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Abstract

Robotic automation is being increasingly proselytized in the industrial and manufacturing sectors to increase
production efficiency. Typically, complex industrial tasks cannot be satisfied by individual robots, rather
coordination and information sharing is required. Centralized robotic control and coordination is ill-advised
in such settings, due to high failure probabilities, inefficient overheads and lack of scalability. In this paper,
we model the interactions among robotic units using intelligent agent based interactions. As such agents
behave autonomously, coordinating task/resource allocation is performed via distributed algorithms. We use
the motivating example of warehouse inventory automation to optimally allocate and distribute delivery tasks
among multiple robotic agents. The optimization is decomposed using primal and dual decomposition techniques
to operate in minimal latency, minimal battery usage or maximal utilization scenarios. These techniques may
be applied to a variety of deployments involving coordination and task allocation between autonomous agents.
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1. Introduction
Integration of robotics, cyber-physical systems and the
cloud has come to the forefront with Industry 4.0
[1] requirements. Industry 4.0 proposes the “smart
factory” solution, wherein, modular cyber-physical
systems coordinate to make decentralized decisions.
Such coordination is required for high throughput,
complex flows among multiple participants in industrial
deployments. Some of the key requirements include [1]:

1. Interoperability: Machines, Internet of Things
(IoT) [2] enabled devices and humans connected
and coordinating with each other.

2. Information transparency: Physical systems
enhanced with sensor data to create added value
information systems.

3. Technical Assistance: This involves the use of
intelligent devices to aid in informed decision
making. Robotic automation may be identified to
perform repetitive, unsafe or precise tasks.

∗Corresponding author. Email: ajay.kattepur@tcs.com

4. Decentralized Decisions: The ability of such
systems to make autonomous decisions; only
critical cases will involve human intervention.

Warehouse and factory floor automation [3][4] has
been a principal area of interest with respect to these
requirements. Automated Guided Vehicles (AGVs) are
employed in the warehousing environment to move
products from one place to another [5][6]. AGVs follow
fixed routes (using wires or markers) that are pre-
programmed on them. As they have limited on board
computational intelligence, Networked Robotics [7] have
been proposed, where robotic AGVs may link to an
internet based infrastructure to seamlessly exchange
data. This data may be autonomously exchanged or co-
ordinated via a central control station. This has been
extended to the Cloud Robotics [8] framework, where
robots make use of the cloud to coordinate or offload
computational tasks.
In warehouses that may have hundreds of robots on

the shop floor, complex problem domains (scheduling,
optimization, planning) require modular and scalable
solutions [4]. A number of functional, modular com-
ponents (agents) may be deployed to solve specialized
problem aspects. Decomposing large problems allows
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agents to autonomously solve problem subsets, without
relying on a failure prone central controller. When there
are inter-dependencies among sub-problems, agent coor-
dination should ensure solutions to the global problems.
Multi-agent systems [9] [10] are typically employed to
model interactions between heterogeneous, distributed
and mobile communicating devices. This serves as the
right modeling approach when dealing with networked
robotic devices that autonomously cooperate to complete
missions. Multi-agent deployments are suitable for real-
time distributed control in dynamic and distribution
prone environments. Important requirements of Industry
4.0 including information transparency and decentralized
decision making are satisfied by multi-agent systems.
Due to the decomposition of tasks to agents, the

typical AGV dependent warehouses can be upgraded
with robotic Autonomous Mobile Robot (AMR)
deployments [5][6]. AMRs have more powerful on-board
computational power that can understand dynamically
changing environments, produce a real-time map of
surroundings and efficiently plan paths to destinations.
In warehousing environments where there are dynamic
variations in demand and supply of inventory, assigning
tasks to robotic AMR agents can be modeled as
optimization problems [4]. Typically, such optimizations
are solved at a central entity such as Warehouse
Management Systems [11], which are neither scalable
nor can handle autonomous entities. In this paper,
exploiting the agent based architecture, the centralized
optimization problem may be distributed. We make
use of primal and dual decomposition techniques to
distribute the resource optimization problem among
agents. As a realistic use case, we employ “picker-to-
parts” autonomous robots in a warehouse setting, similar
to the Kiva robot delivery system employed by Amazon1.
We demonstrate that, through application of this
distributed optimization framework, problems such as
minimizing overall procurement latency and maximizing
utilization of robotic agents may be solved. We further
demonstrate that such a distributed optimization is
fault tolerant in nature, striving for completion of tasks,
despite robotic failures. To the best of our knowledge,
this is one of the few papers addressing the problem
of warehouse automation with intelligent multi-agent
systems, decentralized optimization.
The main contributions of this paper are:

1. Propose an agent based model for warehouse
automation.

2. Identify the optimization parameters that con-
strain resources of agents.

3. Formulate primal and dual decomposition tech-
niques that can be distributed among agents.

1https://www.amazonrobotics.com/
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Figure 1. Agents interacting with the Environment.

4. Demonstrate optimization of task allocation
to maximize resource utilization or minimize
latency/energy usage.

5. Demonstrate fault-tolerance in the task allocation
problem due to distributed implementation.

The rest of this paper is organized as follows: Section
2 provides a brief overview of multi-agent system
modeling. Description of the warehousing scenario with
agent based interactions are provided in Section 3.
Section 4 provides analysis of distributed optimization
involving primal and dual decomposition. Porting such
distributed optimization to the warehouse automation
scenario is done in Section 5. In Section 6, the
results of applying such optimizations to the warehouse
automation scenario are presented. Related work and
conclusions follow in Sections 7 and 8.

2. Multi-agent Systems
Classical architectures for control of distributed systems
involve a central co-ordinating node. An example of this
might be on the warehouse floor, where all robots submit
data to a central (cloud) repository for coordination.
While a centralized solution is easy to manage (global
picture) and might lead to full efficient deployments,
there are cases where central deployments are not
possible. Typical drawbacks of centralized decision and
control include (i) Inefficiency: As all the decisions are
processed through a central node, latency and network-
ing overheads are substantial (ii) Constraints: Multiple
safety-critical scenarios (manufacturing, transportation)
require real-time decisions that may be repeatedly be
violated by the remote central node (iii) Reconfigura-
tion: Complex deployments typically involve reconfigu-
ration and dynamic changes, which needs autonomous
responses.
Intelligent Agents [10] are autonomous, problem-

solving computational entities that can coordinate over a
distributed, dynamic environment. Multi-agent systems
are a group of agents deployed with specific architecture,
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coordination and messaging protocols. Each agent
senses/actuates based on data computed from its own
field of view. Typically, the autonomous agents have
incomplete information and limited viewpoints of a
global problem. As there is no global control or
central daemon available, coordination among agents are
needed. Consensus on the global task may be provided
by sharing knowledge among agents in a peer-to-peer or
hierarchical fashion [12]. Data is also decentralized as
agents may sense, store and perform decision updates
periodically.
Agent-based solutions provide multiple benefits in

complex deployment scenarios. Scalability is one
aspect, wherein the distributed decision making among
autonomous agents allows scaling out of agents. Every
agent is provided just the right amount of information
needed to complete a sub-task. Robustness and Fault-
tolerance is ensured as there is no central element for
decision making. As agents are autonomous in nature,
failure of a node assigned a sub-task can be replicated
or check-pointed to another node. Reconfigurability is
simple to handle in agent based deployments, where
reorganization or reprogramming of a particular agent
is possible (without dependencies).
When considering such agent based deployments

for robotics, partitioning distributed device clusters as
agents may be performed:

◦ Physical Distinction: Each robot is an agent.

◦ Encapsulation: Every agent should be encapsulated
with enough information to complete a sub-task.

◦ Ownership: Only a few agents have permissions to
modify data.

◦ Resources: Allocating limited resources (computa-
tion time, carrying capacity, network bandwidth)
to a few robots can correspond to agents.

We further enunciate on dividing complex tasks to agents
in a warehousing environment in the next section.

3. Case Study: Warehousing Automation
In order to study a realistic scenario, wherein, multiple
agents autonomously interact with each other, we use
the warehouse procurement set-up motivated by the
Industry 4.0 requirements. The typical “parts-to-picker”
model (items on a conveyor belt) is replaced by the
“picker-to-parts”(Autonomous Mobile Robot) model.
The set-up is described below:
Consider a large warehousing factory (e.g. Amazon,

Dell) where inventory is processed and delivered to
customers. As it is a large factory, human interaction
is kept minimal with a fleet of hundreds of robots
handling the order processing. A set of server robots
receive the goods/tasks that need to be delivered. This
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Figure 2. Multiple Agents deployed in Warehouses.

information is sub-divided to a set of mobile delivery
robots that move along the factory floor. Robotic picking
arms are located at each shelf, that pick and drop
goods on the delivery robots. Inventory management is
performed by periodically polling the racks for RFID
tagged products. As it is a large warehouse, no centralized
control is possible and the robots must handle task sets
in an autonomous, collaborative manner [14]. There is
significant variation in the demand of procured items for
collaborative task completion.
Such a scenario has motivated by [14][4], where-in

hundred of autonomous robots are deployed on the
warehousing floor. The objective is to move from (time-
bound) batch processing, which leads to increasing
procurement latency, to a real-time procurement system.
The use of multiple decentralized robots also prevents
a single point of failure. This can also be used to
scale up the number of robots with varying demand.
Inventory management is done in conjunction with
Radio-frequency identification (RFID) RFID tagging
[15]. Procurement and dispatch of items from the
warehouse can be monitored with a common database
with RFID tag readers located on procurement robots
and entry/exit points.
As seen in Fig. 2, we demarcate the problem space

using specialized robotic agents spawned within a
warehouse to automate delivery of products. A set of
server agentsAS tabulate the task requirements (product
list); a set of mobile delivery agents AD are employed
to subdivide/allocate delivery tasks and a set of picking
agents AP are located close to the shelves to pick and
drop items. Inventory is monitored using RFID tags
through periodically polling, such that replacement of
inventory is done periodically (AS , AP crosschecks).
Properties of physical distinction, encapsulation and
resource allocation amongst these agents are set as
described in Section 2.
Once a set of products are to be procured by

the server agent AS , the products are subdivided
based on dimensions (length, breadth, weight) and
location coordinates (rack, row, column). These are
then assigned to the delivery agents AD that have a
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limited capacity of battery lifetime, load bearing capacity
and load bearing dimensions. The delivery robots AD
then approach the picker robots AP to procure specific
items in the provided list. The picker agent AP detects
the proximity of delivery robots and picks/drops the
required products. After procuring the items, the server
robot AS updates the inventory list about decrease in
stocks of a particular inventory item. Note that this
delivery process requires handling of dynamic variations
in demand and location of delivery robots. While in
the computational setting, resources may include CPU
cycles, memory, network and battery capacities, in case
of such cyber-physical interactions, allocating tasks with
physical and environmental constraints is also needed.
Rather than processing each order individually, the
server agent may queue up a batch of tasks that
need to be completed. These tasks may be sub-divided
among multiple delivery and picking agents to optimize
procurement of products across multiple warehouse
racks. The process of division/allocation of delivery tasks
can occur in multiple modes:

◦ Utilization of Delivery Agents – wherein, the tasks
as subdivided such that utilization of individual
agents are maximized. Each agent makes a choice
as to participate or abstain from the procurement
process (based on constraints).

◦ Procurement Latency – wherein, the autonomous
delivery robots must coordinate amongst them-
selves to procure the set of items within a given
latency constraint.

◦ Energy Limitation – wherein, delivery robots
accept tasks as long as overall battery degradation
of each agent is minimized.

This formulations allows us to move from AGV→ AMR,
distributing intelligence to the robotic entities. Further
elaboration of how optimization formulations may be
ported to distributed settings are elaborated in the
proceeding sections.

4. Optimization Techniques
In this section, we formulate optimization problems when
applied to multi-agent systems for resource allocation.
We further provide an overview of primal and dual
decomposition techniques, that are used for distributed
optimization among agents.

4.1. Multi-agent Optimization
For the multi-agent optimization formulation, we
consider m agents, where agent ai, i ∈ [1,m] has a local
convex objective function fi(x), with fi : Rn → R, and a
local convex constraint setXi (known only by the agent).
x ∈ Rn represents a global decision vector that the agents

are collectively trying to decide on. The goal of the agents
is to cooperatively optimize a global objective function
f(x), which is a function of local objectives:

f(x) = T

(
f1(x), . . . , fm(x)

)
(1)

where T : Rm → R is a monotonically increasing convex
function. The decision vector x is constrained to lie in
a set x ∈ C, which is a combination of local and global
constraints:

C =
(
∩mi=1 Xi

)
∩ Cg (2)

where Cg represents the global constraints. This model
leads to the following optimization problem:

min f(x)
s.t. x ∈ C

(3)

The decision vector x can either be a resource allocation
vector or a global parameter vector to be estimated via
agent coordination. We further develop this formulation
for the warehousing scenario in Section 5.

4.2. Optimization Decomposition
Resource allocation among multiple entities can be
formulated as a Knapsack optimization problem [16].
However, a scalable solution with multiple agents
coordinating in real time, cannot handle data and
decision coordination with a central entity [17].
Moreover, in industrial warehouses, where demand of
products varies dynamically, a distributed optimization
approach is needed. As seen in Fig. 3, the centralized
control/optimization model which needs a central
authority is moved to a decentralized model, with agents
coordinating with each other to solve a global problem.
Such a decomposition approach has been done in the
case of optimization problems [18], which we will now
describe in brief.
Building from eq. 3, we consider a set of m agents

ai, i ∈ [1,m] that coordinate in order to optimize
resource/task allocation. The centralized version of this
optimization problem is:

min
m∑
i=1

fi · ai

s.t. Ai · ai ≤ xi, ∀i ∈ [1,m]
m∑
i=1

Fi · ai ≤ h

(4)

with the two individual sub-problems coupled by the
constraints

∑m
i=1 Fi · ai ≤ h, which might represent

limits on shared resources. While this may be
traditionally solved using linear programming/Knapsack
formulations, decomposition presents the solution with a
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Figure 3. Centralized vs. Distributed Coordination.

master algorithm and two linear programming problems
solved (possibly in parallel) at each iteration. The
assumption is that the constraints are separable and the
local objective functions/constraints may be distributed
over the agents. Two possible techniques decomposition
exist: Primal and Dual decomposition[16].

Primal Decomposition (Allocation). In this decompo-
sition technique, the coupling constraint

∑m
i=1 Fi · ai ≤ h

is subdivided into two sets of individually solvable con-
straints dependent on a shared variable z. The individual
optimizations that are solved at each agent are given
below (agent am is the co-ordinator):

min Pi = fi · ai, ∀i , m min Pm = fm · am, i = m
s.t. Ai · ai ≤ xi s.t. Am · am ≤ xm

Fi · ai ≤ z Fm · am ≤ h− (m− 1) · z
(5)

The master optimization that is updated and solved at
the co-ordinating agent is min

∑m
i=1 Pi. In order to solve

this update equation, the sub-gradient is given as:

z = z − αk
(
−
m−1∑
i=1

Si + Sm

)
(6)

where Si and Sm are the solutions to the decomposed
problems in eq. 5, with step size αk.

Dual Decomposition (Pricing). The dual decomposi-
tion problem makes use of Lagrange multipliers to elimi-
nate the coupling constraint [19], using a decomposition
variable λ:

min
(
Fiλ+ fi

)
· ai, ∀i ∈ [1,m]

s.t. Ai · ai ≤ xi
(7)

The master update performed at the coordinating agent
is given by:

λ =
(
λ− αk

(
−

m∑
i=1

Fi · Si + h

))
+

(8)

where Si are the solutions to decomposed problems in
eq. 7, (·)+ denotes the non-negative part of a vector and

αk is step size. At each step, the master algorithm sets
the prices for the resources. The individual agents each
optimize independently, taking into account the expense
and income generated by using the resources. The master
algorithm adjusts the prices such that the price for an
over used resource is increased and the price for an under
used resource is decreased (non-negative).
Both the primal and dual decomposition techniques

make use of the sub-gradient method for distributed
optimization. The sub-gradient method is a simple
algorithm for minimizing a non-differentiable convex
function [16]. The sub-gradient method uses the
iteration:

zk+1 = zk − αk · g(k) (9)

Here zk is the kth iterate, g(k) is any sub-gradient of
function f at zk, and αk > 0 is the kth step size. Several
step size rules may be applied including:

◦ Constant step size αk = b is a constant, indepen-
dent of k.

◦ Constant step length. αk = b/||gk||2 . This means
that ||xk+1 − xk||2 = b

◦ Non-summable diminishing. The step sizes satisfy

lim
k→∞

αk = 0,
∞∑
k=1

αk =∞ (10)

Step sizes that satisfy this condition are called
diminishing step size rules. A typical example is
αk = a/

√
k, where a > 0.

At each step, the best point found since the first iteration
is tracked:

fkbest = min
(
fk−1
best , f(zk)

)
(11)

The sub-gradient algorithm is guaranteed to converge to
within some range of the optimal value [16].

5. Optimization in Warehouse Automation
In this section, we formulate the optimization problem
in a warehousing floor, where (varying) number of
products need to be procured and delivered via robotic
agents. We demonstrate that this can be formulated as
maximizing utilization, minimizing procurement latency
or minimizing energy consumption of resources. The
optimization problems are further decomposed using
primal/dual techniques to be solved by individual agents.
The real deployments may be ported onto Robot
Operating System (ROS)2.
When an order with a given number of products

are to be delivered from the warehouse, the agents
(AD, AS , AP ) coordinate such that the procurement is

2http://www.ros.org/
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Parameter Description
AD, AS , AP Delivery, Server, Picking Agent types
i ID of the agent with i ∈ [1,m]
ai Task allocated to the ith node ∈ AD
Ui Device Utilization on node i
Di Dimension of products (length × width)

on node i
wi Weight of products on node i
li Procurement latency for node i
di Distance to be traveled by node i
vi Average velocity of node i
µ Picking agent (∈ AP ) efficiency
Di Maximum Dimension Capacity of node i
Wi Maximum Weight Capacity of node i
∆Ci Battery Depletion associated with node i
Ci Total Battery Capacity of node i
Ii Current drawn from battery for node i
Ti Operating Battery Temperature for node i
D Total Dimensions of products to be delivered
W Total Weight of products to be delivered

Table 1. Parameters included in Optimization Formula-
tion.

satisfied. The coordination may be restricted based on
parameters relating to device utilization or procurement
latency. Table 1 describes some of the important
parameters to be used in our formulation. This can be
viewed as extension to the contract net protocol [12]
consisting of the following steps:

1. Recognition of goals and whether it can be
completed within constraints by an individual or
group of agents.

2. Broadcasting of the task to other agents including
objectives and constraints.

3. Agents bid for the task taking into account
tradeoffs for completing tasks and resources to be
allocated.

4. Contracts are awarded to successful bidding agents
with communication on job allocation.

5. A contracted agent may further sub-contract parts
of the job to complete the task.

The algorithmic overview of our methodology is
presented in Algorithm 1, wherein the traditional tasks
2− 4 in the contract net protocol are set into the
distributed optimization formulation. Note that the
agents we consider typically operate as delivery agents
AD as specified in Section 3. Problems such as path
planning, stocking and pick–place are out of scope of this
formulation. We elaborate on specific situations where
the optimization may be formulated based on utilization,
latency or energy constraints.

Algorithm 1: Distributed Optimal Task Allocation
among Warehouse Delivery Agents.

1 Input: Coordinating Agent with Global Task; Participating
Agent Status (Number, Location, Capacity, Energy
Levels); Task Constraints; Initial Update Value;

2 Profile Global Task and Related Constraints;
3 if Allocate ← Task then

Perform Primal Decomposition (eq. 5);
4 else

Perform Dual Decomposition (eq. 7);
5 Allocate Sub Tasks to Agents with Distributed Optimization;
6 while Update non Convergent do
7 Agents perform Optimization with Local Constraints;
8 Master Algorithm Update (eq. 6 for primal, eq. 8 for

dual)
9 Agents Complete Tasks Optimally;

10 Agents Update Status to Coordinator;
11 Output: Global Task completed within Constraints;

5.1. Maximize utilization
When there are multiple robots on the factory floor ready
for delivery, one strategy is to maximize the per-trip
utilization of resources. By utilization, we refer to load
bearing capacity of the robots rather than utilization of
hardware (CPU, Memory, Network). The optimization
may be formulated to maximize the utilization of each
node, subject to maximum dimensions/weight that the
node can bear. In order to deploy this optimization over
agents, we perform primal decomposition as given below:

max PBi = Ui · ai, ∀i , m max PA = Um · am, i = m
s.t. Di · ai = X s.t. Dm · am = D− (m− 1) · X

wi · ai = Y wm · am = W− (m− 1) · Y
Di · ai ≤ Di Dm · am ≤ Dm
wi · ai ≤Wi wm · am ≤Wm

ai ≥ 0 am ≥ 0
0 ≤ Ui ≤ 1 0 ≤ Um ≤ 1

(12)
where, Di andWi are the maximum carrying dimensions
of node i having normalized utilization Ui. In order
to satisfy the primal decomposition constraints, one of
the agents (agent with index i = m) performs the pivot
optimization satisfying the global constraint. A master
update equation is performed at the co-ordinating agent
node (Fig. 3) to update the variables (X ,Y) that are
used in the primal problems:

X = X − αk
(
− PA+

∑
i

PBi

)
Y = Y − αk

(
− PA+

∑
i

PBi

) (13)

5.2. Minimize Procurement Latency
As collecting products from picking stations and delivery
of these products to delivery stations would involve
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latency overheads, formulating cases where latency must
be minimized is of interest. The following optimization is
proposed where the latency parameter li is dependent on
a number of factors including distance between picking
and delivery robot di, average robot speed vi and picking
efficiency µ. As this reflects a pricing problem, we
perform dual decomposition as follows on all agents:

min Diλ1 + wiλ2 + li · ai ∀i ∈ [1,m]
s.t. Di · ai ≤ Di

wi · ai ≤Wi

li = di
vi

+ µ

ai ≥ 0

(14)

where li is the procurement latency associated with agent
ai. The update equations for each of the variables λ1 and
λ2 is based on the gradient descent method:

λ1 =
(
λ1 − αk

(
−
∑
i

Dia
′
i +D

))
+

λ2 =
(
λ2 − αk

(
−
∑
i

wia
′
i +W

))
+

(15)

where a′i refers to solutions provided from the
optimization in eq. 14.

5.3. Minimize Energy Utilization
Minimizing the battery depletion rates of robotic agents
may also be a priority. Battery discharge lifetimes have
been studied using circuit, electrochemical, stochastic
or analytical models [21]. For constant loads, the
battery lifetime L can be derived from the battery
capacity C and the discharge current I as L = C/I.
However, modeling the discharge capacity of lithium-
ion or lead acid batteries is complicated by the non-
linear discharge profiles. Voltage can vary based on the
discharge currents, rendering the actual battery capacity
lower for high discharge currents (rate capacity effect).
Additionally, during periods of low discharge, the battery
can recover some of its capacity (recovery effect). We
make use of an improved version of Peukert’s law [22]
that takes into account current drawn and temperature
variation during battery discharge:

∆C = γ ·
(
I

Iref

)δ
·
(
Tref
T

)η
(16)

where ∆C is the battery capacity consumed, Iref and
Tref are the reference current and temperature rating of
the battery, I and T are the current and temperature
observed during battery usage, parameters δ, η are
exponents relating non-linear battery depletion rates
and constant γ on A-h relates the capacity removed to

the non-dimensional discharge current and temperature
components.
This is formulated as an optimization problem with

the objective to reduce total battery consumption of
participating agents using dual-decomposition:

min Diλ1 + wiλ2 + ∆Ci · ai ∀i ∈ [1,m]
s.t. Di · ai ≤ Di

wi · ai ≤Wi

∆Ci < Ci

ai ≥ 0

(17)

The update equations for each of the variables λ1 and
λ2:

λ1 = (λ1 − αk(−
∑
i

Dia
′
i +D))+

λ2 = (λ2 − αk(−
∑
i

wia
′
i +W))+

(18)

where a′i refers to solutions provided from the
optimization in eq. 17.
We demonstrate the efficacy of these optimization

formulations on deployment simulations in the next
section.

6. Results
In order to demonstrate the optimization output on real-
world robotic agents, we make use of the KUKA mobile
platform (KMP) 15003 with specifications in Table 2.
The KUKA KMP 1500 robot is an autonomous platform
that may be deployed on warehouse floors. By the use of
safety laser scanners and wheel sensors, the robots are
able to perform real time Simultaneous Localization and
Mapping. This allows the omni-directional to move in
any direction and achieve positioning accuracy of upto
±1 mm.
We now apply the optimization formulations devel-

oped in Section 5 to a set of KUKA robots simulated
on the warehouse floor to collect and deliver products.
For our simulations, we restrict the number of delivery,
picking and server agents, in order to remain in realistic
thresholds where a 3− 4 agents coordinate over complex
warehousing tasks. A further assumption is that the
static locations of the server AS and picking agents AP
are preset with the optimization performed over picking
allocations to delivery agents AD. The optimizations
are solved in Scilab using the Karmarkar optimization
solver, setting the sub-gradient update from Section 4 as
αk = 0.1/

√
k. The following cases are studied:

3https://www.kuka.com/en-us/products/mobility/
mobile-platforms/kmp-1500
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Metric Value

Model

Physical Dimensions 2× 0.45× 0.8 m
Weight, Payload 750 kg, 1500 kg
Max. Velocity (straight) 3.6 km/h
Battery Specs. Lithium-ion, 160 Ah, 48 V

Runtime 8 hours (sleep), 3 hours (nom-
inal use)

Sensors Laser scanners, safety/warning
sensors for 360◦ monitoring

Actuators KUKA motor, rigid axle,
wheel gears

Table 2. KUKA mobile platform (KMP) 1500.

◦ Utilization: In order to maximize utilization
of the robotic agents, the primal-decomposition
techniques provided in eqs. 12, 13 are deployed.
Fig. 4 provides an output of this optimization
when applied to increasing demand in products
(assumption is that a 50× 50 cm product carton
weighs 1 kg). As seen from Fig. 4, allocation to
the three delivery agents are gradually increased
proportionally such that utilization of each agent
is maximized. The convergence analysis of primal
decomposition (eqs. 12, 13) for one instance
is seen in Fig. 5. This demonstrates that
the optimization may be accurately decomposed
among participating agents.

◦ Latency: In order to minimize procurement latency
of the robotic agents, the dual-decomposition
techniques provided in eqs. 14, 15 are deployed.
Fig. 6 provides an output of this optimization when
applied to increasing demand in products when
the delivery agents are randomly placed on the
warehouse floor, velocity as specified in Table 2. As
seen from Fig. 6, allocation provided to the distant
agent a2 is minimized so as to maintain acceptable
latency. Compared to the naive deployment (agents
randomly allocated), the optimization in Fig. 6
produces a latency improvement of 25% for 2000 kg
procurements. The convergence analysis of the dual
decomposition variable λ (eqs. 15) is seen in Fig.
7, where convergence to a stable neighbourhood is
observed within a few iterations.

◦ Energy: In order to minimize battery degradation
of the robotic agents, the dual-decomposition
techniques provided in eqs. 17, 18 are deployed.
Fig. 8 provides an output of this optimization
when applied to KUKA robots with battery

Figure 4. Allocation Ratio to Agents and Utilization
Levels.

Figure 5. Convergence Analysis with Primal Decomposi-
tion.

specifications in Table 2. We notice variations in
allocation ratios such that the battery degradations
of each agent is minimized.

◦ Fault-tolerance: One of the key advantages of
moving to an agent based system is fault tolerance.
As there is no central entity replicating/check-
pointing, the coordinating agent in Fig. 3 is
responsible for varying the primal/dual update
factors to take care of faulty agents. As seen in
Fig. 9, despite failure of agent a1, the optimization
reconfigures so that higher ratio of products are
given to other agents. Note that we do not perform
any check-pointing (partially completed tasks are
not reported); rather, the optimization ensures
task re-distribution to available agents in the next
iteration.

The message passing among agents has overheads, whose
analysis has been earmarked for future work.

7. Related Work
The emergence of Industry 4.0 requirements [1] aims
to introduce smart, reconfigurable and modular devices
in the factory environment. This has led to a flurry
of research in the warehouse space with the inclusion
of autonomous robots [5][6][23] for improving efficient
management. A concurrent research area concerns the
use of networked and cloud enabled robots [7][8], for
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Figure 6. Allocation Ratio to Agents and Latency.

Figure 7. Convergence Analysis with Dual Decomposition.

Figure 8. Allocation Ratio to Agents, Battery Degrada-
tion.

Agent 1 Failure

Agent 1 Failure

Figure 9. Allocation Ratio with Agent Failure.

coordinating multiple robots deployed on the shop floor.
In such deployments, typical path planning algorithms
go hand in hand with resource optimization and
coordinated goal completion among deployed robots [24].
Warehouse Management Systems (WMS) [11] typically

are used to coordinate machines and robot interactions in
enterprise warehouses. WMS systems may also be placed
towards the edge of the network, as proposed by newer
architectures such as Fog computing [13].
Handling such intelligent, autonomous robots requires

an appropriate modeling and analysis framework. Multi-
agent system modeling [9] has been used to encapsulate
modular autonomous systems in multiple fields. In the
case of robotic systems, multi-agent systems may be used
to encapsulate autonomous robots that can coordinate
without central control [10]. Coordinating such devices
in a decentralized setting is an active area of research
[25]. One such widely used protocol is the contract-net
protocol [12], that makes use of a bidding mechanism
to allocate tasks. In this work, we further append such
a protocol with optimization models, which are able to
allocate tasks among autonomous agents.
The use of resource optimal protocols in the robotic

world has been studied in centralized deployments
[20]. Decomposition of optimization algorithms across
multiple nodes has been used extensively in the
networking literature to design cross-layer resource
allocation mechanisms [19]. In [18] [17], theoretical
models for decomposition techniques in multi-agent
systems are provided. An early industrial use case for
intelligent agents in manufacturing was provided by the
Holonic Manufacturing Systems [26]. The use of genetic
algorithms for coordinating multiple agents has also been
proposed in literature, as seen in [27]. Such algorithms
are necessary in conjunction with traditional robotic
path planning [28], in order to ensure efficient use of
resources on the factory floor.
We apply the distributed optimization among a

set of agents to warehouse automation [4]. Deploying
autonomous robotic agents in the warehouse setting
has received considerable industrial interest, ever since
Amazon acquired Kiva robotics in 2012 [14]. Robot
automation employed in Amazon’s warehouses has
drastically reduced procurement times from 60 minutes
taken by human participants to around 15 minutes.
Automation has increased the inventory capacity per
square foot by 50% and reduced Amazon’s operating cost
by 20% ($225 million/Warehouse) [14].
In this work, we take the realistic case of

autonomous mobile robots deployed in warehousing
environments. The agents coordinate among themselves
using distributed optimization techniques to allocate
tasks within warehouses. We model division of tasks
based on agent utilization, procurement latency, energy
depletion and fault tolerance capabilities.

8. Conclusions
Multi-agent intelligent systems are ripe for application
into real-world industrial problems. In this paper, we
exploit multi-agent system interactions to solve some of
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the Industry 4.0 automation requirements in warehouses.
Through the use of decomposed optimization techniques,
the intelligent agents are efficiently enabled utilization,
latency and energy resources when traded off with task
allocation. Through distributed optimization solvers,
these situations are analyzed based on commercially
available warehouse robots to demonstrate efficacy
in delivery tasks. Such a distributed optimization
framework may be extended to other deployments
involving intelligent agents.
In future, we would like to deploy this framework on

testbed deployments defined using the Robot Operating
System (ROS). Incorporating our optimization frame-
work within an auction bid mechanism along with human
agents is also another aspect for future consideration.

References
[1] M. Hermann, T. Pentek & B. Otto, “Design

Principles for Industrie 4.0 Scenarios”, 49th Hawaii Intl.
Conf. on System Sciences, 2016.

[2] S. Greengard, “The Internet of Things”, MIT, 2015.
[3] M. Hompel & T. Schmidt, “Warehouse Management:

Automation and Organization of Warehouse and Order
Picking Systems”, Springer-Verlag, 2012.

[4] J. Bartholdi & S. Hackman, “Warehouse and
Distribution Science”, The Supply Chain and Logistics
Institute, Georgia Institute of Technology, 2016.

[5] V. Marik & D. McFarlane, “Industrial Adoption of
Agent-Based Technologies”, IEEE Intelligent Manufac-
turing Control, 2005.

[6] W. Shen, “Distributed Manufacturing Scheduling using
Intelligent Agents”, IEEE Intelligent Systems, 2002.

[7] R. Luo, K. Su, S. Shen & K. Tsai, “Networked
intelligent robots through the Internet: issues and
opportunities”, IEEE Magazine, vol. 91, no. 3, pp. 371–
382, 2003.

[8] G. Hu, W. Tay & Y. Wen, “Cloud robotics: architec-
ture, challenges and applications”, IEEE Network, vol. 26,
no. 3, pp. 21–28, 2012.

[9] K. Sycara, “Multiagent Systems”, AI Magazine:
Intelligent Agents, vol. 19, No.2, 1998.

[10] Y. Shoham & K. Leyton-Brown, “Multiagent
Systems: Algorithmic, Game-Theoretic, and Logical
Foundations”, Cambridge University Press, 2009.

[11] JDA Warehouse Management System
(WMS), https://jda.com/solutions/
profitable-omni-channel-retail-solutions/
intelligent-fulfillment/warehouse-management,
2017.

[12] T. Sandholm, “An Implementation of the Contract
Net Protocol Based on Marginal Cost Calculations,”
University of Massachusetts, 1993.

[13] Flavio Bonomi, Rodolfo Milito, Preethi Natara-
jan & Jiang Zhu, “Fog Computing: A Platform for
Internet of Things and Analytics”, Big Data and Internet

of Things: A Roadmap for Smart Environments, pp. 169–
186, 2014.

[14] P. Wurman, R. D’Andrea & M. Mountz, “Coordi-
nating Hundreds of Cooperative, Autonomous Vehicles in
Warehouses”, AAAI Artificial Intelligence Mag., vol. 29,
no. 1, pp. 9–19, 2008.

[15] B. Hardgrave, J. Aloysius & S. Goyal, “Does RFID
improve inventory accuracy? A preliminary analysis”,
Intl. J. of RF Technologies, vol. 1, no. 1, pp. 44–56, 2009.

[16] S. Boyd & L. Vandenberghe, “Convex Optimization”,
Cambridge University Press, 2004.

[17] A. Nedic & A. Ozdaglar, “Cooperative distributed
multi-agent optimization”, Convex Optimization in Signal
Processing and Communications, Cambridge University
Press, 2009.

[18] H. Terelius, U. Topcu & R. Murray, “Decentralized
Multi-Agent Optimization via Dual Decomposition”,
IFAC Proceedings Volumes, vol. 44, no. 1, pp. 11245–
11251, 2011.

[19] D. Palomar & M. Chiang, “A Tutorial on Decompo-
sition Methods for Network Utility Maximization”, IEEE
J. on Selected Areas in Communications, vol. 24. no. 8,
2006.

[20] A. Kattepur, H. Dohare, V. Mushunuri, H. Rath
& A. Simha, “Resource Constrained Offloading in Fog
Computing”, ACM Middleware Workshops, 2016.

[21] R. Rao, S. Vrudhula & D. Rakhmatov,“Battery
Modeling for Energy-Aware System Design”, IEEE
Computer, vol. 36, no. 12, 2003.

[22] A. Hausmann & C. Depcik, “Expanding the Peukert
equation for battery capacity modeling through inclusion
of a temperature dependency”, J. of Power Sources, vol.
235, pp 148–158, 2013.

[23] W. Shen, Q. Hao, H. Yoon & D. Norrie, “Applica-
tions of agent-based systems in intelligent manufacturing:
An updated review”, Advanced Engineering Informatics
vol. 20, pp. 415–431, 2006.

[24] B. Brummit, “A Mission Planning System for
Multiple Mobile Robotics in Unknown, Unstructured, and
Changing Environments”, tech. report CMU-RI-TR-98-
42, Robotics Institute, Carnegie Mellon University, 1998.

[25] L. Panait & S. Luke, “Cooperative Multi-Agent
Learning: The State of the Art”, Autonomous Agents and
Multi-Agent Systems, 11, pp. 387–434, 2005.

[26] M. Fletcher, R. Brennan & D. Norrie, “Modeling
and reconfiguring intelligent holonic manufacturing
systems with internet-based mobile agents,” Journal of
Intelligent Manufacturing, no. 14, vol. 1, pp. 7–23, 2003.

[27] A. Cardon, T. Galinho & J. Vacher, “Genetic
algorithms using multi-objectives in a multi-agent
system,” Robotics and Autonomous Systems, no. 33, pp.
179–190, 2000.

[28] Frantisek Duchon, Andrej Babinec, Martin
Kajan, Peter Beno, Martin Florek, Tomas Fico &
Ladislav Jurisica, “Path Planning with Modified a Star
Algorithm for a Mobile Robot”, Procedia Engineering,
vol. 96, pp. 59–69, 2014.

10 EAI Endorsed Transactions on 
Industrial Networks and Intelligent Systems 

06 2018 - 09 2018 | Volume 5 | Issue 15| e2

https://jda.com/solutions/profitable-omni-channel-retail-solutions/intelligent-fulfillment/warehouse-management
https://jda.com/solutions/profitable-omni-channel-retail-solutions/intelligent-fulfillment/warehouse-management
https://jda.com/solutions/profitable-omni-channel-retail-solutions/intelligent-fulfillment/warehouse-management

	1 Introduction
	2 Multi-agent Systems
	3 Case Study: Warehousing Automation
	4 Optimization Techniques
	4.1 Multi-agent Optimization
	4.2 Optimization Decomposition
	Primal Decomposition (Allocation)
	Dual Decomposition (Pricing)


	5 Optimization in Warehouse Automation
	5.1 Maximize utilization
	5.2 Minimize Procurement Latency
	5.3 Minimize Energy Utilization

	6 Results
	7 Related Work
	8 Conclusions



