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Abstract

On-demand transport has been disrupted by Uber and other providers, which are challenging the traditional
approach adopted by taxi services. Instead of using fixed passenger pricing and driver payments, there is now
the possibility of adaptation to changes in demand and supply. Properly designed, this new approach can lead
to desirable tradeoffs between passenger prices, individual driver profits and provider revenue. However,
pricing and allocations—known as mechanisms—are challenging problems falling in the intersection of
economics and computer science. In this paper, we develop a general framework to classify mechanisms in on-
demand transport. Moreover, we show that data is key to optimizing each mechanism and analyze a dataset
provided by a real-world on-demand transport provider. This analysis provides valuable new insights into
efficient pricing and allocation in on-demand transport.
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1. Introduction
Catching a cab has changed over the last few years. In
New York City at the turn of the millennium, hailing
a cab from the side of the road was the norm. Or in
Sydney, it was common to call a taxi dispatcher for a
journey to the airport. Now in 2017, it is increasingly
common to instead open an app on a smartphone to
book transport via Uber, Lyft, or one of several other
on-demand transport services.

What has changed? After the now widespread
adoption of internet-enabled smartphones and secure
online payments, it is possible for both potential
passengers and drivers to easily communicate with a
provider or directly with each other. This offers the
potential for passengers to be transported, irrespective
of their location and the locations of available drivers.
The problem that remains is to determine which driver
should transport which passenger and how much they
should pay—the allocation and pricing.

The high level of connectivity that we now take for
granted can also assist in allocation and pricing. In
particular, the use of smartphone apps has made it
possible for providers to collect huge amounts of data,
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such as the time and location of each passenger’s pick-
up and drop-off, as well as the prices that passengers
are prepared to pay and the fares drivers are willing to
accept. The combination of this data is leading to new
insights into the spatial-temporal profile of on-demand
transport systems [1–4] and ultimately opens the way
for increasingly efficient allocation and pricing.

In fact, data-driven allocation and pricing is now an
active area of research and plays a key role in real-world
on-demand transport services [5–10]. By accounting
for the real-time behavior of passengers and drivers,
it is possible to improve the reliability of on-demand
transport services in terms of waiting times, driver
profits, and also provider revenue.

In this paper, we develop a general framework
to design allocation and pricing algorithms within
on-demand transport, with a focus on profit-driven
services; that is, we focus on taxi-like services rather
than on dial-a-ride services [11]. In particular, we
show that existing on-demand transport mechanisms
are different variants of two-sided markets. Our
framework provides a unifying perspective for existing
allocation and pricing algorithms, which can be
viewed as implementations of market mechanisms from
economics in the context of on-demand transport.
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Key examples are auctions [12] and posted price
mechanisms [13].

A key feature of our framework is that it clarifies
the requirements of different mechanisms, which
forms a basis for the mechanism selection problem
that providers face. In fact, we identify allocation
and pricing algorithms within our framework that
have desirable properties, but have not yet received
significant attention.

The algorithms in our framework all rely on
information either obtained directly from real-time
passenger requests and driver reports, or from
historical data collected from previous requests. In this
sense, effective mechanisms for pricing and allocation
in on-demand transport are data-driven. It is therefore
important to develop approaches to obtain and exploit
this data.

There are two aspects of the mechanisms that require
data. The first aspect is the optimization of the pricing
and payments for each mechanism in our framework.
In auction-based mechanisms data is obtained directly
from passengers and driver reports (or bids). However,
in practice an alternative approach based on posted
price mechanisms—where the provider makes offers,
which are accepted or rejected—has proven most
popular. In the posted price mechanism, the prices
are selected based on historical transactions. When
there is limited data, an online pricing approach is
desirable, where the price is adapted as new data
becomes available.

The second aspect is the optimization of allocations of
passengers and drivers. While each market mechanism
in our framework provides an allocation algorithm
for a given set of passengers and drivers, it does
not provide a means of selecting this set—known
as the market formation problem [14]. Due to the
huge scale and heterogeneity of on-demand transport
systems, it is not possible to allocate all passengers and
drivers simultaneously. As such, market formation is an
important practical issue.

At present, there are limited data-driven methods
available for the market formation problem, with
most commonly used approaches reliant on heuristics
guided by experienced practitioners. To gain insight
into efficient market formation, we apply machine
learning methods to real-world data from the provider
Liftago in the Czech Republic. In particular, we identify
key features that determine which drivers are willing
to be allocated to a passenger. The features include
not only factors such as distance but also driver-
dependent factors such as historical acceptance rates. A
key observation is also that the accuracy of the feature
ranking is highly dependent on the availability of data.

In the remainder of the paper, we first detail
our classification framework for on-demand transport
mechanism in Section 2. Our framework provides a

way to systematically identify the requirements of
each pricing and allocation algorithm, which forms a
basis for mechanism selection by on-demand transport
providers. In Section 3, we discuss the market formation
problem and present the results of the analysis of
the Liftago dataset. We conclude and outline future
directions in Section 4.

2. On-Demand Transport Market Mechanisms: A
Classification
Two key problems in on-demand transport are: (1) how
to allocate passengers to drivers; and (2) how to determine
passenger prices and driver payments. For traditional taxi
services, the allocation is based on passengers hailing
from the side of the road (the “hackney carriage” model)
or through a phone call to a dispatcher who then selects
a driver nearby the passenger (the “dispatcher” model).
Pricing is typically determined either by regulation
or through a negotiation between the driver and each
potential passenger.

On the other hand, new on-demand transport
services provided by companies such as Uber and
Lyft are using a different method. By exploiting a
smartphone app, passengers are connected to a number
of drivers within their region and are able to select
the one they prefer. How much passengers pay and
the commission drivers receive is determined by the
provider through a pricing mechanism. This allocation
and pricing scheme is an example of a posted price
mechanism [13], where the provider determines the
price and passengers or drivers are able to accept or
reject their offer.

Posted price mechanisms in on-demand transport
are themselves a class of two-sided market, where a
service is provided by one side (i.e., the drivers) and
bought by the other side (i.e., the passengers). Two-
sided markets are an active area of research in both
economics and computer science, aiming to efficiently
allocate resources or services [15]. In this section, we
develop a framework to unify the different approaches
based on the fact that they are different variants of
two-sided markets. Table 1 provides an overview of the
framework, presenting the structure and challenges of
the four classes of mechanisms: posted-price; double
auction; and hybrids.

2.1. Posted-Price Mechanisms
Posted price (PP) mechanisms (illustrated in Fig. 1)
are currently the most popular approach to two-sided
markets within on-demand transport. In this approach,
passengers and drivers are each offered a price and
a payment, respectively, which they can either accept
or reject. More generally, PP mechanisms play an
important role in a range of economic problems. The
posted price mechanism is summarized in Algorithm 1.
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Table 1. Summaryof Frameworkfor Mechanismsin On-DemandTransport.

Mechanism Passenger Side Driver Side Requirements

Posted price (One-sided) Posted price (One-sided) Posted price
Historical data to set prices,

driver selection policy.
Double auction Auction Auction Bidding from both passengers and drivers.

Hybrid PP/A (One-sided) Posted price Auction
Historical data to set passenger prices,

driver bidding.

Hybrid A/PP Auction (One-sided) Posted price
Passenger bidding,

historical data for driver payments,
driver selection policy.

Figure 1. Illustration of the posted-pricemechanism.In posted-
price mechanismsa single passenger is o˙ered a price by the
providerand is able to accept or reject the o˙er. A numberof
driversare theno˙eredthe passenger’s journeyanda commission.
If a driveraccepts the journey,the passenger is served by the
driver.

Algorithm 1 Posted Price Mechanism [13].

Step 1. For each passenger request, the provider
selects a driver.
Step 2. The provider offers the passenger a price p
and the driver a payment η.
Step 3.

(a) If both the passenger and driver accept (pi ≥ p
and η ≥ ηj ), the passenger i is transported by
the driver j.

(b) Otherwise, the passenger request is withdrawn.

A key advantage of PP mechanisms is that they
require limited information from each passenger and
driver. Instead, the prices and payments are set based
on historical data. This is important as each passenger
and driver is not always well informed about the state
of the whole on-demand transport system. As such, the
price calculations can be done by the provider which

can simplify the use of the service for passengers and
drivers.

PP mechanisms are commonly studied as the multi-
period pricing problem [16, 17]. Here, the revenue
and proportion of served passengers is optimized
accounting for parameters including the number of
taxis, average passenger demand, and average waiting
times. The basis for this optimization problem is
a model relating the provider’s revenue to these
parameters. An example is the model developed in [18],
where the average waiting time of passengers W , is
given by

W =
ω

pNT − DL
γ

, (1)

where ω depends on the density of taxi stands, p is the
proportion of available taxis, NT is the total number of
taxis, γ is the average number of passengers per journey,
L is the average travel time, andD is the average number
of passengers served by the whole taxi system. As such,
pNT − DL

γ represents the average number of available
taxis. We remark that [18] focuses on the role of taxi
regulation; however, this is under the assumption of
a PP mechanism. Recently, this model has also been
extended to account for strategic behavior of individual
drivers [6, 19].

A drawback of the model introduced in [18] is
that the preferences of individual passengers are not
explicitly modeled. In fact, the model relies on the
average behavior of passengers and drivers. As such,
the full statistical information in historical data is
not exploited. To remedy this problem, another class
of models has been proposed in [7, 20] where each
passenger i is treated as an agent, with a maximum price
pi and a maximum waiting time δi they are willing to
accept, which are random variables drawn from beta
distributions. The beta distribution is selected due to
the fact that it has bounded support (passengers are
not willing to pay arbitrarily high prices), as well as
flexibility as it is parameterized by three parameters
and includes many standard distributions as special
cases (e.g., uniform).
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In general socio-economic systems, it is often
challenging to understand the underlying processes
that cause agents to behave in certain ways. As such, an
important methodology is to instead consider stylized
facts, which are qualitative trends satisfied by the
system [21, 22]. In the context of on-demand transport,
the model in [7] is motivated by the two following
stylized facts, which form common qualitative trends
in on-demand transport systems:

Stylized Fact 1. The maximum price a given
passenger will pay for a journey and her maximum
waiting time δ do not vary significantly for
passengers that regularly use on-demand transport
services. In other words, these parameters will in
general vary from passenger to passenger, but not
for the same passenger.

Stylized Fact 2. The probability that a passenger
will accept an offer decreases when either the price
increases with the waiting time fixed, or the waiting
time increases with the price fixed.

The first stylized fact ensures that passengers have a
well-defined maximum price and the second stylized
fact captures the intuitive notion that if there is a
better deal, more passengers will accept. These stylized
facts provide an important basis for the passenger
models. We note that they are not guaranteed to hold in
every situation, and for such scenarios the algorithms
may require additional tuning. Nevertheless, these
algorithms can still provide improvements over just
considering the average behavior as in [6].

As a consequence of the model in [7, 20], the provider
can set the price in the PP mechanism to maximize its
expected revenue for short waiting times. In particular,
the expected revenue is given by

R(p) = pPr(p ≤ pi), (2)

where Pr(p ≤ pi) is the probability that passenger
i accepts the offered price p. A similar approach
can be applied to optimize the provider’s percentage
commission, η, from a journey of driver j by
maximizing

C(η) = (1 − η)Pr(η > ηj ), (3)

where C(η) is the provider’s expected commission, ηj
is the minimum acceptable percentage commission of
driver j and Pr(η > ηj ) is the probability that the driver
is willing to accept a commission η.

Observe that the PP mechanism relies on historical
data through the distribution of the maximum price

pi . As the distribution is modeled via the beta
distribution, the problem reduces to estimating three
parameters. However, it may not always be possible
for drivers to have sufficient historical data to reliably
estimate the parameters for the distributions of
passenger maximum payments and driver minimum
percentage commissions. In this situation, the price and
commission need to be adapted as new data becomes
available.

A promising approach to exploit new data is to
use algorithms for the multi-armed bandit problem.
In particular, passengers are offered a price within
the set P = {p1, . . . , pN }. Using historical observations
of the acceptance of each price, the price for the
next passenger is updated according the to UCB1

algorithm, originally developed in [23]. This approach
was proposed in a pure economic context in [24] and
can be adopted in the on-demand transport setting as
detailed in Algorithm 2.

Algorithm 2 Multi-armed bandit pricing algorithm
[24].

Initialization: For passenger i, 1 ≤ i ≤ N , allocate
price pi .
Loop: Allocate the price pj that maximizes xj +√

2 logn
nj

, where xj is the average profit received so far

from using price pj , nj is the number of times price
pj has been allocated, and n is the total number of
requests.

Intuitively, the algorithm trades off exploration of
new (potentially higher) prices with exploitation of
prices that are known to be successful. The analysis
of the performance of multi-armed bandit pricing
algorithms in on-demand transport remains to be fully
explored.

2.2. DoubleAuctionMechanisms
In economics, a single-sided auction is a means of
pricing goods or services where buyers (or sellers)
bid for the price they are prepared to pay (or sell)
[25]. Classical examples are the English or sealed bid
auctions used in property sales or for antiques and
artwork. More generally, two-sided or double auctions
can be applied in situations where there are both
multiple buyers and multiple sellers.

In the context of on-demand transport, a double
auction (illustrated in Fig. 2) allows for passengers
to disclose the price they are prepared to pay and
drivers to set the fare they are prepared to accept in
order to provide transport. In contrast, PP mechanisms
only allow passengers and drivers to accept or reject
prices set by the provider. For this reason, double
auctions can lead to more efficient allocation of services.

4
EAI Endorsed Transactions on

Industrial  Networks  and Intelligent Systems 
03 2018 - 06 2018 | Volume 5 | Issue 14 | e4



Towards Data-Driven On-Demand Transport

In fact, the role of a double auction mechanism (to
simultaneously price and allocate both passengers and
drivers) implemented by a provider is to decide when
passengers and drivers can be matched and how much
they should pay, given their bids.

Figure 2. Illustrationof the doubleauctionmechanism.Indouble
auctionmechanisms,each passenger makesa bid for the price of
their journey,whileeach drivermakesa bid for their commission.
The providerthen acts as a matchmakerto determinewhich
passenger is served by each driver.

A key problem in double auctions is to account for
the strategic behavior of the agents (i.e., passengers and
drivers) involved. In fact, unlike traditional taxi models
[18], the individual preferences of passengers and
drivers influence the design of the mechanism. This is
caused by the provider’s lack of knowledge concerning
how much passengers are prepared to pay and the
minimum payment drivers are willing to accept, which
requires the provider to elicit these preferences from
both passengers and drivers via reporting (or bidding).

In the case of PP mechanisms, agents either accept
or reject their offers, which means that agents have
no incentive to report (or bid) untruthfully—clearly,
accepting an unwanted service is not a rational strategy.
However, this is not necessarily these case in double
auctions and it is desirable to ensure that agents bid
truthfully, the provider does not lose money (weak
budget balance), and agents that bid truthfully have an
incentive to participate (individual rationality). For a
detailed discussion of these concepts, see [25].

Double auction mechanisms have been extensively
studied within economics and computer science, and
fall into two main classes: static and online. In the
static case, all passengers and drivers to be allocated are
known to the provider. In the dynamic case, passengers
and drivers can arrive at different times which must be
accounted for by the mechanism. A key desiderata in
both cases is to ensure that the mechanism is efficient,
which means that the total reward for buyers and sellers
for receiving or providing the service is maximized. In

general, optimal efficiency is not possible to achieve
while also ensuring truthfulness, budget balance and
individual rationality [26].

The application of classical double auctions in on-
demand transport has not proven straightforward.
One reason for this is that the purpose of the
market can differ compared with the classical economic
setting. In particular, the provider seeks to make a
long-term profit, while the main related criterion in
double auction theory is budget balance which only
accounts for the short-term profit. As such, verifying
the profitability of double auction mechanisms in
on-demand transport relies heavily on simulation.
This means that specialized on-demand transport
simulation tools such as the Mobility Services Testbed
[27] are required.

Another difficulty facing the application of double
auctions is that allocations depend heavily on the
financial resources of each passenger. For this reason,
the passengers that are allocated may not be those that
desire the service the most. As such, it is likely that a
key application off double auction mechanisms to on-
demand transport is for services targeted at businesses
(to transport staff within a city) to minimize the effect
of financial inequality.

At present, the application of double auctions in
on-demand transport has focused on the static case
where all passengers and drivers are known before
the allocation and pricing begins. In particular, the
mechanism is based on the approach by McAfee [26],
which is known to have the desirable properties of
truthfulness, budget balance and individual rationality.
in particular, the work in [8–10] adapted the McAfee
mechanism and investigated the average number of
transactions and efficiency for each mechanism run.

There are two stages of the static double auction
mechanism in [8]:

1. Decompose the market consisting of all passen-
gers and drivers into markets.

2. Allocate passengers to drivers and set prices.

The first stage is necessary to ensure that the locations
of passengers and drivers in each market lie within the
same region. The reason for this is that the McAfee
double auction mechanism requires homogeneous goods,
which means that the passenger initial locations and
requests as well as the initial locations of the drivers are
similar.

The second stage of the static double auction
approach in [8] is to allocate passengers to drivers using
the McAfee mechanism. The allocation algorithm is
detailed in Algorithm 3. In the algorithm, Steps 1 and 2
sort the passengers and drivers based on their reported
maximum prices and minimum payments, respectively.
Note that it is not possible to directly compare the
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reports of the passengers and drivers directly due to
the fact that drivers report their minimum profit. As
such, in Step 1 the price of each passenger is modified to
account for the distance of their journey and the initial
distance to each driver. Steps 3-5 then determine the
prices and payments based on the McAfee mechanism
[26].

Algorithm 3 Double auction mechanism pricing and
allocation based on the McAfee mechanism [26].

Require: Passengers broadcast {pi}Ki=1 (the maximum
price they are prepared to pay for their journey), and
drivers broadcast {sj }Nj=1 (the minimum profit they are
prepared to receive for their next journey).
Step 1. For each commuter, compute p′i = pi −
cRmax − cR0,max, where c is the cost per kilometer for
each driver, Rmax is the maximum journey distance
and R0,max is the maximum distance of the driver
from a passenger.
Step 2. Sort passengers: p′(1) ≥ p

′
(2) ≥ · · · ≥ p

′
(K);

drivers: s(1) ≤ s(2) ≤ · · · ≤ s(N ).
Step 3. Compute the number of efficient trades: k∗ =
max{k : p′(k) ≥ s(k), p

′
(k+1) < s(k+1)} and compute p0 =

1
2 (p′(k+1) + s(k+1)).
Step 4. Check the McAfee condition:

(a) If p0 ∈ [s(k∗), p′(k∗)], then the actual prices for the
drivers and passengers are s = p′ = p0 and all k∗

efficient pairs are allocated;

(b) Otherwise the prices for the drivers and
passengers are s = s(k∗), p′ = b′(k∗) and k∗ − 1
pairs are allocated.

Step 5. Passengers are then required to pay p′ +
cRmax + cR0,max and each driver j who transports
commuter i is paid s + cRi + cRj,i .

To the best of our knowledge there is no work in
theory or practice applying online double auctions to
on-demand transport. However, in certain applications
it may be desirable to adopt an online approach, for
which there is a firm basis in the economics and
computer science literature (see, e.g., [15]).

2.3. HybridMechanisms
So far, we have examined allocation and pricing for on-
demand transport where a PP mechanism or a double
auction is applied to both passengers and drivers. It
is also possible to consider the class of mechanisms
where passengers are priced based on a PP mechanism
and drivers based on a single-sided auction mechanism
(the hybrid PP/A mechanism), or vice-versa (the hybrid
A/PP mechanism). However, investigations into hybrid
mechanisms remain ongoing work [28].

A particularly interesting hybrid mechanism is the
application of a PP mechanism to price passengers
and a single-sided auction to set driver payments
(the hybrid PP/A mechanism, illustrated in Fig. 3).
Although there has been no formal analysis of this
mechanism, it has been put into practice by Liftago
in the Czech Republic. Liftago’s mechanism proceeds
(illustrated in Fig. 4) as detailed in Algorithm 4:

Figure 3. Illustration of the hybridPP/A mechanisms.In hybrid
PP/A mechanisms,a passenger is o˙ered a price by the provider
and is free to accept or reject the o˙er. Each driverthen bids for
the passengers journey,wherethe bid consistsof the commission
the driveris preparedto accept.

service
passenger

driver 1

driver 2

driver 3

driver k

driver n

(1) taxi request (2) matchmaking

(3) accept  + bid

(4) driver selection

Figure 4. Liftagoservice overview. It takes foursteps to issue a
ride order: passenger sends a request (1), Liftago designates a
set of drivers(2), a subset of whichaccepts the requestand o˙ers
a price (3), finall (4) the passenger selects a single o˙er.

Algorithm 4 Liftago mechanism description.

Step 1: A passenger makes a request to Liftago.
Step 2: Liftago identifies a subset of drivers to
potentially serve the passenger.
Step 3: Each driver bids to serve the passenger, or
ignores the request.
Step 4: The passenger selects one of the drivers and
pays the corresponding bid.
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Even in competition with traditional taxis and other
providers such as Uber, Liftago has managed to remain
financially sustainable using the hybrid mechanism.
This suggests that a fruitful avenue of research is an
analysis of how the hybrid mechanism compares with
traditional taxis and other market mechanisms. An
initial investigation is currently being carried out in
[28].

While Liftago’s mechanism has several desirable
features, a key challenge is the design of algorithms for
Step 2. This step is known as market formation and
is analogous to the first stage of the double auction
mechanism in [8] detailed in Section 2.2. However,
unlike in the double auction mechanism the provider
does not have bids from both passengers and drivers. As
such, there is a reliance on historical transaction data. In
the next section, we focus on data-driven aspects of the
market formation problem in the context of on-demand
transport (see [14] for a more general perspective).

3. The Market Formation Problem
Each market mechanism has different features that
make it appropriate for different applications of on-
demand transport, whether it be a PP mechanism,
double auction, or a hybrid. However, all the mecha-
nisms have a common feature: they require a market.
In particular, not every passenger and driver can be
potentially matched. As such, it is necessary for the
provider to make a selection of passengers and drivers
that are allocated at the same time.

Ideally, market formation [14] should be performed
so that the number of drivers that compete for each
passenger is minimized, while still ensuring that each
passenger is able to be serviced. The most basic market
formation approach simply ensures that hard constraints
are met. These hard constraints include the maximum
travel time between the initial locations of drivers
and the pick-up locations of potential passenger. Other
hard constraints may be based on other preferences of
passengers, which may limit the vehicle class of each
driver, or driver reputation. Simply accounting for hard
constraints ensures that passengers are not offered a
service from any driver that does not satisfy these hard
constraints.

In general, hard constraints such as maximum travel
time do not rule out a large number of potential
drivers [8]. As such, drivers may need to respond
to many requests. This can reduce the safety of
drivers as they need to concentrate on responding to
requests, rather than focusing on driving. Moreover,
for a given passenger request, many drivers that
are offered a passenger’s journey may not want to
serve the passenger. This may be due to passenger
characteristics such as desired drop-off location or
passenger reputation.

To further reduce the number of drivers that can be
potentially matched to each passenger, it is possible to
exploit heuristics based on the advice of experienced
practitioners. For instance, provider experience may
suggest that a fixed number of drivers are allowed to
be matched with each passenger, where each driver
is selected randomly from those that satisfy the hard
constraints. More sophisticated heuristics may be based
on passenger features such as drop-off location as, for
example, passengers that wish to travel to transport
hubs (e.g., airports) are significantly more desirable
than passengers that wish to travel to locations where
there is unlikely to be another passenger [29]. In
these cases, it may be desirable to offer more drivers
the journey of passengers with undesirable drop-off
locations to ensure that the chance they are served is
maximized.

Heuristics based on expert support are built using
the experience of providers. This approach can be
improved by exploiting the availability of historical
data, which leads to data-driven market formation.
In data-driven market formation, systematic machine
learning techniques are applied to select drivers and
passengers that can be potentially matched.

At present, there are limited data-driven algorithms
for the market formation problem (initial work in
this direction can be found in [3, 4], designed for
PP mechanisms). The first step to developing these
algorithms is to apply machine learning techniques
to real-world data. To this end, we exploit a
dataset provided by Liftago, which employs a hybrid
mechanism as described in Section 2.3. Although this
data is specific to Liftago, the analysis methodology can
be applied to any provider’s data set and the features
provide important insights into the role of both per
journey factors such as distance and long-term factors
such as the historical acceptance rate of each driver.

Our aim in analyzing the Liftago data set is to
understand the contribution of features that determine
whether or not a driver is willing to bid for a given
passenger’s journey. Each feature is detailed in Table 2.
We performed a ranking of the features on Liftago’s
dataset consisting of 253687 passenger requests. The
ranking was based on a binary classification model able
to predict the probability that a driver will accept and
bid for a passenger’s request based on the features in
Table 2. The classifier is based on the Random Decision
Forest Ensemble (RDFE)1 [31], which provides a means
of ranking features by averaging over the expected
fraction of samples affected by tree nodes over all 200
trees.

The result of the feature ranking is shown in
Fig. 5. Observe that all features have a non-negligible

1The implementation is based on the scikit-learn package [30].
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Figure 6. Plot of RDFE driveracceptancemodelaccuracy on a
test set (up to 20% of the wholedataset).

contribution, which implies that highly efficient market
formation algorithms should account for a range of
factors, both on a per journey basis and also based on
long-term historical data. The analysis also revealed
that the most significant factors are the distance from
a driver’s initial location to the passengers pick-up
location and the mean acceptance rate of the drivers.
It is important to note that the pick-up distance is a per
journey factor, while the mean acceptance rate is based
on long-term driver history.

In practice, the training data depends on how long
the provider has been operating. As such, it may not
be possible for providers to initially have access to a
large dataset. To understand the effect of the size of the
training set, the accuracy of the model based on small

Table 2. Features derivedfromthe Liftagotransactionsdataset.

Feature Description
Pickup Distance Euclidean distance to pickup

Ride Distance
Euclidian distance from

pickup to destination

Pickup Center
Pickup Euclidian distance from

Prague center

Ride Center
Pickup Euclidian distance from

Prague center
Hour Time of day
Day Day of the week

Mean Accept Rate Driver average accept rate

training sets must be considered. The accuracy is the
proportion of correct predictions made by the RDFE
model2. Fig. 6 is a boxplot of the accuracy for different
dataset sizes based on 8 runs of the RDFE with different
seeds. Observe that the accuracy is highly dependent
on the number of training samples. This suggests that
building large training sets is important for market
formation in on-demand transport.

4. Conclusions and Future Directions
Data-driven approaches to on-demand transport are
now gaining traction as Uber and other providers are
adopting market-based mechanisms to allocate and
price passengers and drivers. By exploiting historical
datasets, it is now possible to improve the efficiency of
on-demand transport to ensure it is easier than ever
to get from point A to B while maintaining financial
sustainability of the provider.

Due to the fundamentally different approach to
allocation and pricing, there are new challenges in
understanding and improving allocation and pricing in
on-demand transport. In this paper, we have provided a
framework to classify the different market mechanisms
that can be applied and how market formation can
be performed. We also have identified key features
for market formation based on an analysis of Liftago’s
data set, which reveal that both journey-specific and
long-term driver behavior should be accounted for.
However, there are a number of other aspects that
deserve attention.

In particular, the role of subsidies in on-demand
transport market mechanisms is not well-understood.
As providers need to ensure they have both sufficient
supply (drivers) and demand (passengers), it can be
necessary for the mechanism to further adjust pricing

2The accuracy is a good measure of performance in the case that the
classes are well balanced. In the Liftago dataset this is indeed the case
with 45% positive and 55% negative.
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to ensure that journey offers are accepted by both
passengers and drivers.

Selecting and optimizing mechanisms for on-demand
transport is challenging due to the huge scale and
heterogeneity of the system. For this reason, obtaining
large datasets and developing effective simulation
tools are a key aspect to improving performance.
This is important not just for providers, but also for
municipalities and governments to ensure that there
is a fair tradeoff between provider revenue, individual
driver profits and passenger prices.

Exploiting available data will require effective
machine learning techniques at very large scales.
Combining these machine learning techniques with
economic theory is leading to many new open problems.
However, given the importance of transportation,
developing efficient data-driven on-demand transport
is a valuable challenge.
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