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Abstract 

Detection of primary users without requiring information of signal is of great importance in spectrum sensing (SS) in 

Cognitive Radio. Therefore, in recent years, eigenvalue based spectrum sensing algorithms are under the spotlight. Many 

primary user detection techniques have been proposed for use in Cognitive Radio (CR) and their drawbacks and benefits 

have been examined. However, among the various methods proposed, only some of them can survive in an antagonistic 

environment. Therefore,  another appealing side of eigenvalue based primary user detection algorithms is the fact that they 

are totally immune to uncertain noise levels so they are called robust detectors. Random matrix theory (RMT) is a useful 

tool which is applicable across a large number of fields and in the last decade, a considerable applications in signal 

detection has emerged. In this paper, the detection performances of the eigenvalue based techniques are analyzed based on 

the exact threshold formulations using RMT. As opposed to the threshold estimations with large number of samples and 

antennas presented in the literature, the exact thresholds are used for finite number of samples and antennas. The 

importance of accurate decision threshold selection in spectrum sensing is emphasized. It is shown that the accurate 

threshold computations enable the achievement of  higher detection performances than asymptotic analyses reported in the 

literature. 
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1. Introduction

 The eigenvalues and eigenvectors of the received signal 

covariance matrix give us useful information about the 

signal environment. For the single primary user, the 

eigenvector gives us the primary user direction. If there is 

more than one primary user then the number of primary 

users can be estimated by counting the number of largest 

eigenvalues, moreover, the corresponding eigenvectors 

span the signal subspace. This signal subspace is 

orthogonal to noise subspace, which is spanned by the 

eigenvectors corresponding to the smallest eigenvalues. 

This concept has been exploited in Multiple SIgnal 

classification (MUSIC) algorithm [1]. Since then the use 

of eigenvalues and the eigenvectors of the received signal 

covariance matrix have many applications in signal 

processing and communication, more recently in 

cognitive radio (CR).   

Spectrum sensing is an essential part of the establishment 

of cognitive radio and is defined as the process of 

detecting the existence of primary (licensed) users in 

order to determine the channel accessibility for cognitive 

(unlicensed) users. The emerging spectrum sensing 

techniques [2]-[8], provide opportunistic spectrum usage 

by relying on different system parameters such as noise or 

signal information. However, this is not a realistic 

assumption since cognitive radio users do not know the 

signal information of primary users in advance. Thus, 

techniques which do not require the knowledge of 

primary user signal are highly demanded in cognitive 

radio applications. In addition, robustness of a sensing 

scheme to noise power fluctuation which is phrased 'noise 

uncertainty' has a crucial importance on the decision 

about the presence of primary signal. In this sense, the 

most accurate techniques that can simultaneously achieve 

both high probability detection and low probability false 

alarms are the eigenvalue based detection techniques. 

Thus, this provides a major initiative for studying on the 

eigenvalue based sensing schemes. 

 The major eigenvalue-based detection techniques studied 

in the literature are: 1) maximum eigenvalue detector 

(MED) [9], 2) maximum-minimum eigenvalue (MME) 

detector [10], 3) energy with minimum eigenvalue (EME) 

detector and 4) blind generalized likelihood ratio test (B-

GLRT) [11]. In the eigenvalue based sensing schemes, 

one of the most important problems is to find the 

distribution of the test statistics which helps to set the 

decision threshold given a pre-defined false alarm rate. In 

general, the asymptotic distribution based schemes have 

the advantage of simple analytical characterization, while 

their sensing performance could be significantly inferior, 

especially in those applications with limited number of 

antennas or small sample sizes. In contrast, the exact 
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distribution based sensing schemes allow the calculation 

of the exact sensing threshold, thereby ultimately 

improving the robustness of the spectrum sensing 

schemes. Hence, estimating the exact decision threshold 

expressions for finite number of samples and finite 

number of antennas is of great interest. In this paper, the 

exact distributions of the test statistics are studied using 

finite dimensional complex random matrix theory (RMT). 

Random matrix theory is a useful tool which is applicable 

in different fields such as in physics and wireless 

communications. Despite its applicability over a large 

area, in the last decade, a considerable application in 

spectrum sensing has emerged. In order to utilize the 

random matrix theory, the key assumption used in the 

eigenvalue based sensing is using additive complex 

Gaussian noise model. This is because, in the absence of 

primary signal, the sample covariance matrix of the 

received signal forms a special matrix called Wishart 

matrix. Wishart matrices have been known for nearly a 

century and they have been investigated widely. Recently, 

the statistics of the eigenvalues of Wishart matrices have 

received great attention from the cognitive radio research 

community due to the emergence of the eigenvalue based 

spectrum sensing schemes in cognitive radio systems. 

Thus, RMT became a very useful mediator for analyzing 

the detection performance of the eigenvalue based sensing 

techniques. 

The asymptotic threshold formulation of MED, MME and 

EME detectors are based on theorems in [12] and [13]. 

Thus, the probability of false alarms are asymptotically 

formulated in terms of Tracy-Widom distribution which is 

calculated using the limiting distributions of eigenvalues 

assuming large number of antennas and samples. An 

alternative asymptotic threshold for only MED and MME 

techniques are derived for any fixed number of antenna 

and large number of samples in [14]. However, in 

practical scenarios the number of samples and the number 

of antennas are both finite and considerably small to 

achieve optimal performances and efficient spectrum 

usage. Therefore, estimating the exact threshold 

expressions for finite number of samples and finite 

antennas is of great interest. In this paper, in contrast to 

the asymptotic analysis reported in the literature, based on 

our derived exact distribution of the test statistics for these 

techniques, the exact thresholds for any desired 

probability of false alarm rate and any number of samples 

and antennas are provided. So, the detection performances 

of all the eigenvalue based methods are analyzed based on 

the derived exact thresholds in the absence and presence 

of noise uncertainty. 

The decision metric for B-GLRT have been widely used 

in different applications such as hypothesis testing in 

statistics [15], medical imaging [16], geoscience [17], 

MIMO radar applications [18] and signal detection in 

wireless communications [19]. In [20], [21] and [22], 

asymptotic distributions of this metric were presented. 

However, as mentioned earlier, the asymptotic 

distribution based schemes experience inferior 

performance for finite systems.    On the other hand, the 

exact distribution has been studied in [23] and [24]. 

However the distribution function of the decision metric 

is expressed computationally complex expressions which 

limit its application to the above mentioned different 

areas. Thus we obtain a simple analytical expression 

which allows for fast and efficient evaluation.  

2. Exact Threshold for MME

In [9], it has been shown that in the MME type of 

eigenvalue-based detection method, the ratio of the 

maximum eigenvalue to minimum eigenvalue can be used 

to detect the signal. One of the asymptotic threshold 

formulations for MME is given in [25]. The given 

expression is obtained using the results in [26] which 

assumes, CSCG noise samples and sufficiently high 

number of samples. However, the proposed threshold in 

[25] cannot be evaluated for a desired probability of false 

alarm which is vital in spectrum sensing for an efficient 

spectrum utilization. Thus, in this sense, a better 

approximation for an asymptotic formula of sensing 

threshold for MME has been proposed in [27]. For a 

complex signal, the sensing threshold in terms of desired 

probability of false alarm is calculated by using the results 

of the theorems in [27] and [29] in terms of  the inverse of 

the cumulative distribution function of the Tracy-Widom 

distribution of order 2 which is defined in [30]. The 

defined threshold expression is formulated based on the 

deterministic asymptotic values of the minimum and 

maximum eigenvalues of the covariance matrix, when the 

number of samples is very large. However, in order to use 

this formulation in practice, large number of 

collaboratively sensing cognitive receivers are needed. An 

alternative asymptotic threshold is recently derived for 

any fixed number of antennas and large number of 

samples in  [14].  

In our work [31], the sensing threshold is formulated in 

terms of the desired probability of false alarm based on 

the the exact density of the condition number of a 

complex Wishart matrix. Building on a result of [32] 

where a complicated expression involving multiple 

integrations is given for the density of a function of the 

condition number, a simplified expression is obtained by 

solving the multiple integration. The proposed exact value 

of the threshold can be computed for any finite number of 

antennas and the number of samples. The proposed exact 

formulation is further simplified for the case of two 

receiver based cooperative spectrum sensing [33]. In 

addition, an approximate closed form formula of the exact 

threshold is derived for a special case having equal 

number receive antennas and signal samples.   
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Here, we consider a spectrum sensing problem with a 

cognitive user with m receive antennas, received signals 

of length n and a primary user equipped with a single 

antenna. Note that it is assumed the noise is independent 

of the primary user signal and channel. For the 

convenience of analysis, the primary user signal and the 

noise are assumed as circularly symmetric complex 

Gaussian noise.  The derived exact and the mentioned two 

asymptotic thresholds [30], [14] of MME and the 

detection performances based on these thresholds 

corresponding to desired probability false alarm of 0.1 are 

shown in Figures 1 and 2 respectively. The figures are 

plotted for 2 number of antennas and 20 number of 

samples for ease of calculation of the second asymptotic 

formula. It is worth noting that, although the detection 

performance of second asymptotic threshold looks higher 

in Figure 2, the actual target probability of false alarm is 

0.3 not the desired of 0.1.  

Figure 1. Probability of false alarm for MME vs exact 
and asymptotic thresholds for m=2 and n=20. 

Figure 2. Probability of detection for MME vs SNR 

using exact and asymptotic thresholds for m=2 and 
n=20. 

3. Exact Threshold for EME

The EME detection is proposed in [8]. Basically, it 

compares the signal energy with the minimum eigenvalue 

of the sample covariance matrix to detect the primary user 

signal. The asymptotic threshold for EME is proposed in 

[8]. However, it is worth nothing that, there is no 

asymptotic threshold formula for EME when the 

complex-valued Gaussian noise is used.  

We have studied the distribution for the ratio of sum of 

the eigenvalues to minimum eigenvalue in order to 

calculate the exact decision threshold as a function of the 

desired probability of false alarm for the energy with 

minimum eigenvalue detector. The ratio of energy to 

minimum eigenvalue is also called the Demmel condition 

number of Wishart matrix [34], [35]. Utilizing the results 

on the PDF of the Demmel condition number presented in 

[35], we derived the exact CDF of the Demmel condition 

number of an arbitrary complex Wishart matrix in closed 

form [36]. In addition, for the particular case with two 

number of antennas, we proposed a very simple 

expression. 

Figure 3 shows the exact threshold values versus 

probability of false alarm for EME. Using the exact 

thresholds corresponding to the desired probability false 

alarm of 0.1 given in Figure 3, the detection performances 

are calculated for a range of SNR values which is given in 

Figure 4. As obvious way it looks, the pair of m=8, 

n=2000 has the highest detection probability.  

Figure 3. Probability of false alarm vs exact 
threshold for EME. 
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Figure 4. Probability of detection vs SNR for EME. 

4. Exact Threshold for MED

The decision statistics for the MED is defined as the 

maximum eigenvalue of the received signal covariance 

matrix. This method relies on the received signal and 

noise power information in order to decide the existence 

of the signal. An asymptotic formula of sensing threshold 

for MED is proposed in [9]. For a complex signal, the 

sensing threshold in terms of desired probability of false 

alarm is calculated by using the results of theorem [28]. 

The given threshold is derived based on the limiting 

distribution of the maximum eigenvalue of the received 

signal covariance matrix. An improved alternative 

asymptotic threshold for MED is derived for any fixed 

number of antennas and large number of samples in  [14]. 

In [37], we derived the exact decision threshold of 

maximum eigenvalue detection for multiple receiver 

spectrum sensing. As opposed to the decision threshold 

estimations based on an asymptotic analysis with large 

number of samples and/or antennas presented in the 

literature, the proposed mathematical formulation can be 

used to calculate exact thresholds for finite number of 

samples and antennas. Moreover, the proposed thresholds 

are valid for both correlated and uncorrelated Gaussian 

noise cases. The formulations are represented by complex 

hypergeometric functions of matrix argument, which can 

be expressed in terms of complex zonal polynomials [32]. 

It is shown that the probability of detection performance 

with the proposed exact decision thresholds performs 

better than the performance achieved with the decision 

thresholds calculated based on the asymptotic analysis. 

The asymptotic (γAsy) and the exact (γEx) threshold values 

at some specific number of samples are shown in Table 1. 

It can be observed that, both asymptotic thresholds of 

MED [9], [14] are more closer to the exact threshold as 

compared to the closeness of the exact-asymptotic 

thresholds of MME. This is because both asymptotic 

distributions of the maximum eigenvalue are more 

accurate than the asymptotic distribution of the ratio of 

maximum to minimum eigenvalue. Also, it is clear that, in 

terms of closeness, the first asymptotic thresholds of 

MME works better than second asymptotic approach 

especially for small number of samples. But, it is worth 

nothing that, even very small difference between 

asymptotic and exact threshold values of low m and n can 

make a difference in detection probability.  

After we examine the individual eigenvalue based sensing 

schemes of EME, MED and MME, we compared all these 

schemes together. The performances of the methods at 

different SNR values are given in Figure 5. As it can be 

seen from the figure, the MED detector outperforms the 

MME and EME detectors. The Receiver Operating 

Characteristics (ROC) curve is shown in Figure 6. In this 

figure, the detection probabilities are calculated for a 

range of desired probability of false alarm at SNR=-8dB. 

The all methods in absence of noise uncertainty are 

compared with the presence of 0.5,1 and 2 dB noise 

uncertainties. From the figure, we see that MME and 

EME are significantly robust to the noise uncertainty. 

However, even MED is not robust as MME and EME, 

still it provides higher detection performance in the 

presence of noise uncertainty. 

Figure 5. Comparison of probability of detection vs 
SNR: Pfa=0.1, m=4, n=100. 

EAI Endorsed Transactions on

Industrial  Networks  and Intelligent Systems 
03 2018 - 06 2018 | Volume 5 | Issue 14 | e3



5 

Table 1. Numerical Table for exact and asymptotic thresholds for MME, MED and EME: m=2, Pfa=0.1. 

Figure 6. ROC curve at SNR=-8dB: m=4, n=100. 

5. Exact Threshold for B-GLRT

The fundamental principle of  eigenvalue based 

techniques discussed above are constructed from the 

generalized likelihood ratio test [20], [21]. As it is well 

known, the optimum Neyman-Pearson test is the most 

powerful test when the knowledge of complete parameters 

are assumed to be known [41]. However, the exact 

densities in the absence and presence of primary signal 

can not be evaluated and thus it is not a realistic approach 

in practical scenarios. Therefore, estimating the unknown 

parameters is one of the approaches to overcome this 

difficulty. Different estimation methods can be used in 

order to make this suitable for real applications. One of 

the estimation techniques which enables tractable 

(likelihood ratio test) LRT is maximum likelihood 

estimate (MLE) [42]. Replacing the unknown parameters 

in LRT with their ML estimation is called generalized 

likelihood ratio (GLR). So, the GLR detector can be 

developed from the LR function and requires the partial or 

complete MLE of the signal, noise and channel 

parameters. In general, the GLR based approaches are 

called generalized likelihood ratio test (GLRT). 

The decision metric for B-GLRT is the maximum 

eigenvalue of the sample covariance matrix to the sum of 

the eigenvalues. The term blind refers to the fact that this 

method assumes that all the noise and the channel 

parameters as unknown. So, B-GLRT achieves the 

optimal performance when the channel and the noise 

parameters are all unknown [38]. Thus, this method is 

very important in blind spectrum sensing compared to 

others.  

The asymptotic approach based threshold formulation for 

the blind GLRT is given in [20] in terms of Tracy-Widom 

distribution of order 2 for finite systems. It is assumed 

that the number of antennas and number of samples are 

large enough. So based on the approximation in [40], the 

summation of the eigenvalues is considered as constant 

and to be equal to the noise variance. Thus, the 

asymptotic distribution of ratio of maximum eigenvalue to 

noise variance is adopted to formulate the asymptotic 
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threshold given in [20]. On the other hand, the exact 

distribution of the decision metric for B-GLRT is studied 

in [23, 24]. However, the distribution function of the 

decision metric is expressed in terms of multi-dimensional 

integrals and computationally complex expressions which 

limit its application in different areas. Thus, it is important 

to obtain a simple analytical expression which allows for 

fast and efficient evaluation. 

In [43], we derived the novel analytical expressions for 

the probability density function (PDF) and cumulative 

distribution function (CDF) of the decision metric for B-

GLRT for general uncorrelated Wishart matrices. 

Utilizing the PDF expression of the maximum eigenvalue 

given in [44], we calculated the density by exploiting the 

theorem given in [45]. The derivation of simple closed-

form expressions for the PDF and CDF for the special 

dual uncorrelated and dual correlated complex central 

Wishart matrices (m=2) are further contributions of our 

work. The obtained expressions involve only standard 

functions. Therefore they can be evaluated in a very fast 

and efficient manner. Based on these results, the sensing 

performance of the exact distribution-based blind 

generalized likelihood ratio test (B-GLRT) scheme is 

investigated. 

Figure 7 illustrates the PDF of the decision metric for B-

GLRT for the uncorrelated dual complex Wishart 

matrices with different number of samples. It can be seen 

that the analytical and Monte Carlo simulation results are 

in perfect agreement. The derived closed–form CDF 

expression, [43] for m=2 is also verified in Figure 8. The 

PDF is plotted in Figure 9 for correlated dual complex 

Wishart matrix for m=2 and n=6. The sigma matrix is 

taken as Σ2=[0.4 0; 0 0.6]. So, correctness of the derived 

distribution is justified by the consistency of the analytical 

and simulation results. The Receiver Operating 

Characteristics (ROC) curve is shown in Figure 10. In this 

figure, the detection probabilities are calculated for a 

range of desired probability of false alarm at SNR= -8dB. 

All methods in the absence of noise uncertainty are 

compared with those in the presence of 0.5, 1 and 2 dB 

noise uncertainties. As it can be seen, MME, EME and B-

GLTRT are fully robust to noise uncertainty. However, 

the susceptible detection performance of MED can be 

clearly observed. 

Figure 7. The PDF of the ratio of the largest 
eigenvalue to the trace of a uncorrelated dual 

complex Wishart matrix. 

Figure 8. The CDF of the ratio of the largest 
eigenvalue to the trace of a uncorrelated dual 

complex Wishart matrix. 
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Figure 9. The PDF of the ratio of the largest 
eigenvalue to the trace of a correlated dual complex 

Wishart matrix. 

         Figure 10. ROC curve at SNR=-8dB: m=4, 
n=50. 

6. Conclusions

This paper overviewed the eigenvalue-based spectrum 

sensing schemes using more accurate decision threshold 

computations as compared to the existing formulations in 

the literature. This accurate threshold computation enables 

the achievement of a higher detection performance. 

Formulations are developed for four major eigenvalue 

based schemes namely MME, EME, MED and B-GLRT. 

The threshold calculation of B-GLRT scheme which is 

the optimal eigenvalue-based scheme is based on to the 

derivation of a new probability density and a cumulative 

distribution expression. The noise uncertainty issue and 

its influence on the eigenvalue-based sensing schemes are 

also examined using the exact threshold results. It is 

shown that the methods of B-GLRT, MME and EME 

which belong to the blind detection category and which 

do not assume any knowledge of the noise are robust to 

varying noise levels. However, MED is very vulnerable to 

changes in noise levels which in turn makes the detection 

unreliable. 
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