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Abstract 

Gaussian Bayes classifiers are widely used in machine learning for various purposes. Its special characteristic has provided 

a great capacity for estimating the likelihood and reliability of individual classification decision made, which has been used 

in many areas such as decision support assessments and risk analysis. However, Gaussian Bayes models tend to perform 

poorly when processing feature vectors of high dimensionality. This limitation is often resolved using dimension reduction 

techniques such as Principal Component Analysis. Conventional approaches on reducing dimensionalities usually rely on 

using a simple threshold based on accuracy measurements or sampling characteristics but rarely consider the sensitivity 

aspect of the prediction model created. In this paper, we have investigated the influence of eigenvalue selections on Gaussian 

Bayes classifiers in the context of sensitivity adjustment. Experiments based on real-life data have shown indicative and 

intriguing results. 
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1. Introduction

Gaussian Bayes classifier is a type of probability-based 

classifiers that has been applied to many different classifi-

cation problems with promising performance. One of the 

major challenges in Gaussian Bayes classifiers is the curse 

of dimensionality. High dimensionality causes the proba-

bility models trained to become oversensitive, especially 

when feature dimensionality is higher than the number of 

training samples, which often happens when images of var-

ious kinds are involved. To solve this problem, most 

conventional solutions aim at either creating adaptive hier-

archical models [1] or conducting statistical analysis to re-

duce dimensionalities in advance as a pre-processing task 

[2] [3].

As an effective method to reduce feature dimensionality,

Principal Component Analysis (PCA) is widely used in 

*Corresponding author. Email: 1303092@buckingham.ac.uk

many different scenarios prior to the training of the classi-

fier. PCA is a well-known transformation method that in-

tends to project a given set of possibly correlated observa-

tions into an independent space, where the variance of each 

dimension in the projected space, known as eigenvalues, 

will be recorded in descending order to form a vector. In 

principle, a larger variance on the dimension implies richer 

information contained within it, so that it is reasonable to 

remove the dimensions that have relatively small variance 

(eigenvalue) since they are expected not to influence the 

classification result severely. 

Traditional ways of selecting the principal components 

from the projected space would rely on a simple threshold 

that filters out the dimensions with relatively small 

eigenvalues. The threshold is normally determined by vis-

ual or statistical analysis on the scree-plot [4], matrix prop-

erties [5], or information gain [6]. However, as one of the 

special properties of Bayes classifier, the estimation of the 
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conditional likelihood, especially the sensitivity of the es-

timation, are not normally considered as a critical factor 

when deciding the threshold for selecting the principal 

components.  

In the current era, machine learning techniques have 

been widely adopted in many different fields in assisting 

human activities, such as Decision Support System in the 

clinical environment [7] or Risk Analysis on critical infra-

structures [8]. These newly adopted application scenarios 

often require more precise predictions, in a measurable 

way, to serve much serious decision making with a certain 

level of confidence. Therefore, estimating not only the 

class label of an unknown observation, but also the likeli-

hood of the prediction, becomes to an essential need. Un-

fortunately, the conventional classification approaches 

have not put such a requirement into very serious concerns. 

As a pilot study, this paper aims at emphasizing on the 

importance of evaluating the conventional PCA approach 

in the context of decision assessment with respect to deci-

sion sensitivity. The potential alternatives of adopting re-

fined PCA for Gaussian Bayes classifiers adjustment will 

also be discussed, and their theoretical impacts are ana-

lysed in the context of accuracy/sensitivity evaluation. All 

the hypnoses are examined with a real-life dataset, fol-

lowed by further analysis and discussion.  

The rest of the paper is organised as follows. Section 2 

introduces the essential background knowledge regarding 

Gaussian Bayes Classifiers with a discussion of their uses 

and potential limits in Decision Score estimation. Section 

3 explains the approaches taken to resolve/refine the limi-

tations/estimation mentioned by adopting the Principal 

Component Analysis. The possible impact to the classifi-

cation accuracy/sensitivity is also discussed with justifica-

tions. Section 4 shows the experimental work in classifying 

calcium type breast cancer with Gaussian Bayes Classifiers 

under different PCA thresholds. Section 5 discusses a po-

tential statistical method for selecting appropriate thresh-

olds. Section 6 concludes the paper with a summary of the 

work reported and future work needed.  

2. Background

The Bayesian probability model is a well-used conditional 

model that has been applied to many different fields in ma-

chine learning. According to the Bayes’ theorem [9], a con-

ditional probability P(ω𝑖|�⃗�) of having the predicted class

ω𝑖 at a given feature vector �⃗� can be expressed as

P(ω𝑖|�⃗�) =
P(ω𝑖)P(𝑥|ω𝑖)

P(𝑥)
     (2.1) 

where P(ω𝑖) is the prior regarding the natural expectation

of the classified class, P(�⃗�|ω𝑖) is the posterior regarding

the probability of having the observed feature vector �⃗� 

given that the class has been classified as ω𝑖, P(�⃗�) is the

evidence regarding the natural expectation of the observed 

feature vector �⃗�.  

These probabilities can be modelled by referring to a set 

of training samples. The form of the probability models de-

pends on the nature of the data set, which can adopt various 

kinds of statistic models such as Bernoulli, Gaussian or 

Multinomial, etc. One of the commonly used models is the 

Multivariate Gaussian Model (MGM), which has an essen-

tial form of  

 𝒩(�⃗� | 𝜇, Σ) =
1

√2𝜋𝑑|Σ|
𝑒−

(�⃗⃗⃗� − �⃗⃗⃗�) Σ−1 (�⃗⃗⃗� − �⃗⃗⃗�)𝑇

2  (2.2) 

where 𝒩 represents a standard Gaussian probability den-

sity function for a given set of d dimensional data with a 

mean vector 𝜇  and a covariance matrix  Σ . Furthermore, 

MGM often appears in a mixture form to model the data set 

closely, leading to a Multivariate Gaussian Mixture Model 

(MGMM). In other words, an MGMM is essentially a col-

lection of sub-MGMs, each of which can be determined by 

a parameter set 𝜃 = {𝑊, 𝜇, Σ}; W represents the weight of 

the sub-models in the mixture and the summation of the 

weights of all the models is equal to 1. Therefore, given a 

sequence of K parameter sets {𝜃𝑖=1…𝐾}, i.e., K Gaussian

sub-models, the overall mixture model is characterized as: 

𝒩(�⃗� | 𝜃𝑖=1…𝐾) = ∑ 𝑊𝑖𝒩(�⃗� | 𝜇𝑖, Σ𝑖)  (2.3)

𝐾

𝑖=1

 

Following these definitions, the feature-dependent prob-

abilities P(�⃗�) and P(ω𝑖)P(�⃗�|ω𝑖) in the original Bayesian

form can then be further defined as: 

 {
P(�⃗�) = 𝒩(�⃗� | 𝜃ω𝑖=1…𝑘

)

P(ω𝑖)P(�⃗�|ω𝑖) = 𝒩(�⃗� | 𝜃ω𝑖
)

 (2.4) 

where the parameter set 𝜃ω𝑖
 is derived from each relevant

class set Ω𝑖 = {ω𝑖1, ω𝑖2 , … , ω𝑖𝑘} and the weight of each set

is considered as its proportion in the whole training set, 

i.e., 𝑊𝑖 =
|Ω𝑖|

|Ω|
. 

One of the benefits of MGMM Bayes predictions is that 

it provides an estimation of the likelihood of each class at 

different feature values, which allows the user to compare 

the classification strength under different conditions in a 

uniform manner. In our previous work [7], we have intro-

duced a method to estimate the level of certainty regarding 

a specific classification decision made based on MGMM 

Bayes predictions, which refers to a Decision Score 𝑆𝐷 in a

form as 

 𝑆𝐷(ω𝑖|�⃗�) = 2P(ω𝑖|�⃗�) − 1  (2.5) 

This definition is justified by the assumption that the 

level of classification certainty is directly proportional to 

the difference of the probabilities of the target class and the 

others without any transition bias. The sign of the decision 

score indicates the belonging of the class, which positive 

value indicates confirmation of the chosen class ω𝑖 and a

negative value indicates a preference of other classes. The 
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absolute value of the decision score is the level of certainty 

regarding the decision made on the class belongings, which 

has a range [0,1). 

2.1. Singularity in MGM 

Although many researches have adopted Bayesian proba-

bility models under assumptions of independent events for 

simplification purpose, the Bayes' theorem does not require 

data independency in advance. However, the covariance 

matrix Σ calculated from each class must be positive semi-

definite in satisfying the modelling function required in 

Formula (2.2); otherwise the term |Σ| and Σ−1 in the for-

mula are undefined.  

The covariance matrix of an n dimensional data set is a 

𝑛 × 𝑛  matrix, where the diagonal terms {Σ𝑖,𝑖}  are the ith

variances 𝜎𝑖
2  among the n dimensions. The rest of the

terms {Σ𝑗,𝑘|𝑗 ≠ 𝑘} in the matrix can be defined as a linear

transformation of the product of the jth and kth standard de-

viations 𝜎𝑗𝜎𝑘  among the n dimensions with a gradient of

the pair wised Pearson correlation coefficient 𝑟𝑗,𝑘. In this

representation, it can be easily noticed that the covariance 

matrix Σ would be singular if |𝑟𝑗,𝑘| = 1 exists in any part

of the matrix. In addition to this, the singularity would also 

occur if it exists a linear relationship of any kind across all 

possible dimension combinations in the data matrix. This 

can be an unavoidable risk in practice since significant cor-

relations may naturally exist in raw training data, especially 

with very high dimensionalities. Therefore, the singularity 

threat must be addressed to avoid potential errors in com-

puting decision models. 

2.2 Sensitivity of MGM 

The sensitivity of a decision model computed refers to the 

rate of change in the decision score predicted in corre-

sponding to the change in feature value. In this context, the 

sensitivity can be simply presented as a function regarding 

the first order derivate of the decision score function 𝑆𝐷 in

Formula (2.5) as 

∇𝑆𝐷 =  𝑆𝐷(ω𝑖|�⃗�)
𝜕𝑆𝐷

𝜕𝑥
 (2.6) 

The sensitivity measure is an essential element in deci-

sion score evaluation since it reflects the behaviour of the 

prediction model in online testing. On the one hand, high 

sensitivity would reflect rapid changes in decisions in cor-

responding to a minor change in feature values, which may 

imply potential over fittings in the trained decision model. 

On the other hand, low sensitivity would result in a 

marginal difference in the score computed, which makes 

the classification outcome being undistinguishable (over-

generalised) and becoming useless. A desirable classifier 

must be able to distinguish different classes on the one 

hand, and predict decisions without being oversensitive on 

the other. 

3. Theory and Methods

3.1 Data projections based on PCA 

Conventional PCA transformation is performed by using 

either the EigenValue Decomposition (EVD) or the Singu-

lar Value Decomposition (SVD), where EVD can only be 

applied to a real symmetric matrix and SVD can be applied 

to any real rectangle matrix. The end computational result 

between EVD and SVD should not differ significantly. 

However, we have chosen to use the SVD in this research 

since it is more numerically reliable than computing EVD 

over a positive semi-definite matrix [10]. 

In SVD, if we define 𝐴 as the original row data matrix of 

size 𝑚 × 𝑛, it can be then uniquely represented as 

 𝐴 = 𝑈𝑆𝑉𝑇  (3.1) 

where 𝑈 and 𝑉𝑇  are 𝑚 × 𝑚  and 𝑛 × 𝑛 orthogonal matrix

respectively; U and V contain the left and right singular 

vectors of A respectively (one singular vector per column, 

sorted in descending order); 𝑆 is a matrix of the same size 

as A that is zero except its main diagonal, which contains 

the corresponding singular values (with a one to one map-

ping to the descending singular vector computed).  

In this definition, Formula (3.1) is believed to result in a 

full SVD if 𝑚 > 𝑛, where U is a large 𝑚 × 𝑚 matrix with 

the last m − n columns that are considered as unnecessary 

fields. Therefore, it is normally adapted into an economy-

sized SVD [11], which is more memory efficient in real 

practice. In this form, the original U and S are pruned by 

only preserving the first n columns and first n rows, which 

eventually contribute to a 𝑚 × 𝑛 and 𝑛 × 𝑛 matrix respec-

tively; 𝑉𝑇 remains the same.

In a special case, U and V are considered as identical 

when A is a positive semi-definite matrix, the covariance 

matrix for example. Under this condition, the singular vec-

tors contained in U and V are essentially the eigenvectors 

of the covariance matrix; the singular values contained in S 

are the corresponding eigenvalues of the covariance ma-

trix. Therefore, the projected feature vector �⃗�PCA of the

original feature vector �⃗� could then being simply defined 

as 

 �⃗�PCA =  𝑈�⃗�  (3.2) 

Following this projection process, the original data fea-

ture will be de-correlated, producing an MGM that has the 

same reading as Formula (2.2) but in a different form as 

 {
𝒩(�⃗�|𝜇, Σ) = ∏ 𝒩(Λ(�⃗�)𝑖|Λ(𝜇)𝑖 , 𝑆𝑖,𝑖)

dim 𝑥

𝑖=1

Λ(�⃗�) = 𝑈−1�⃗�𝑈 

  (3.3) 

This relieves the computed MGM from the potential singu-

larity threat since correlations are diminished through the 

PCA projection.  
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Indeed, the singularity issue can also be solved by pro-

jecting the original data into other spaces as long as the di-

mensions in the projected space are not fully correlated. 

However, the independent projection is still preferred since 

it can ease the management and computation cost in the 

MGM, which will be discussed in detail in the next section. 

Computing PCA over large matrices in practice can be 

expensive. Therefore, an iterative approach is normally 

taken to reduce the cost of computation. One of the most 

commonly used and well-established iterative solutions is 

the NIPALS-PCA algorithm [12]. However, one main is-

sue regarding the algorithm is that the orthogonality may 

be lost eventually due to the errors accumulated from each 

iteration, especially when the data computed has high di-

mensionality. Therefore, we have further adopted the 

Gram-Schmidt reorthogonalization method to correct the 

non-orthogonal principal components computed by the 

NIPALS method [13]. 

3.2 Influence on sensitivity by PCA 

The independent projection by SVD as described in the 

previous section allows us to present the diagonal of 𝑆 as a 

vector of variances in each independent dimension as 

〈𝜎1
2, 𝜎2

2, … , 𝜎𝑛
2〉. Based on the special property of the di-

agonal matrix 𝑆, the original MGM in Formula (2.2) can be 

presented in a simplified form as a product of Univariate 

Gaussian Models (UGM) as 

{
𝒩(�⃗�|𝜇, 𝑑𝑖𝑎𝑔(𝜆)) = ∏

1

√2𝜋𝜎𝑖
2

𝑒
−

(Λ(𝑥)𝑖−Λ(�⃗⃗⃗�)𝑖)2

2𝜎𝑖
2

dim 𝑥

𝑖=1

Λ(�⃗�) = ν−1�⃗�ν 

(3.4) 

which simplifies the original matrix multiplications into a 

linear form, and hence improves the time complexity from 

O(n2) to O(n) while reducing the memory cost for storing 

the model computed. Moreover, it is important to note that 

Formula (3.4) always has a maximum reading when �⃗� = 𝜇. 

At this point, a density peak is formed and can be simply 

computed as 

 ∏
1

√2𝜋𝜎𝑖

dim 𝑥

𝑖=1

 (3.5) 

Consequently, the range of the density function can then be 

defined as (0, ∏
1

√2𝜋𝜎𝑖

dim 𝑥
𝑖=1 ], which implies that the varia-

tion of the density value is directly proportional to ∏
1

𝜎𝑖

dim 𝑥
𝑖=1

with a coefficient of 
1

√2𝜋

dim 𝑥
. Therefore, the sensitivity of 

the prediction models can be justified by either controlling 

the dimensionality or the eigenvalues (variance in the inde-

pendent space) in the projected model. 

If we define 𝜎max
2 as the maximum eigenvalue required

to obtain a decision model that being sensitive/accurate 

enough to cover most of the feature observed while mini-

mising the potential ambiguity between different classes, 

and define 𝜎min
2 as the minimum eigenvalue required for

computing decision scores without being over sensitive, 

the projection matrix 𝑈 can then be further pruned into a 

selective projection matrix 𝑈′  based on the independent

covariance matrix 𝑆, also known as the singular value ma-

trix in the economy SVD as 

𝑈′ = {𝑈𝑖  | 𝜎min
2 < 𝑆𝑖,𝑖 < 𝜎max

2}  (3.6) 

where any eigenvalues below the minimum threshold are 

considered as invalid since they cause the decision model 

being oversensitive; also, eigenvalues beyond the maxi-

mum threshold are again considered as invalid since they 

cause the decision model being over general. Finally, it is 

also worth noticing that 

1

max
𝑖=1… dim 𝑥

𝜎𝑖

≤
1

min
𝑖=1… dim 𝑥

𝜎𝑖

 (3.7) 

which indicates that the Formula (3.5) can be dominated by 

min
𝑖=1… dim 𝑥

𝜎𝑖. Therefore, although maximum threshold has

more impact than the minimum threshold on the classifica-

tion information in theory, controlling the minimum 

threshold is expectedly having a greater impact to the sen-

sitivity, which is inversely proportional to the variation. 

3.3 Sensitivity measurement 

As we have defined in Formula (2.6), sensitivity is a meas-

urement of the gradient of the decision score function at 

different feature values. However, finding the exact solu-

tion of the gradient of a decision score function can be very 

costly especially with high dimensionalities. Therefore, in 

our study, the gradient of the decision score function is cal-

culated using the following method of approximation: 

 ∇𝑆𝐷 =
 𝑆𝐷(ω𝑖|�⃗� + ℎ) − 𝑆𝐷(ω𝑖|�⃗�)

‖ℎ‖
 (3.8) 

where ℎ is considered to be an extremely small number and 

been set to 10−15 in our experiment. This form of calcula-

tion does not only decrease the computational cost, but also 

improves the adaptability of the sensitivity measurement; 

since the decision score function is treated as a black box 

and the result can be computed without knowing the de-

tailed characteristics of the function in advance. 

Following this definition, we are able to obtain a set of 

sensitivity measurements ∇𝒮𝒟 ={∇𝑆𝐷1, ∇𝑆𝐷2, … ∇𝑆𝐷𝑛} for

any given testing set 𝑋′ ={�⃗�1
′ , �⃗�2

′ , … , �⃗�𝑛
′ }. Then, the vari-

ance of these sensitivity measurements ∇𝜎2 is calculated to

reflect the change in sensitivities at different test readings 

as 

∇𝜎2 =
∑ (∇𝑆𝐷𝑖−∇𝒮𝒟̅̅ ̅̅ ̅̅ )2𝑛

𝑖=1

𝑛−1
 (3.9) 
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To uniform this measure, the computed ∇𝜎2 is passed

through a transfer function and finally result into a coeffi-

cient ∇𝑐 regarding the sensitivity measurements of the test 

set provided as 

∇𝑐 = √
∇𝜎2

1+∇𝜎2  (3.10) 

where ∇𝑐 is a real number that has a range of [0,1). The 

decision score model is considered as sensitive to a set of 

testing samples if ∇𝑐 is close to 1 and be considered as sta-

ble if ∇𝑐 is close to 0. 

4. Experimental Analysis

4.1 Dataset Description 

It makes good sense to put the theory into tests using data 

sets collected from practice. To test the idea, we need the 

data set to be reasonably big size and of high dimensional-

ity. In our experiment, therefore, we have used the CBIS-

DDSM dataset [14]. The dataset contains 2,620 mammog-

raphy images for breast cancer studies with the relevant re-

gion of interests that have been verified by human experts. 

The dataset included two major types of tumours as the 

“mass” and “calcium” with relevant pathology results. For 

this study, the experiment has been conducted on calcium 

type tumours only based on the concern of feature visibil-

ity. Images have been cropped based on the region of inter-

est provided. The final selected dataset contains 1,872 im-

ages that include 1,199 benign cases and 673 malignant 

cases. 

 These images have been further randomly sampled into 

10 individual patches to implement a 10-fold cross-valida-

tion process. Nevertheless, this random sampling process 

was stratified to ensure the original prior of the dataset re-

maining undistorted. In the other words, each of the sam-

pled patches is designed to contain benign classes and ma-

lignant classes in a ratio close to 1.78 : 1, which is the ratio 

in the whole data set before partitioning. 

4.2 Feature Extraction 

As a well-known texture-based feature, Grey Level Co-oc-

currence Matrix (GLCM) has been used in many studies 

that relate to mammography classifications [15] [16]. In 

GLCM, the matrix is computed based on pixel neighbours 

to reflect the frequency of the occurrence of certain pat-

terns, where the pattern can be identified in different 

distance and angles. After the raw data matrix has been 

computed, statistical texture measurements are normally 

conducted to extract high-level descriptors with uniform 

dimensions.  

In our experiment, following the well-used guidance that 

has been proposed by Haralick [17]. GLCM has been com-

puted on three different distances (1, 2 and 3) with four dif-

ferent angles (0°, 45°, 90°, and 180°). Then, 13 statistical 

moment measurements (excluding the maximal correlation 

coefficient) are extracted from the raw matrix according to 

Haralick’s suggestion, which finally results in a feature of 

3 × 4 ×13 = 156 dimensions. 

4.3 Classification Modelling 

Classification modelling in this research follows a Naïve 

Bayes scheme with MGMM embedded within it for sim-

plicity. In addition, the PCA method presented in Section 

3.1 projects the original data of the MGMM model into an 

orthogonal space, which does not only ensure the 

independency requirement of the Naïve Bayes classifier, 

but also simplified the original MGMM into a Univariate 

Gaussian Mixture Model (UGMM).  

The dimensions in the orthogonal space are essentially 

the projections of multiple dimensions in the original 

space. Consequently, modelling each projected dimension 

with a UGM only is no longer sufficient, since the data 

points in the projected space are reflecting information 

from multiple dimensions, especially when the projected 

dimension has relatively large eigenvalues. Therefore, it is 

more reasonable to model the data points on each projected 

dimension with a UGMM, where eventually the class 

model on the projected multidimensional space should be 

presented as a mixture of UGMM. However, the creation 

of UGMM on each projected dimension can no longer fol-

low the approach mentioned in Formula (2.3) due to the 

ambiguity of projection from different dimensions. As a so-

lution, UGMM on each projected dimension was created 

by adopting the well-used Expectation Maximization (EM) 

method, where the threshold of the log-likelihood has been 

set to 10−5.

4.4 Experiment Results 

Figure 1.  Number of UGMs in the mixture in each 
projected dimension with different eigenvalues  

In our experiment, we have first observed the number of 

UGMs in the mixture on each projected dimension with 

different eigenvalues. The average of the 10 test patches is 

plotted in Figure 1, where the error bars are indicating the 

Controlling Sensitivity of Gaussian Bayes Predictions based on Eigenvalue Thresholding 

EAI Endorsed Transactions on 
Industrial Networks and Intelligent Systems 

09 2018 - 11 2018 | Volume 5 | Issue 16| e1



maximum and minimum readings among the 10 test 

patches. 

The scatter plot has shown a clear positive relationship 

between the number of UGMs in the mixture and their ei-

genvalues on the dimension projected, where the dimen-

sions with larger eigenvalues tend to require more UGs in 

the mixture to describe the behaviours of the class. This 

does match our expectations since the dimensions with 

larger eigenvalues tend to contain more information and 

therefore yields a more complex projection. We further dis-

covered that the number of UGMs required on the pro-

jected dimensions falls significantly as the corresponding 

eigenvalues decrease; however, this trend started to be sta-

bilized after the eigenvalue has fallen below 1. This fact 

can be seen as an experimental evidence of the “eigen-

value-one criterion”, which states that the projected dimen-

sion with an eigenvalue that is less than 1 can be abandoned 

due to the relatively small information gain from them [18]. 

Following the analysis, the classification accuracy and 

sensitivity measurements under different thresholds on 

maximum and minimum eigenvalues are recorded and 

plotted in Figure 2 and 3 respectively. The scatter points in 

these plots represent the average of the cross-validation re-

sults and the error bars reflect the best and worst readings 

among them. The initial seed used for generating the 10-

fold random samples is fixed. Therefore the testing envi-

ronments under different eigenvalue thresholds are identi-

cal and comparable.  

As expected in Section 3.2, thresholding on eigenvalues 

indeed affects overall accuracy in the experiment. In gen-

eral, it is expected that the accuracy decreases as the 

dimensionality reduces. However, thresholding minimum 

and maximum eigenvalues have shown more specific be-

haviours.  

Figure 2. Accuracy measurements in relation to dif-
ferent eigenvalue thresholds 

As shown in Figure 2, thresholding on maximum eigen-

values had a clear and significant linear impact to the over-

all accuracy, which reached a minimum and remained sta-

ble at 10−3.9. This linear impact was caused by the strong

proportional relationship between the scale of eigenvalues 

and the amount of information gained from them. Aban-

doning dimensions with large eigenvalues directly reduces 

the information gained by the classifier and therefore im-

pair the classification accuracy, which the impact appears 

to surpass the ambiguities contained within these dimen-

sions. The stabilized minimum reading after the decay in-

dicates that the remaining dimensions can no longer 

provide a sufficient amount of information to support fur-

ther classifications. Thresholding on maximum eigenval-

ues appears to have a consistently large error margin. This 

could be caused by the eigenvalues on the minimum side 

as we have discussed in Formula (3.7), since small eigen-

values tend to cause the prediction model being extremely 

sensitive to the testing samples, which will be discussed in 

more detail in the next paragraph.  

In contrast to the previous readings, thresholding on min-

imum eigenvalues had a moderate effect in general, where 

the accuracy was decaying in the beginning, then followed 

by a steady increase after 10−6 and finally ended with an-

other significant decrease. The initial decrease in accuracy 

reading is very much understandable since the reduction in 

dimensionality causes more ambiguities in the lower di-

mensional space. Meanwhile, as we have mentioned in 

Formula (3.7), smaller eigenvalues should have more dom-

inating effects compare to the large ones, which are more 

likely to cause the decision model being overfitted in the 

high dimensional space. This explained the reason for the 

increase between 10−6  to 10−1.7 , which implies that the

projected dimensions with eigenvalues that is less than 

10−1.7 can be potential causes of the overfitting in the clas-

sification. Removing the overfitted dimensions essentially 

makes the classifier more robust and improving testing ac-

curacy. An evidence that supports this argument is the error 

bars reflected on the scatter plots. The error bars remain 

consistently large at the beginning of the plot and then 

starts to decrease in size along with the increase in accu-

racy, which indicates that the initial classification results  

Figure 3. Sensitivity measurements in relation to dif-
ferent eigenvalue thresholds 

were very sensitive and unstable to different test sets but 

then becoming more and more robust along with pruning 

the dimensions with small eigenvalues. At the end of the 

plot, the continuous pruning of dimensions starts to have 

an escalating effect on the information lost and eventually 
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causes the classifier predicting more errors, which is re-

flected by the drop on accuracy and by the increase in error 

margins. 

Regarding the sensitivity measurements, the method in-

troduced in Section 3.3 reflects the sensitivities of a group 

of samples, which makes the testing results being strongly 

dependent on the testing data. Consequently, it yields a 

large variation in the test readings. Nevertheless, the aver-

age reading among the testing patches will still be a good 

indication of the overall sensitivity under different thresh-

olds. 

As shown in Figure 3, thresholding on minimum 

eigenvalues had a clear impact to the classification sensi-

tivity. This again reflects our expectation since small 

eigenvalues tend to generate abrupt MGMM decision 

model that being very distinct from the others, which cause 

the measurements being susceptible. As the experiment 

result shows, cohering to the observations from Figure 2, 

sensitivity decreases significantly in the beginning and then 

being stabilized after 10−6 and finally ended with another

significant drop after 10−1.9. The initial decrease on sensi-

tivity essentially demonstrates the reducing on classifica-

tion overfitting along with the reducing on dimensionality, 

which reached a floor eventually when the robustness of 

classification was established in testing. However, the clas-

sification accuracy will decrease consistently along with 

the reducing of dimensionality. As a result, accuracy even-

tually falls to a point where the predictions made by deci-

sion models become unstable. The consistent error made 

during the testing subsequently causes a rise in the sensi-

tivity measured, shown as the increase around 10−1.9. This

increase is immediately followed by a second decrease in 

sensitivity, which highlighted that the consistent errors 

made starts to cause the classifier bias towards one of the 

classes and therefore led to insensitive predictions. 

In general, on the one hand, the clear drop in sensitivity 

at the beginning of the scatter plot was an indication on po-

tential overfittings; on the other hand, the significant 

change on sensitivity at the end of the plot was reflecting 

potential underfittings of the prediction model. An ideal 

threshold should be a value that positions around the first 

trough of the plot, where the decision model with pruned 

dimensions will be neither underfitted nor overfitted. 

Comparing to minimum eigenvalue thresholding, thresh-

olding on maximum eigenvalues has shown a much con-

sistent impact to the sensitivity. However, this does not im-

ply that thresholding on maximum eigenvalues indeed af-

fects sensitivities. The constant reading of extremely sen-

sitive results at the beginning of the plot was essentially an 

observation of the dominating effect from minimum eigen-

values. The significant decrease in sensitivities after 10−1.1

was again caused by the decrease in classification accu-

racy, where the bias generated by classification error even-

tually yields insensitive predictions. Therefore, maintain-

ing minimum eigenvalue unchanged eventually preserves 

the high sensitivity yield by the overfitted prediction mod-

els, causing the effect of thresholding on maximum eigen-

values being less obvious and noticeable.  

5. Discussions

Our preliminary experiments were conducted on strin-

gently controlled variables, where one of the two thresh-

olds always remain constant at the maximum/minimum 

evaluations. However, it is still desirable to further test our 

hypnosis in a fully variable environment to reveal the rela-

tionship between the two thresholds. 

Tuning the eigenvalue thresholds on both maximum side 

and minimum side coherently can be a challenging task due 

to the different magnitudes of information contained in 

each side. A practical solution in determining the appropri-

ate thresholds could rely on the use of Confidence Interval 

(CI). In statistics, confidence interval is a type of estimation 

that defines the likelihood of observing a certain event at a 

given confidence level [19]. In a two-tails test, confidence 

level is always bounded with an upper limit and a lower 

limit, which can be adapted as the minimum and maximum 

thresholds of the given observation on eigenvalues com-

puted. In practice, a probability distribution model can be 

first created from the eigenvalues observed. The CI analy-

sis can then be applied to this distribution. As a result, we 

are able to obtain the maximum and minimum eigenvalue 

threshold as the upper and lower limits of the CI at any 

confidence level specified. In this form, the eigenvalue 

thresholds can be determined and tuned in the context of 

confidence levels as an imperial method depends on the en-

vironmental requirements. 

Conventional CI analysis is assuming a normal distribu-

tion of the data sample, where the symmetric characteristic 

of the distribution should ease the modelling and compu-

ting of the analysis. Unfortunately, eigenvalues do not fol-

low a normal distribution. As we observed in Figure 1, 

most of the eigenvalues computed are relatively small and 

the frequency of the observation decreases along with the 

increase of eigenvalues. Therefore, it would be better to de-

fine the eigenvalue distribution as a positively skewed dis-

tribution. 

Currently, the essential form of the eigenvalue distribu-

tion has not been fully investigated. Most of the theories 

regarding the distribution of eigenvalues can only be sup-

ported by inductive approximations and massive compu-

ting simulations [20] [21]. As a result, validating the 

method proposed in this section can be extremely ambigu-

ous and unpractical due to the consistent debating on the 

newly proposed hypnosis. In addition, the unsymmetrical 

property of the eigenvalue distribution causes the compu-

tation of the CI being very difficult. Determination of the 

appropriate CI can only be done through massive compu-

ting with Monte Carlo method [22] or approximation in 

controversial kinds [23]. Therefore, at the current stage, we 

would still like to recommend to threshold the eigenvalues 

with predefined and constant values. However, approaches 

based on CI can be further tested and validated in future 

along with the growing understanding on eigenvalue distri-

butions. 
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6. Concluding Remarks

In this paper, we have first introduced MGMM based deci-

sion prediction models with relevant discussion regarding 

their potential challenges. Following these, we have inves-

tigated a PCA based solution and its properties in the con-

text of classification sensitivities. Experiment results have 

shown a positive proof on the theory proposed. Threshold-

ing on minimum eigenvalues has indeed shown an evident 

effect on reducing sensitivities, where reducing dimension-

ality continuously eventually increases modelling sensitiv-

ity in corresponding to the increase in classification error. 

The ideal threshold of the minimum eigenvalues would be 

recommended at the first trough of the sensitivity curve 

plotted, where it has shown to be around  𝟏𝟎−𝟔 to 𝟏𝟎−𝟒 in

our experiment. However, further investigation of different 

data sets is still required to prove the ubiquitous of the val-

ues found. 

Thresholding on maximum eigenvalues has also re-

flected our expectation to a certain extent. However, the ef-

fect on sensitivity controlling cannot be observed clearly 

due to the overwhelmed influence from the lower eigenval-

ues. Further study regarding the impact of thresholding on 

maximum eigenvalues is still required, especially in an 

environment where the minimum threshold is controlled in 

various magnitude. 
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