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Abstract

Industrial Control Systems (ICS) are getting more vulnerable as they become increasingly interconnected with
other systems. Industrial Internet of Things(IIoT) will bring new opportunities to business and society, along
with new threats and security risks. One major change that ICS will face will be that of the dynamic network
topology. Changes in the network architecture will affect the performance of the ICS along with the efficiency
of the security mechanisms that are deployed. The current article investigates how changes in the network
architecture of a supervisory control and data acquisition (SCADA) system affect the performance of an
Intrusion Detection System IDS that is based on the One class Support Vector Machine (OCSVM). Also the
article proposes an adaptive mechanism that can cope with such changes and can work in real time situations.
The performance of the proposed adaptive IDS is tested using traces from a Hybrid ICS testbed with a dynamic
topology.

1. Introduction

Industrial Control systems (ICS) have both a greater
need for security and a more difficult environment
in which that security can be implemented, when
Compared to Information Technology (IT) systems.
This is becoming ever more critical as ICS become
increasingly connected to other systems (both ICs and
IT) and, inevitably, the internet. The term SCADA is
traditionally associated with the subset of ICS known
as Wide Area Control systems but more recently is
being used as synonymously with ICS as a whole. For
the purposes of this article we will be intending the
traditional use of the term. Industrial Internet of Things
(IIoT) is still in an early stage bringing new opportunities
for the business and the society along with new threats
and security risks. As Sadeghi et al. stated in [1], due to
high connectivity and complexity of these new systems,
thorough approaches that deal with safety and security
risks are needed. The necessity of cyber physical security
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is rising and traditional methods may not be effective any
more.

The need for security in SCADA systems is much
higher than for the majority of computer systems due
to the potential impact and consequences of service
degradation or failure. Despite this, at the time when
most older systems were developed, their isolation and
extensive use of proprietary technologies was often
considered sufficient safeguard against interference [2, 3].
Additionally, security on the whole was a far lower
priority for all computer systems, and the overriding
priority for SCADA was reliability.

Support Vector Machines (SVM) provide a viable
method for very quickly analysing and classifying data
in order to provide an intrusion detection function. The
speed of SVMs is critical in SCADA systems due to their
distributed nature and the need for high speed detection
and response as well as the ability to have minimum
impact on the performance of the system itself. The
traditional support vector machine algorithm, which uses
positive and negative samples to train an SVM model,
is suitable for solving such classification problems and
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providing fast indication of any anomaly that happens in
the system. However, special characteristics of SCADA
and other industrial control systems which are fewer
abnormal samples, high dimensions of data, and strong
correlation make the development of suitable IDS more
demanding. Moreover most of data in industrial control
system belong to normal communication behavior, and
fault or critical state data are rare to find. Based on
these observations, during recent years a lot of Intrusion
Detection Systems that are based on the One Class
Support Vector Machine (OCSVM) core are proposed
[4–7]. OCSVM has only one category of data and simply
tries to determine if new data belongs to that category
or not. This allows OCSVMs to potentially detect new or
unknown anomalies as it is not attempting to categorise
any data as bad according to known attack prole, but
simply tries to classify it as not good. These IDSs can be
used in isolation or can be combined with other security
mechanisms in order to provide a higher level of security
[8].

Nowadays, as ICS systems are becoming increasingly
connected (both to other systems and to the internet) as
recognised in Yang et al [3], their security is becoming
ever more important. In particular, Kim [2] notes that
not only are SCADA systems more connected to the
internet, but are also increasingly being implemented
using shared Internet Protocol (IP) infrastructure and
even the internet itself for establishing communication
links. While most research focuses on the increased risks
associated with these developments, it is important to
note the importance of these changes to business in order
to “reduce costs and increase efficiency” [9]. Many issues
facing the implementation of security in SCADA have
been identified by contemporary research:

• The need for reliability frequently overrides
security considerations. This can make it very
difficult to implement standard good practice, such
as frequent patching.

• Lack of encryption in older communication
protocols (plain text frequently used).

• Loss of obscurity caused by the adoption of
widespread, well-documented protocols as well as
the use of off the shelf SCADA systems [10].
Although obscurity is not a security mechanism in
itself, its loss may facilitate attacks.

• The need for continuous operation makes it
very difficult to update, modify, and maintain
components of the system on the fly.

• Significantly longer lifespan for systems, poten-
tially taking both hardware and software beyond
their supported lifespan.

Moreover, SCADA security has specific characteristics
and constrains which require a domain-specific approach.

In-line security mechanisms (such as certain network
IDS deployments) or host-level security tools (such
as anti-virus) are unadvised because of the potential
latency impact or the introduction of single points of
failure in the critical communications path. Moreover,
the increased sophistication of attacks against ICS
infrastructures means that cyber-security cannot solely
rely on supervised, pattern-based detection algorithms
to ensure ongoing security monitoring. This situation
requires complementary approaches for dealing with
rogue threats, providing an adequate balance between its
maintenance effort and detection robustness. The paper
is organized as follows. Section 2 provides an overview
of the most relevant literature concerning Intrusion
Detection Systems. In Section 3, an overview of OCSVM
is presented. Section 4 discusses the effects of network
architecture changes on an IDS. In section 5.2, an
overview of the used HEDV is given. Section 6 presents
an initial testing of an OCSVM based IDS on different
datasets.Section 7 describes a detailed design of the
adaptive IDS. Section 8 presents a system performance
evaluation. Finally, the conclusion is delivered in Section
10.

2. Intrusion Detection Systems

Many techniques for implementing IDS in a SCADA
environment have been proposed. The two primary
approaches are model based and machine learning. The
model based approach is the more traditional of the
two. and tends to result in fewer false positives but is
also more likely to miss unknown attacks [4, 5]. The
machine learning approach is more prone to generate
false positives but is superior at detecting novel attack
vectors.

2.1. Model based

Model based systems use detailed knowledge of the
protocols and behaviours used within a system as well
as details of known attacks to formulate rules which
can identify both unexpected behaviour and known bad
behaviour. This type of system is unlikely to recognise
unknown attacks and requires frequent updates to the
signatures to remain viable. The system proposed by
Yang et al [3] comprises a number of model based
methods including Access Control Whitelists; Protocol
Based Whitelists and Behaviour Based Rules). The
proposed system appears to have a greater capability
for recognising unknown attacks than most model based
system, but the study does not go into detail as to the
time costs of properly setting up and maintaining such
a system.

2.2. Neural Networks

Neural networks are a method of processing which
mimics the manner in which biological systems, such
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as the brain, operate. This is generally implemented in
the form of neurons (or nodes) which exchange data.
Multiple input nodes can receive data, process and
pass it on to further nodes until an output node is
reached. By calculating the cost of paths and modifying
the behaviour of individual nodes it is possible for
the network to adapt and learn (back propagation).
By modelling complex relationships between the inputs
and outputs of the system, it is possible to perform
sophisticated pattern recognition. The main drawback
of neural networks, as noted by both Pandit and Dudy
[11] and Wang et al [12] is that they can take a long time
to train and are difficult to scale.

2.3. Genetic Algorithms

This is a method for determining the optimal solution
to a problem from a pool of potential solutions. In
an evolutionary manner, poorly performing solutions
are eradicated, leaving the best performing solutions
standing. Essentially survival of the fittest. This is not
an ideal technique for providing an IDS solution on its
own, but is an excellent method for complementing and
refining other machine learning systems to improve their
accuracy and performance. Kim et al [13] proposes a
system for supplementing an SVM based IDS with a
Genetic Algorithms (GA) to ensure that the system
maintained the most optimal detection model. The GA is
used to detect both the optimal feature set as well as the
optimal kernel and parameters. This can improve both
the accuracy and the speed of the IDS. Recently a lot of
similar approaches have been proposed with promising
outcomes [14, 15].

2.4. Hierarchical Clustering

This method involves generating a dendrogram, which
is a tree like structure representing clusters of data as
differentiated by a chosen metric. This is a rapid means
of categorisation and can be used to augment other
systems. An example of this is given in Maglaras and
Jiang [16] where k-means clustering is used recursively
to categorise the outliers detected by the SVM process
in order to reduce the number of false positives (in the
form of severe alerts). Other similar works that combine
clustering with a Bayes classifier [17] or nearest neighbors
[18] also exist in the literature.

3. Support Vector Machines - OCSVM

SVMs provide a method for rapidly categorising data.
The initial stage is the creation of a model using training
data which can then be used to categorise new data. A
defining characteristic of SVMs is the use of a kernel
function to map data into a higher dimensional feature
space such that the categories can be separated by
hyperplanes. The SVM process iteratively determines

the optimal hyperplane for distinguishing categories. The
optimal hyperplane will have the largest margin between
itself and the nearest data points and those data points
which coincide with the margin are the support vectors.

It is possible to have multiple categories into which
the data can be allocated, however when labeling of
data is not possible One Class SVMS (OCSVM) can be
used, which has a single category and simply determine
if new data belongs to that category or not. This
allows OCSVMs to potentially detect new or unknown
anomalies as it is not attempting to categorise any data
as ‘bad’ according to known attack profile, but simply to
identify it as ‘not good’ [7, 19].

As there are no data points from a second class, the
standard method for one class SVM is to treat the
origin as the perfect class 1 vector and determine the
optimal distance from the origin at which a data point
no longer belongs to that class. Finding appropriate
values for the calculation of this model is crucial in
achieving the optimal result. This process is frequently
improved by the use of other machine learning techniques
to determine superior values for this algorithm.

3.1. Disadvantages

The main drawbacks of one class SVMs are false positives
and over fitting, and as recognised by Maglaras & Jiang
[16] and Wang et al [12]. False positives can result from
rare but legitimate traffic which may not have been
represented in the training data. Over fitting is a problem
with the generation of the model where the boundary for
categorisation is too tightly constrained to the test data.
This can cause valid outliers to register as out of class
(i.e. bad).

3.2. Examples of use

The CockpitCI Framework detailed in Cruz et al [20] uses
a number of separate OCSVMs which are individually
modelled for different parts of the ICS. The output
of these is aggregated by a Main Correlator before
being reported to the Security Management Platform.
It is of note that the framework uses the Intrusion
Detection Message Exchange Format (IDMEF) for
interchange of data (RFC 4765). This is a message format
to standardise the exchange of Intrusion Detection
related information based on plain Extensible Markup
Language (XML). Security features such as integrity
or confidentiality are achieved by exchanging those
messages via a dedicated Event Bus.

3.3. Suitability of OCSVMs in IDS

These systems all demonstrate that OCSVM is not a
sufficiently refined tool to implement an effective IDS on
its own but is highly valuable when coupled with other
methods, especially as an integrated part of a larger
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framework. It is likely that while anomaly detection
provides opportunity to detect unknown attacks it will
be necessary to combine them with signature and ruled
based IDS components to achieve the greatest accuracy.
Yang et al [3] have shown that multiple techniques can
be used to create a highly effective IDS and Maglaras
et al [4] argue that model based systems alone are
insufficient. Wang et al [12] crucially note that a greater
understanding of the range of SCADA applications and
protocols is required to achieve truly effective model
based IDS components.

4. Effects of Network Architecture Changes

We have established that, relative to IT systems, IC
systems (most notably SCADA), have both a greater
need for security and a more difficult environment in
which to provide it. Support Vector Machines have been
shown to be an effective tool for providing intrusion
detection, although they lack effectiveness in isolation
and are far more powerful when used in conjunction
with other methods. Maglaras et al [4] argue that rule
based IDS are ineffective, however the system proposed
by Yang et al [3] shows that they can be implemented
very effectively, although the maintenance demands are
likely to be very different.

Smart Grid technologies use the integration of
digital networks to balance the decentralised generation
and consumption of power. Similarly, ‘just in time’
manufacturing in next generation factories enables new
levels of integration between supply and demand [21].
The digital world enables operators to control massively
distributed resources from a single, centralised control
room. The convergence of IoT and SCADA technologies
can be illustrated smart city initiatives that showcase the
dynamic nature of future ICS.

Previous works that proposed adaptive intrusion
detection systems [22–26] propose methods that
adapt to new threats and novel attacks. Other
adaptive methods that were recently propsoed [27,
28], designed mainly for MANETS, try to deal with
the problems of limited transmission power, receiver
collision and collaborativeattacks that may arise in
such environments. None of the materials and research
studied examines the adaptability or susceptibility of
the proposed IDS systems to changes in the monitored
architecture. This is almost certainly due to a large
extent to the fact that SCADA systems tend to be
relatively static. While Cheung et al [29] argue that
model based IDS are suited to SCADA due to their
traditionally more stable environment, this stability is
decreasing as SCADA systems evolve, undermining this
argument. The initial framework of an Adaptive IDS was
presented by the authors earlier in [30]. In this article we
further analyze the proposed A-IDS method and evaluate
its performance in terms of accuracy and time overhead.

5. Dataset

In this section we describe how and why we produced
our own datasets using our Hybrid testbed that we have
previously validated through extensive experiments [8].

5.1. Public Datasets

Extensive research shows that the following datasets
were commonly used for investigations by recognising
that the KDD dataset [31], is widely known among
scholars in the network analysis community, offering a
large scope of records in the earlier DARPA dataset,
with up to 4,900,000 training instances, 41 features, 24
training and testing attacks with a further 14 types.
The dataset offers more information compared to the
DARPA dataset [32]. However, Bajaj and Arora [33]
state that the KDD dataset is outdated, suggesting that
the NSL-KDD dataset is the most suited for current
network analysis. They state that KDD 99 dataset
suffers with redundant data which often lead to biased
detection of attacks, highlighting more frequency in DOS
and probe attack. This lead to failures in classifying
features appropriately and most records cannot be
classified and are misrepresented in most of the cases.
The author states that if the KDD, datasets are
used,investigations will likely present results that do not
represent real network situations. Moreover, numerous
current studies showed that for the current network
threat environment, these data sets do not inclusively
reflect network traffic and modern low footprint attacks.
Countering the unavailability of network benchmark
data set challenges, authors in [34] examined a UNSW-
NB15 data set creation. This data set has a hybrid
of the real modern normal and the contemporary
synthesized attack activities of the network traffic.
However for our current study, which tries to investigate
how architectural changes affect the performance of an
anomaly detection IDS, even the last dataset is not
appropriate since it represents a static topology. For this
reason we decided to create our own datasets, using our
testbed and evaluate the performance of a static IDS and
the proposed adaptive IDS.

5.2. Hybrid Testbed

The HEDVa (Hybrid Environment for Design and
Validation) was developed by the Israeli Electric
Company with the purpose of providing a flexible
platform to support the creation and maintenance
of multiple testbed environments, within a multi-
tenant environment. It provides resources for component
development, test and integration, which can be
dynamically added and/or allocated to deployed
scenarios, enabling flexible reconfiguration. The HEDVa
provided the CI environment in which the development
and validation of the CockpitCI concept was undertaken
(see Figure 1).
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Figure 1. Simplified HEDVa networking architecture

The CockpitCI validation effort leveraged the HEDVa
resources to build a hybrid CI scenario, in the
sense that it makes use of real/physical SCADA
and network/telecom infrastructure components to
implement a simulation model of an electric grid (see
Figure 2). It was developed using key performance
indicators and data from production environments,
also implementing standard operator Fault Detection
Isolation and Recovery procedures used for electric grid
management.
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Figure 2. HEDVa grid scenario, with breakers and
substation feeders

In the CockpitCI testbed, grid elements (such as
feeders and breakers) are emulated by real PLC
devices, which take part in the simulation - moreover,
all voltage and current values on critical points are
dynamically calculated and updated accordingly with
the mathematical model of the power grid. By emulating
the cyber-physical parameters, this scenario allows to
implement several different attacks and failure use cases
for validation and interdependence analysis in a safe
environment, while providing a realistic attack surface.

The topology depicted in Figure 1 constitutes the CI
that supports the simulated grid environment. The entire
CockpitCI security detection components (in which the
OCSVM IDS is included) were trained and deployed in
this infrastructure, which also served as demonstrator
vehicle.

Table 1. Different configurations of the network

Data PLC Gr. 1 PLC Gr. 2 HMI 1 HMI 2
1 Active - Active -
2 Active - Active Active
3 Active Active Active -
4 Active Active Active Active
5 - Active Active Active
6 - Active Active -

6. Testing of OCSVM on different
Architectures

Six data sets were provided using the HEDVa. These
datasets represent network traffic from a SCADA
network running in six different configurations. There are
two groups of Programmable Logic Controllers (PLCs)
and two Human Machine Interface (HMI) devices which
may be active on the system (see Figure 1). Table 1 shows
the configuration of the network for each of the data sets.

While the accuracy for models when tested against
themselves varied very little from the mean value, the
deviation for testing against other data sets was shown
to be extreme. The results presented on Figure 3 show
that while there are some large deviations, these have
occurred primarily in data set 4, which is later removed
from the study.

Figure 3. Initial accuracy heat map

From this we can see that the part 4 of the data set is
displaying significant variation from the other sets, both
when other models are tested against its data (shown by
the vertical red line), and where the model for part 4 is
tested against other data sets (the horizontal light green
line).

To investigate the cause of this behaviour we inspected
the meta data created for each PCAP file. We could see
that all of the data sets exhibit a very high maximum
rate value (in the region of 20 hours). We then looked
at the rates meta data file created at the same time.
These files contain a list of every rate value calculated
when processing a PCAP file, and the number of times
it occurs in that file. We found out that there existed
some big gaps between transmitted packets. These gaps
clearly do not represent the true traffic rate feature
we are attempting to extract and could, themselves,
trigger an alert from the IDS. More importantly, these
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outlier values would affect the significance of the normal
traffic rate values when scaling is applied. To eliminate
this issue, the program was updated to filter out any
rate value over 3 seconds, and to substitute the current
average rate so far.

Next we investigated the IP addresses encountered in
the traffic. We observed that for the majority of the data
sets, all of the IPs are from the private address space
172.27.xx.xx. In the part 4 data set, however, we see
that there are also 10 IP addresses from other, external
networks. Another factor is the type of traffic detected
in the captured data. For all sets other than part4, only
TCP traffic is detected. The part4 data set, however, also
shows UDP traffic as well as traffic which has not been
successfully identified.

It seems clear from these indicators that the part 4
data set differs from the other data sets in a substantial
way, and not merely in the architecture of the network
and we decided to filter out the whole part 4 data set
from the analysis. On the other hand we came to some
useful conclusions about how different behavior of the
system in terms of packet rate and number of sources
affect the accuracy of the IDS. These findings will be
used in the near future in order to create a real adaptive
IDS. Eliminating the data 4 set leaves us the following
results (See Figure 4.

Figure 4. Final accuracy heat map

With the anomalous results from part 4 eliminated
we can aggregate the data to demonstrate the combined
accuracy when testing against self vs other (See Figure
5).

Figure 5. Final mean accuracy

This does demonstrate a weak overall correlation
between testing against other sets and accuracy. As
the values approach 100 %, any difference can be very
significant, especially in an IDS where every percent
of inaccuracy can represent false positives or negatives.
This, in turn, can represent either missing malicious
activity or generating a large number of spurious alerts
which can consume monitoring resources and renders the
system ineffective.

7. Proposed Adaptive IDS

In order to cope with the drop of accuracy that
the IDS demonstrates when the architecture of the
system changes, we propose an adaptive mechanism
that can be used in any system. The mechanism that
is presented on Figure 6 matches the current network
traffic of the system to the traffic that the IDS was
trained with. Based on the fact that the matching takes
additional computation time, the proposed adaptive
system imposes a delay on the performance of the
IDS. The matching that is proposed on this article
only takes into account the different IPs that exist on
the network traffic and chooses the OCSVM that was
trained to a similar network. This could be extended
also to the overall traffic that exist inside the system,
based on the fact that the volume of traffic changes
between morning and evening and between working days
and weekends, especially for a system that controls
critical infrastructures that are directly related to human
activity, e.g. traffic controls, smart grid e.t.c.

Figure 6. Proposed Adaptive IDS

In the core of our adaptive IDS we have included
Spearman’s rank correlation coefficient. Spearman’s rank
is a non-parametric measure of correlation widely used
to describe the relationship between two variables that
is used to report the difference in ranking produced by
two methods. Based on this metric we can find the most
suitable IDS for the current architecture of the network
with a notion of traffic in it, since the metric ranks the
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sources based on the total traffic they induce in the
system.

Data: Table 1
Result: Choose the appropriate trained IDS
initialization;
while not at end of Table 1 do

Read current line;
Store to temporary table;
if time range of temporary table = Time Gap
then

Rank existing IPs based on produced traffic;
Compare to correspoding rankings of the
pool of trained IDSs using Spearman’s
Rank Correlation Coefficient;

Choose the IDS with higher outcome;
Empty temporary table;

else
next

end

end
Algorithm 1: Adaptive IDS algorithm

One important parameter of the proposed Adaptive
IDS is the frequency of the comparison between the
current traffic to the pool of the trained IDS and also
the number of the trained IDSs that exist in order to
better match the current situation of the network. These
are issues that are investigated in the next subsection
where the trade off between accuracy and delay is also
analyzed.

8. System performance evaluation

In order to evaluate the efficiency of our proposed
Adaptive IDS (A-IDS) we have performed a number of
simulations using the datasets provided from HEDVa.
We have tested the proposed A-IDS using different
parameters as shown in table 2. We investigate how the
number of different trained IDSs affect the performance
of the system. In our experiments we now the number of
different architectures of the system while in a general
situation, an automatic method for finding the optimal
set of trained IDSs would be needed. Also we investigate
how frequent the comparison of current traffic to the ones
used for training must be, since a small time gap would
not include the necessary network traffic sample which
would be necessary in order to choose the correct IDS,
while on the other hand a big time gap would have as a
consequence the system not to be able to follow up the
topology changes fast enough.

8.1. Number of trained IDSs

In order to test the efficiency of our proposed A-
IDS we have done the following arrangement. The
system architecture is initially under configuration

Table 2. Simulation Parameters

Parameters Range Default
Number of trained IDS 2 - 5 5

Time gap (min) 1 -10 5

1 and circles from one configuration to the other
following this sequence: Configuration 1, Configuration
2, Configuration 3, Configuration 5 and Configuration 6
(See Figure 7. During the operation of the system both
a static and the proposed dynamic A-IDS are used.

The static IDS is initially trained using configuration
1 and the dynamic has 3 or 5 trained IDSs, each one
representing a different configuration from Table 1. The
system is constantly collecting the network traffic and
compares it against the one that was used to train
the pool of IDSs using the Spearman’s rank correlation
coefficient. The same experiment is conducted with the
system starting from configuration 2, 3, etc. in order
to cover all different configurations. Figure 8 shows the
aggregated accuracy of the Static and of the dynamic A-
IDS with 2,3,4 and 5 different individual trained IDSs.

It is obvious from Figure 8 that the A-IDS is
more stable in terms of accuracy for all the different
simulations conducted and manages to have a stable
behavior while the architecture is constantly changing
in a circular way between the different configurations as
shown in Table 1.

8.2. Time gap

In this subsection we test how much the time gap affects
the performance of the proposed A-IDS. As shown in
Figure 9 when selecting a very small value the system
is performing worse than the static IDS, due to the fact
that most of the time the system chooses a wrong trained
IDS to use. This is caused from the small number of
collected packets used for choosing the matching IDS.
These small datasets don’t represent the actual situation
inside the system, causing the A-IDS to choose most of
the times wrongly. On the other hand, as shown in Figure
9, a rather big time gap leads to the degradation of the
A-IDS to the static one.

8.3. Computectional Cost and Time Overhead

The complexity of an IDS can be attributed to hardware,
software and operational factors. For simplicity, it is
usually estimated as the computing time required to
perform classification of the dataset and output the
final alarms. Increasing the number of classifiers usually
increases the computational cost and decreases their
comprehensibility. For this reason reason, special care
must be taken when choosing the number of trained
IDSs. While the increase in number of trained IDSs
improves the method’s performance in terms of accuracy,
this may slow down the detection mechanism. In Fig.
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Figure 7. Topology of system circles between five different configurations

Figure 8. Aggregated accuracy of static and the proposed
A-IDS

Figure 9. Time Gap affects the performance of the A-IDS

10, we illustrate the time performance of the method
compared to a static IDS. The evaluation was conducted
on a PC with Intel core 2 duo 1.7 MHz CPU, 2 GB
main memory, 80 GB hard disk 7200 rpm hard disk and
Microsoft windows 7, 64 bit.

Figure 10. Approximate execution time.

According to Fig. 10, the execution time of the
proposed A-OCSVM is bigger compared to a static IDS
method. The performance gap is between 55% and 33%
depending on the number of IDSs that were initially
created. This time overhead is mainly caused by the
Spearman’s rank correlation coefficient method that is
used in order to identify the best matching IDS. Based on
these observations we conclude that the proposed A-IDS
system performs a classification in a comparable time to
that of a static IDS, and thus, it can be adopted in soft
real-time applications.

9. Future work

The current work is a preliminary step to a full adaptive
IDS. The research was conducted using specific datasets
produced from our HEDV in order to investigate the
efficiency of the proposed method. There exist a lot
of future paths that need to be followed in order
to investigate the feasibility and deploy-ability of the
method.
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9.1. Additional Features

A minimal set of features were used in this study which
may not be representative of the features required to
implement an IDS which effectively identifies malicious
behaviour. It would be useful to implement additional
feature extraction and generation steps and evaluate
their impact on the accuracy of the A-IDS. Additional
features may have a positive or a negative impact on the
performance of an IDS that is based on machine learning
techniques and the selection of the proper set of features
is a process that requires extensive simulations [35].

9.2. Feature & Parameter Learning

Introducing an iterative machine learning stage to the
method, could allow a far more optimal feature set and
parameter values for the OCSVM models generation.
This procedure would generate and test multiple SVM
files and models using different features and parameter
values. The accuracy of these would then be analysed for
correlations to the accuracy of these models. In this way,
it could be determined which features and parameter
values are most beneficial to the accuracy, and an optimal
configuration could then be chosen for the subsequent
testing. Typical methods that could be used as a basis
for this research are [36, 37]

9.3. Malicious Data

It would be highly beneficial to perform further testing
incorporating traffic constituting malicious activity in
order to more fully determine the efficacy of the
IDS simulation. There are two potential methods for
achieving this:

• If traffic containing known malicious data is avail-
able, then this could be integrated programmati-
cally into the data sets. This would require some
adaptation of the data during the process to ensure
that time and IP values fit appropriately into the
target data set.

• Malicious data could be programmatically gener-
ated for each data set. This would require a detailed
analysis of the traffic involved in one or more types
of attacks, and the development of code to simulate
this activity in conformance with the target data
set. Although this is a significant amount of work,
this functionality would be highly valuable for IDS
testing generally.

The need of new datasets is based on the fact that
the Evaluation of IDSs using the existing benchmark
data sets of KDD99 and NSLKDD does not reflect
satisfactory results. This is due to three major issues,
their lack of modern low footprint attack styles, their
lack of modern normal traffic scenarios, and a different
distribution of training and testing sets. Recently a new

dataset containing malicious data was introduced and
analyzed [38]. This data set has 9 types of the modern
attacks fashions and new patterns of normal traffic, and
it contains 49 attributes that comprise the flow based
between hosts and the network packets inspection to
discriminate between the observations, either normal or
abnormal.

9.4. Performance Improvements

As the data sets are very large, the time taken to
train and test models can become significant and impact
on the overall amount of work that can be done.
Further testing would benefit from any performance
improvements which can reduce this time. Three
potential methods for achieving greater performance
have been identified. Each one would be of great benefit,
but combining two or all three of these could greatly
improve the throughput of the system.

Multi-threading. Multi-core processors are standard
on modern computers, and using only a single core
for processing can be highly inefficient. If the program
could be modified to utilise multiple cores, then the
performance might be improved dramatically. Although
the overhead of making code thread-safe can negate
the benefits, this is unlikely to be the case in this
computationally heavy application. canny2013big There
are two potential avenues for achieving this. The most
difficult would be to modify the libsvm code to be
multi-threaded. This could be very complex but would
allow performance gains even when training or testing
a single model. The second method would be to allow
training or testing of models to be done in parallel.
This would not provide a benefit when processing a
single model, but is likely to be far simpler to achieve
reliably. Multi-threading techniques that were recently
introduced could be used as a reference to our future
work citecanny2013big.

Distributed Processing. The code could be modified
to operate in a client/server fashion over the network
to allow the processing of models to be distributed
across more than one machine. This would apply during
batch operations, such as training all models, as the
operations are discrete and separate from each other.
In these circumstances it is simple and straightforward
for another machine to perform a complete operation
remotely.

GPU Processing. Graphics Processor Units (GPUs),
while designed for the task of generating 3D graphics,
are also excellent at performing massively parallel
computations for more generic applications When
exploited correctly this can produce huge speed
improvements for code, with applications such as the
password cracking software HashCat seeing ten time the
performance with an inexpensive commercial graphics
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card. Converting code to operate on GPU architecture,
however there are implementations of the libsvm library
which have done exactly this (although not for OCSVM),
which could be used as a starting point for this
development work.

10. Conclusions

The current research on IDS for SCADA systems
focuses on relatively static systems. While this has
been reasonable in the past when SCADA systems
have remained unchanged for long periods, it is clear
that as SCADA systems adopt modern technology and
characteristics of IT systems they are likely to become
more dynamic, leading to a need for research into how
such changes affect the performance of IDSs. This article
investigates how changes in the architecture of a SCADA
system affect the performance of an IDS that is based
on the OCSVM machine. Also the article proposes an
adaptive mechanism that can cope with such changes
and can work in real time situations. The proposed
mechanism can be a basis for developing real time
Adaptive IDS, for both IT and IC systems, that are based
on classification mechanisms.
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