therefore necessary to build a monitoring system for
the computer systems to early detect novelties. The
early detection of abnormality can help the computer
systems to reduce the damage and protect the crucial
information. Among the available methods, Intrusion
detection system (IDS) is a powerful tool and it attracts
the attention of researchers [3]. The IDS has been used
in a great number of applications such as network
intrusion, fraud detection and security systems.

∗Corresponding author. Email: huong.truongthu@hust.edu.vn

Currently, there are two families of mechanisms in
IDS: signature-based IDS and anomaly-based IDS. In
this paper, we focus on developing an anomaly-based
IDS solution, in which the designed IDS system is
trained based on knowledge of normal traffic only. Such
a system does not need to be trained with attack data
traces to later detect if incoming traffic is anomaly
or normal. This characteristic is good for the attack
detection aspect since attack manners may vary over
time. Due to continuous variation of attacks, the system
might not be trained with a new attack pattern before,
and as the result, may not be effective any more.

Among the anomaly-based IDS solution family,
Novelty Detection is a research direction attracting
researchers who have been working in the the attack
detection field. Novelty detection is the identification of
unknown data that an IDS system is not aware of during
training. Its goal is to identify abnormal behaviors
which are not consistent with the normal state of a
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system. A model is built from normal data to detect
unknown abnormality by novelty detection algorithms
such as OCSVM [9, 17] and Kernel Null Space [1, 2, 7].
There is also an approach in intrusion detection using
Statistical Process Control [10].

Our proposed solution aims at improving the
performance of the Kernel Null Space method [2]
in terms of accuracy. To be more specific, we
propose using a Control-Chart based method called
Kernel Quantile Estimator to determine the detection
threshold dynamically driven by each specific training
data set instead of using a fixed threshold as described
in the existing Kernel Null Space solutions [1, 2, 7].
The Control Chart Based on a Kernel Estimator of
the Quantile Function was also developed in [8]. In
addition, we also optimize the kernel parameter of the
kernel function to improve the performance of novelty
detection.

The rest of the paper is organized as follows:
Section 2 elaborates the related work. Our proposed
Enhanced Kernel Null Space solution - EKNS for
Novelty Detection is provided in Section 3, followed
by the performance evaluation in Section 4. Finally,
conclusion is given in Section 5.

2. Related work
Recently, a variety of defense mechanisms have been
proposed to combat transport-level DDoS flooding
(distributed denial of service) in the state of the art.

Ingress/Egress filtering mechanisms [4] is a source-
based solution that detects and filter packets with
spoofed IP based on the valid IP address range internal
to the network. And this solution is a signature-based
approach as well. However, the spoofed packets can
not be detected if their addresses are still in the
valid internal IP address range. Another source-based
and signature-based scheme D-WARD [6] monitors
inbound and outbound traffic of a source network and
comparing the network traffic with predefined normal
flow models. This solution can be bypassed by attackers
who can control traffic in a normal range. In addition,
another signature-based and source-based approach
(MULTOPS) [5] makes use of a significant difference
between the traffic rates going out and coming from a
host to define if the network is either the source or the
destination of an attack. However the assumption that
incoming and outgoing traffic rates are proportional is
not always the case.

General speaking, source-based solutions are not
totally effective against DDoS flooding attacks since,
attack sources can be distributed; and it is not easy
to differentiate legitimate from attack traffic near the
sources, since traffic volume of the traffic may not be
big enough.

Besides, the network-based mechanisms are deployed
to detect an attack and stop it at intermediate networks.
Some of the main schemes to handle DDoS attacks
can be listed as follows: AVANT-GUARD [12] builds
a module at the gateway switch to mitigate saturation
attacks by checking the TCP 3 hand-shake process. The
authors in [18] proposed another way to handle the TCP
3-hand shaking to detect attack flooding as well. But
the two solutions are designed specifically for TCP SYN
flood.

An anomaly-based scheme can be found in [11] that
uses Fuzzy Interference System to detect anomalies
based on traffic pattern. This solution can detect if an
attack happens no matter what type of attack is it.
However, this type of solution requires training data
sets with both labels: Anomaly and Normal data sets, so
in case the attack data set is not available, it is difficult
to realize this scheme in reality, when attacks can vary
in many different new ways.

In this paper, we propose a network-based and
novelty-based mechanism that is based on traffic data
set to detect novelty in traffic. Our proposed solution
does not require advanced knowledge in attack pattern
(i.e. available attack data sets) but only normal traffic
behavior in order to detect anomalies for incoming
traffic.

Generally, the novelty detection issues can be divided
into two types based on the number of known classes
during the training phase: one-class and multi-classes.
Since our work focuses on one-class classification, we
will review the state of the art for the family of one-class
novelty detection. To the best of our knowledge, Kernel
Null Space has the highest performance in novelty
detection and there are only three studies dealing with
one-class classification in novelty detection using this
method [1, 2, 7]. The authors [2] proposed Kernel
Null Space for novelty detection but they made the
experiment with a fixed threshold and a fixed kernel
parameter of the kernel function. Paul et al [1] also
improved the performance of the original method.
However, they only concentrated on decreasing the
timing operating of the algorithm, the accuracy remains
unchanged. Following this trend, Liu Juncheng et al [7]
improved the solution proposed in [2] by decreasing
the complexity of the kernel null space method without
taking the accuracy into account.

From another approach, the OCSVM method, which
detects novelty by finding the boundary of training
data with maximum margin, is often used to solve
the one-class novelty detection problem, for example,
in [17, 19]. The OCSVM method has received more
extensive attention since it can easily handle nonlinear
data with kernel trick and also achieve a high level of
detection accuracy [17].

In order to improve the accuracy of the Kernel Null
Space method [2] in the favor of anomaly detection.
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We propose a solution combining Kernel null space
and Control chart to automatically define an efficient
detection threshold stemming from each training data
trace.

Moreover, we also use the optimizing parameter
method proposed in [17] to increase the accuracy for
the algorithm. Our proposed solution is proved to
outperform the Kernel Null Space methods in [1, 2, 7]
and OCSVM in [17, 19] in terms of Accuracy.

3. Intrusion Detection Scheme using the
control-chart-based Kernel Null Space Method.
3.1. Intrusion detection system architecture
Endpoint security is a key part of an organizational
response to cyber threats. As can been seen in Figure
1, beside perimeter firewalls and Identity Access
Management tools can restrict and control access to
the organizations network, people built an IDS/IPS
system to detect and stop an intruder who has managed
to breach our security. IPS and IDS systems look
for intrusions and symptoms within traffic. IPS/IDS
systems would monitor for unusual behavior, abnormal
traffic, malicious coding and anything that would look
like an intrusion by a hacker being attempted.

Figure 1. Networks Intrusion detection system

Our designed architecture of an IPS/IDS system
that monitors and analyzes traffic in real time can
be described in Figure 2. Incoming Internet traffic
getting through Network devices is analyzed and
extracted to different attributes which are indicators for
anomaly detection. Data attributes in different formats
and scales are then normalized, and finally trained
with a specific training algorithm. Basically, to detect
attack threats, an IPS/IDS system can use both a
knowledge database of signatures that is a database of
attacks happened in the past and online anomaly-based

detection to detect if attacks have happened. Policy
enforcer is the final step of an IPS/IDS system where
we can set different policies onto the network devices to
prevent or mitigate attacks from damaging our system.
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Figure 2. General architecture

In this paper, we try to improve the accuracy in
intrusion detection of the IDS system. More specifically,
first of all we show how Internet traffic can be pre-
processed and normalized to get to the data we need
for the training phase. We then propose a so-called
Enhanced Kernel Null Space method - EKNS - at the
training phase of the IPS/IDS system. EKNS is proved
to improve the accuracy of detecting novelty samples.
The scheme is elaborated as follows:

− Pre-process and normalize the attributes of the
data set.

− Design an Enhanced Kernel Null Space method to
analyze data inputs.

In thi method, the threshold is computed by Kernel
Quantile Estimator [14] for a given probability q.

3.2. Pre-processing and normalizing data attributes.
In order to do the comparison with different intrusion
detection methods, in the experiment, we use the
NSL-KDD data set [15] which is commonly used for
classification problem. Each sample in this NSL-KDD
corresponds to a real connection in the simulated
military network, containing 41 attributes with Normal
and Attack-type labels. In the data set, there are 39
types of attacks divided in 4 groups:

− DoS - Denial of services, e.g. syn flood.
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Table 1. Symbolic-typed Attributes

Attribute Symbolic Numeric value
Protocol_type UDP 1

TCP 2
ICMP 3

Flag OTH 1
REJ 2
RTSO 3
RTSOSO 4
RSTR 5
S0 6
S1 7
S2 8
S3 9
SF 10
SH 11

Service 65 values from 1 to 65

− R2L: Unauthorized access from a remote machine,
e.g. guessing password.

− Probing: surveillance and other probing, e.g. port
scanning.

− U2R: unauthorized access to local super user
(root) privileges, e.g. buffer overflow.

To make the data set simpler, reducing the redundancy
without losing the information, we pre-process the data
set as follows:

- Conversion from the Symbolic type to the Numeric
type: there are 3 attributes in the Symbolic manner
such as: Protocol, Service, Flag which are needed to be
converted to the Numeric type to be compatible with
the inputs of the algorithm. The symbolic values are
labeled as in Table 1.
- Normalization:Normalization of data in the NSL-
KDD data set is necessary since there are many big
values in comparison with much smaller values in the
set. We apply the Min-max normalization method to
turn all values to the range [0,1] as follows:

v̂i =
vi −min(vi)

max(vi) −min(vi)
, for i = 1, 2, . . . , 41 (1)

where:
vi : value of one attribute before normalization.
v̂i : value of one attribute after normalization.
i = 1, ..., 41: 41 attributes
After normalization, each data sample becomes a 41-
attribute vector xi which is an input for the detection
process later. A 41-attribute vector before and after the
normalization process can be illustrated in Figure 3 and
Figure 4, respectively.

Figure 3. An example of an original vector xi .

Figure 4. An example of a normalized vector xi .
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Figure 5. The samples are separated from the origin in the kernel
feature space with a mapping Φ , then mapped on a point s, and
the novelty score of a testing sample x∗ is the distance of its
projection s∗ to s.

3.3. Control-chart based Kernel Null Space
Before describing EKNS, we briefly re-call the One-
Class Classification using Kernel Null Space proposed
in [2]. Let us consider a dataset of N training samples
{x1, x2, . . . , xN }, with each xi ∈ RD , and D is the number
of observed features. In the one-class setting, all the
training samples belong to a single target class. The
input features X = [x1, x2, ...., xN ] are separated from
the origin in the high-dimensional kernel feature space
similar to one-class SVM [13]. As described in [2], a
single null projection direction is computed to map all
samples on a single target value s. A test sample x∗ is
projected on the null projection direction to obtain the
value s∗. Figure 5 illustrates the one-class approach with
kernel null space. The novelty score of x∗ is the distance
between s and s∗:

NoveltyScore(x∗) =| s − s∗ | . (2)

A large novelty score indicates more likely novelty.
In [2] and [1], a hard decision threshold θthreshold is
used to determine whether the test sample x∗ belongs
to the target class or not. Determining the threshold
plays a very important role to the performance of the
novelty detection process. To the best of our knowledge,
this threshold has been selected heuristically up till
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now. Therefore, in this study, we propose an intrusion
detection scheme based on an enhanced version of this
Kernel Null Space method.

The procedure of the EKNS is illustrated in Figure 3
with two phases: the training phase and the detection
phase.

In the training phase: training data samples
{x1, x2, . . . , xN }, which have been already pre-processed,
will be mapped on a point s in the Null Space F. The
intrusion detection system uses another data set called
the validation set that comprises other normal data
samples {y1, y2 . . . , yM }. Each sample yi of the validation
set is mapped on a point ŝi in the feature null space, for
which NoveltyScore(yi) is calculated. After mapping
all samples of the validation set and calculating
Novelty scores for all of them, a set {NoveltyScore(yi)}
is formed. Based on this set of novelty scores, we use
the Kernel Quantile Estimator to derive the threshold
θthreshold , which will be described in Section 3.3.

During the detection phase in real time, when a test
data sample x∗ comes, the system maps it on a point
s∗ and then calculate its NoveltyScore(x∗). Then by
comparing the NoveltyScore(x∗) with θthreshold found
in the training phase, x∗ can be classified as Normal or
Anomaly.

In the following subsections, we will elaborate how
we achieve an optimal kernel parameter on the given
training data set and how to calculate threshold
θthreshold by Kernel Quantile Estimator.

Determination of Kernel and Kernel parameter. In this
paper, we select the Gaussian kernel (or Radial Basic
Function (RBF)) for Kernel Null Space which is
commonly used.

k(x, y) = exp
(
−‖ x − y ‖2

2σ2

)
(3)

where: σ stands for the kernel parameter in [0,1].

Using the method proposed in [17], the optimal
sigma σ ∗ is estimated from the data set {x1, x2, . . . , xN }.
The optimal σ ∗ is the one that maximizes the objective
function J(σ )

J(σ ) =
2
N

n∑
i=1

exp
(
−Near(xi)

2σ2

)
− 2
N

n∑
i=1

exp
(
−Far(xi)

2σ2

)
(4)

Denote the nearest and farthest neighbors distances as:

Near(xi) = min
j,i
‖ xi − xj ‖2

Far(xi) = max
i
‖ xi − xj ‖2

Threshold calculation based on Kernel Quantile Estimator.
As mentioned, the threshold for the Novelty Score is
the crucial key for the accuracy in anomaly detection.

A common method to choose a good threshold that we
have observed up till now is checking various discrete
threshold values in the increasing order until the test
system outputs highest accuracy. But when we have
to cope with continuous values, that heuristic check-
up hardly finds a good threshold we can not check all
continuous values.

The set of the novelty scores is denoted by
{NS1, NS2, . . . , NSM } and investigated for the probabil-
ity density distribution. As observed in Figure 7, the
Novelty Score values {NS1, NS2, . . . , NSM } can not be
approximated by a normal distribution, i.e. the underly-
ing distribution of the sample is unknown. In this case,
non-parametric methods could be used to explore this
unknown underlying.

In this paper, we use the Kernel Quantile Estimator
[14] to estimate θthreshold over the set of Novelty Score
values.

Let NS(1) ≤ NS(2) ≤ . . . ≤ NS(M) denote the corre-
sponding order statistics of the novelty scores. Suppose
thatK(.) is a density function symmetric about Zero and
that h→ 0 as n→∞, the Kernel Quantile Estimator can
be calculated as follows [14]:

KQp =
N∑
i=1

∫ i
n

i−1
n

Kh(t − p)dt

NS(i) (5)

where h > 0 is the bandwidth. The bandwidth h controls
the smoothness of the estimator for a given sample of
size n. Kh(.) = 1

hK( .h ). And p is the proportion of the
quantile.

Here we use the standard Gaussian kernel for the
resulting estimate KQp which is a smooth unimodal,

K(u) =
1
√

2π
exp(−u

2

2
) (6)

The selection of h is important in kernel density
estimation: a large h will lead to an over-smoothed
density estimate, while a small h will produce a ragged
density with many spikes at the observations. As
described in [14], the bandwidth computed as

hopt =
( pq

n + 1

) 1
2

(7)

Where: q = 1 − p

For a lot of continuous distributions used in statistics,
specific quantiles such as the p = 0.95, 0.975, and 0.99
quantiles are tabulated. Therefore, in our experiment,
we have investigated 3 cases of q: 0.05, 0.025 and
0.01 respectively. These 3 q values corresponds to 3
threshold value KQ(p = 1 − q) (i.e. θthreshold).
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Figure 6. Detection procedure of EKNS
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Figure 7. Probability Density Distribution of Novelty Scores

4. Performance Evaluation

Table 2. NSL-KDD Statistics

Data file Total Normal DoS Proble U2R R2L
samples class class class class class

KDD+Train_20Percent 25192 13449 9234 2289 11 209
53.39% 36.65% 9.09% 0.04% 0.93%

KDDTrain+ 125973 67343 45927 11656 52 995
53.46% 36.46% 9.25% 0.04% 0.79%

KDDTest+ 22604 9771 7458 2421 200 2754
43.08% 33.08% 10.74% 0.89% 12.22%

4.1. Data Description
In this experiment, we use the NSL-KDD data set to test
the detection accuracy of the proposed solution. The
training data set contains 13449 normal samples which
are randomly selected from KDDT rain + _20P ercent
[15]. This data set takes 20% of KDDT rain+ in the
NSL-KDD. After training the system with KDDT rain +
_20P ercent, the system performance is checked by
using 6000 normal and abnormal samples of the
testing data set KDDT est+. Some statistics of the NSL-
KDD data set can be illustrated in Table 2. To test
performance, we use all 41 attributes/parameters of the
data set.
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Table 3. Performance Comparison

σ = 0.5957 Kernel Null Space OCSVM Origin
q=0.05 q=0.025 q=0.01 Kernel Null Space
θthreshold= θthreshold= θthreshold= with fixed
0.0097 0.0233 0.0514 threshold=0.05

Accuracy 0.9548 0.9598 0.92 0.9445 0.9212
FPR 0.0443 0.018 0.006 0.0433 0.006
Recall 0.954 0.9377 0.846 0.9323 0.8483
AUC 0.9910 0.9910 0.9910 0.9849 0.9910

4.2. Performance analysis
There are some important performance metrics in the
novelty (anomaly) detection domain that have been
widely used to analyze the performance of a certain
detection method. Here, we used confusion matrix for
measuring Recall, False positive rate and Accuracy
to evaluate detection performance at one value of
threshold.

− Accuracy = T P+TN
T P+FP+TN+FN

− ReCall-True Positive Rate = T P
T P+FN

− FPR - False Positive Rate: FPR = FP
FP+TN

Where TP (True Positive) is the number of anomalies
correctly diagnosed as anomalies; TN (True negative)
is the number of normal events correctly diagnosed as
normal; FP (False Positive) is the number of normal
events incorrectly diagnosed as anomalies; and FN
(False Negative) is the number of anomalies incorrectly
diagnosed as normal events.

As mentioned in Section 3.3, we have tested with
3 different q values: 0.01, 0.025 and 0.05. As can
be seen in Table 3, with the normalized and pre-
processed 41-attribute data set {X1, X2, . . . , XN }, the
optimal kernel parameter estimated is σ ∗ = 0.5957.
Subsequently, from the given data set of Novelty scores
{NS1, NS2, . . . , NSM }, the found threshold is θthreshold =
0.0097, θthreshold = 0.0233, θthreshold = 0.0514 for q =
0.05, q = 0.025 and q = 0.001 respectively.

In the security context, accuracy is more important
than recall when you would like to have less False
Positives in trade off to have more False Negatives.
Therefore, q = 0.025 brings best performance in terms
of Accuracy, FPR among of the 3 different values q as
shown in Table 3.

As another way to evaluate the performance of
the detection solution, “ROC-AUC Curve" is often
used as a measure of quality of the classification
models at various thresholds settings [16]. ROC is a
probability curve, it tells how much model is capable of
distinguishing classes. This curve depicts relative trade-
offs between benefit (TPR) and cost (FPR). To compare
classifiers, a common method is to calculate the area
under the ROC curve called AUC. AUC stands for "Area
under the ROC Curve", represents degree or measure
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Figure 8. ROC-Curve of the EKNS, original Kernel Null Space,
and OCSVM

of separability between two or more different classes. A
model whose predictions are 100% wrong has an AUC
of 0.0; one whose predictions are 100% correct has an
AUC of 1.0.

In our test, we compare the performance of the
EKNS with the original Kernel Null Space in which
the threshold is heuristically selected and fixed at 0.05
[2] and with the One Class Support Vector Machine
method (OCSVM) [17].

The ROC curves of three models are shown in Figure
8 with the corresponding cutpoints. The cutpoint of
the EKNS model with q = 0.025 and θthreshold = 0.0233
has a coordinate of (0.018,0.9377), where 0.018 is the
false positive rate, 0.9377 is the true positive rate;
of the original Kernel null space is (0.006,0.8483);
and the ROC cutpoint of the OCSVM method is
(0.0433,0.9323).

We can see, the point at (0.018,0.9377) has the highest
accuracy and lowest false positive rate as it produces
accuracy of 95,98% and closer to the best point in
the ROC Space (0,1). This result represents a balance
between true positive rate and false positive rate. The
AUC value ( Area Under the ROC Curve) of the EKNS
method (e.g. 0.991) is higher than OCSVM method (e.g.
0.9849), shows that the ability of classification is better.

The obtained results show that; EKNS slightly
outperforms the OCSVM and the original Kernel Null
Space methods in both terms of Accuracy and AUC
while a bit inferior to the Original Kernel Null Space
method in terms of FPR.

However, within the security context, accuracy is the
more important metric since we desire have less False
Positives in trade off to have more False Negatives. In
this context, our solution is proved to be slightly better
than the competitors.
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5. Conclusion and future work
In this research, we have proposed an Intrusion
Detection System using the so-called Enhanced Kernel
Null Space method - EKNS with data-driven threshold
retrieval. The proposed solution with data-driven
findings such as q = 0.025 and σ = 0.5957 is proved to
outperform the current OCSVM and Original Kernel
Null Space methods in terms of detection Accuracy and
AUC.

In the future, we would like to address the
intrusion detection and the monitoring problem using
deep learning, targeting on time series data with
uncertainties. We also focus on the detection ability of
our proposed approach for large stream data.
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