
EAI Endorsed Transactions
on Industrial Networks and Intelligent Systems Research Article

1

An Intelligent Raspberry-Pi-Based Parking Slot
Identification System
Raghav Agarwal1, Gaurav Sharma1, Nirdesh Singh1, Hrishikesh S Nair2, Yash Daga1 and D. Venkata
Lakshmi1*

1School of Computer Science & Engineering (SCOPE), VIT-AP University, Amravati, Andhra Pradesh, India
2School of Electronics Engineering (SENSE), VIT-AP University, Amravati, Andhra Pradesh, India

Abstract
A growing population necessitates more transportation, which pressures car parking spots. Parking is a problem for public places
in cities, such as theatres, malls, parks, and temples. Even though several techniques have been suggested in publications, manual
parking systems are still used in most places. For large locations where it is challenging to find open spaces, traditional parking
arrangements need to be more archaic and convoluted. This might lead to heavy traffic, minor mishaps, and widespread accidents.
In the modern era of sophisticated parking management systems, an automatic parking spot-detecting system has been introduced
in an innovative format. Experts in computer vision are drawn to this emerging field to contribute. The system could tell if the
automobile was fully or partially parked. Neither during the process nor afterward, human oversight is required. As parking
management enters the modern era, computer vision is becoming increasingly critical. The parking system will not only make it
easier for drivers to identify parking spaces but also enhance parking administration and monitoring. Vehicles will be able to
observe available parking spots due to technology that monitors parking spaces. India and other emerging nations, as well as
industrialized ones, have recently shown interest in smart cities. This article's smart auto parking system was conceived and
implemented utilizing a Raspberry Pi and cameras placed in various parking spaces. Using a website and an Android app, this
project creates and deploys a real-time system that enables vehicles to efficiently find and reclaim open parking spaces.

Keywords: Parking Detection, Smart Parking, Android App, Raspberry Pi

Received on 28 August 2023, accepted on 27 October 2023, published on 06 November 2023

Copyright © 2023 R. Agarwal et al., licensed to EAI. This is an open access article distributed under the terms of the CC BY-NC-SA 4.0,
which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so long as the original work
is properly cited.

doi: 10.4108/eetinis.v10i4.4294

*Corresponding author. Email: venkatalakshmi.d@vitap.ac.in

1. Introduction

With an increase in vehicles on the road, parking has
become a significant problem in urban areas. Drivers will
eventually look for an open parking space, park
improperly, or park in a space allocated for people with
disabilities. This is due to the lack of real-time monitoring
of parking spaces, especially close to the busiest locations.
Parking causes traffic congestion, especially during rush
hour, and wastes time and fuel [1]. Air pollution and
disease are caused by increased CO emissions due to traffic
congestion [2]. Governments searched for an efficient
parking system to manage and control parking lots while
easing traffic congestion due to this problem. Therefore,
the management and maintenance of parking slots in both
public and private parking spaces would be made simpler
by the presence of a parking system that directs vehicles to

the best available parking spot in a monitored and
controlled manner. Vehicles will be able to hunt for
parking spots using a smartphone app.

In today's packed cities, finding a parking space might
be challenging. Unfortunately, there aren't enough parking
spots to accommodate all automobiles. As a result,
effective parking management systems are becoming more
in demand. Most parking spots are not automated, and there
is no mechanism to detect if they are occupied. An
intelligent parking management system may speed up
traffic flow while automatically or manually deporting
automobiles. In today's world, where technology and
people are growing quickly, there is a high need for parking
cars, especially in public areas. The available slots are
unknown to drivers.

The article will show how a parking management
system built on the Internet of Things can maximize
available parking spaces. There are websites in several

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

| Volume 10 | Issue 4 |

https://creativecommons.org/licenses/by-nc-sa/4.0/
mailto:venkatalakshmi.d@vitap.ac.in

 R. Agarwal et al.

2

nations where individuals may learn more about parking
slots. This system can provide parking-related information.
Through the website and Android app, you can check the
availability of parking spaces in various parking zones
from a distance.

In Section II of this study, various projects and studies
concerning smart parking systems in intelligent cities will
be evaluated. In Section III, the methodology for smart
parking systems will be highlighted. Section IV will also
display findings and discussion. Section V covers the
conclusion and future remarks.

2. Literature Survey

This section will examine the evaluation and assessment of
various Smart Parking systems and efforts implemented in
Smart Cities. Due to increased traffic, drivers' time looking
for available parking spaces, air pollution, and other
factors, smart parking systems are becoming more popular
in smart cities. One of these options is the Smart Parking
system, which uses a variety of technologies and network
infrastructures [3].

Current large-city studies indicate that there are several
methods for managing parking, including the amount of
traffic on the roads. When parking their cars, drivers
become frustrated by the difficulty of finding a parking
space. Drivers often waste time and effort looking for
parking spaces and parking on the street, which congests
the parking lot. In the worst-case scenario, people might
not be able to get a parking spot, especially during the
holidays or other busy times.

[4] described a smart parking system where users could
use a website to check for open parking spaces. They could
also reserve them if they weren't previously reserved using
LED lights and sensors. The recommended architecture
can cut down on time spent searching for parking and ease
traffic congestion. However, the user must be connected to
the same WIFI network to use the system.

[5] introduced SPARK, an automated, cost-efficient,
real-time wireless sensor network-based smart parking
system. A single parking place is monitored and reserved
for the user by this method. The technology uses spot data
and light sensors to detect cars. The information is then sent
radiofrequency to a subsystem.

[6] developed a smart, automated parking system using
sensors based on the Raspberry Pi that is cheaper than
expensive video cameras. It suggested creating a mobile
application as a potential future project to showcase
parking space availability and to notify users when parks
are open nearby.

To identify parking space openings, outdoor parking
systems often use sensor-based or computer vision-based
systems, including camera-based surveillance systems.

[7] described a system that uses cameras and Classifier
Neural Networks. This requires a specialist server with a
lot of processing capacity and the ability to analyze and
predict real-time data at extremely fast rates. This system

cannot scale since the amount of data generated increases
exponentially with infrastructure.

Smart Parking System with IoT Support [8] includes a
KNN approach to slot security and availability. A sensor
module, a Raspberry Pi module, and an Arduino module
are used for both reserved and non-reserved vehicles.

Intelligent Parking Management System Based on
Image Processing [9] has claimed that image processing
methods can be used to locate a parking space. RGB colors,
which are fundamental hues, were used to identify empty
spaces. The green color denotes when a car is not parked in
its designated spot, the blue color denotes a space, and the
red color denotes no parking lot.Alenezi et al. (2021)
developed a novel Convolutional Neural Network (CNN)
integrated with a block-greedy algorithm to enhance
underwater image dehazing. The method addresses color
channel attenuation and optimizes local and global pixel
values. By employing a unique Markov random field, the
approach refines image edges. Performance evaluations,
using metrics like UCIQE and UIQM, demonstrated the
superiority of this method over existing techniques,
resulting in sharper, clearer, and more colorful underwater
images [12]. In their study presented at the 13th
International Conference on Computing Communication
and Networking Technologies, Vikas et al. (2022)
examined the classification of agricultural land using
machine learning algorithms. The research, illustrated
using Zhashui County as an example, established a Rating
Factor System through methods like the Delphi method and
straight-line method. They assessed various factors related
to the land, calculating a classification index and achieving
preliminary land classification. Furthermore, the study
emphasized the role of weather and soil characteristics in
agricultural decision-making, highlighting the potential for
more accurate and cost-effective land classification
through satellite images and machine learning algorithms
[13].

Our system uses a small amount of computer resources.
Because the modules perform all fundamental and
necessary computations, a simple server manages the
database. Our system is scalable without increasing
processing demands. Our recommended smart outdoor
parking solution does this without staff, providing orderly
and secure outdoor parking.

3. Methodology

3.1. System requirement

DroidCam
With the help of the DroidCam program, users may use
their Android tablet or smartphone as a wireless camera for
their PC. Both free and premium versions are available
from the Google Play Store.

Users may use their Android device as a camera for
video chats, online meetings, live streaming, and other
purposes. This is done by using DroidCam to connect their

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

| Volume 10 | Issue 4 |

 An Intelligent Raspberry-Pi-Based Parking Slot Identification System

3

Android handset to their computer via Wi-Fi or USB. The
program provides numerous customization options, such as
changing camera settings and video quality. A variety of
video software products are also supported.

DroidCam is a beneficial and practical option for anyone
who needs a webcam, saving consumers the trouble of
getting separate webcam equipment.

We use the WIFI-connected DroidCam application to
generate a distinct IP address for each parking slot, which
we then feed into the ML model running on the Raspberry
Pi. DroidCam in-use demo is shown in Fig. 1. (a).

Figure 1. System Requirement (a) DroidCam
(b) Raspberry Pi.

Raspberry Pi
We are using Raspberry Pi 3B+, The Raspberry Pi 3B+ is
a single-board computer designed for experts, academics,
and hobbyists alike. This powerful computing platform
contains a quad-core ARM Cortex-A53 Broadcom
BCM2837B0 CPU and 1GB of RAM.

With built-in Wi-Fi, Bluetooth, Ethernet, and HDMI,
the device may easily be connected to a wide range of
peripherals and gadgets. For further expansion options, it
also contains a 40-pin GPIO header, 4 USB ports, and a
microSD card slot.

The Raspberry Pi 3B+ may be used for a wide range of
tasks, from robotics and Internet of Things devices to home
automation and media centers. It can run several operating
systems, including Linux-based versions like Raspbian.
Due to its low price and adaptability, it is an excellent
choice for anyone who wants to learn about or experiment
with computing and electronics.

Our Raspberry Pi 3B+ runs an ML model that accepts
video input using the distinct IP addresses produced by the
DroidCam application.

The number of filled and unfilled parking spaces in a
specific parking spot is then generated and pushed into the
Cloud Firestore (Firebase). Fig. 1. (b) represents the
Raspberry Pi.

3.2. Detection Mechanism

By utilizing computer vision techniques to identify
occupied parking spaces, our ML model develops a smart
parking system. Two colors—green and blue—are
recognized by the system using OpenCV in images taken
by cameras placed at parking lot entrances. The percentage
of green and blue tones in the image is computed after color
detection using the HSV color system. The code evaluates
the parking lot's occupancy condition based on the
proportion of green and blue colors seen. It changes the
status in a Firestore database.

The model begins by importing the Firebase Admin
SDK, time, OpenCV, and other necessary libraries. The
method detectobj() takes an image as input and produces
the number of completely occupied parking spots by
employing a color detection approach. The code uses the
cv2.inRange() method to construct a mask for the green and
blue hues in the image. It then counts the number of green
and blue pixels in the mask to calculate the percentage of
each color in the image. After determining whether it has
picked up both colors or only one, the function modifies
the occupancy status accordingly.

The Firebase Admin SDK is then initialized by
providing the service account key file location. Then, three
cameras are positioned at the entrances to three parking
slots, and a loop is set up to record images from those
cameras. To assess if the room is occupied, the code gathers
images from each camera. It converts it to RGB color space
and then passes it to the detectobj() function. The
occupancy status in the Firestore database is then updated.

Until the user closes the application or the cameras stop
taking pictures, the code keeps running. The software
updates the occupancy status of each parking lot every five
seconds.

3.3. Frontend

We utilize Flutter for the front-end of our mobile
applications. Google developed the free and open-source
Flutter mobile app development framework. It enables
programmers to create high-performance, natively
designed applications from a single codebase for desktop,
web, and smartphone platforms. Developers may design
stunning and responsive user interfaces with Flutter, a
programming framework that uses the Dart programming
language. It offers a wide variety of pre-built and
customized widgets.

One of Flutter's key advantages is its rapid reload
functionality. This lets programmers update the code and
see the results without restarting the application. This
feature allows developers to iterate fast and test out
different designs and functionalities while also
significantly speeding up the development process.

Flutter offers a wide range of pre-built widgets,
thorough documentation, and a growing online developer
and contributor community, among other tools and
resources, to developers. As a result, it is now simpler for

 (a) (b)

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

| Volume 10 | Issue 4 |

 R. Agarwal et al.

4

programmers to get started with Flutter and take advantage
of all of its capabilities. This will enable them to develop
beautiful and intriguing mobile apps. In general, Flutter is
a robust and adaptable framework for creating mobile apps
that are rapidly gaining favor with both developers and
companies.

One screen in our smartphone app displays the three
parking spaces: Parking A, Parking B, and Parking C. The
app displays the number of open and occupied parking
spaces in each parking spot. Available and occupied
parking spaces are retrieved from the back-end (Firebase).

3.4. Backend

A NoSQL cloud database, Cloud Firestore is a component
of Google's Firebase platform. It offers a scalable and
adaptable solution for real-time data storage and retrieval
for developers of mobile and web apps. For better speed,
Cloud Firestore stores data in a document-oriented format
rather than traditional SQL databases.

Real-time synchronization is one of Cloud Firestore's
distinctive characteristics. All connected clients receive
automatic updates whenever data is added, updated, or
removed from the database. Therefore, it is simple to create
cooperative applications such as chat apps, real-time
dashboards, and multiplayer games.

As a bonus, Cloud Firestore offers a powerful querying
mechanism that spares developers from writing time-
consuming server-side code to filter, sort, and paginate data
on the client side. This enables speedy and efficient data
retrieval from huge databases. Cloud Firestore also
supports transactions and batch writes, which ensures data
consistency and reduce server round trips.

Cloud Firestore is integrated with Firebase, offering
another benefit. As a result, developers can easily include
authentication, cloud communications, and cloud features
into their programs without building a challenging
infrastructure.

The Cloud Firestore stores the number of occupied and
vacant parking spaces from the ML model [10]. Mobile
apps fetch real-time data and show it to users. Fig. 2 shows
the same.

Figure 2. Backend support of the proposed system

3.5. System Design

Here’s the step-by-step algorithm for identifying available
or occupied parking slots:

(a) Import required libraries: cv2, numpy, time, os,
firebase_admin, credentials, and firestore.

(b) Define the detectobj() function, which takes an
image as input and returns the number of parking
spaces that are occupied.

(i) Change the image's color space from
BGR to HSV.

(ii) Set lower and upper limits for the HSV
space's green and blue hues.

(iii) Use the inRange() method of the cv2
module to create two masks for the colors green
and blue.

(iv) Calculate the percentage of green and
blue color in the image.

(v) See if you can distinguish the colors
green and blue, one of them, or none of them.

(vi) Using the bitwise_or() method, combine
the green and blue masks.

(vii) Using the bitwise_and() method, apply
the mask to the original picture.
(viii) Return the number of full parking slots
based on the number of colors detected.

(c) Specify 5 frames per second as the fpsLimit.
(d) Set the startTime to the current time.
(e) Utilizing cv2, launch three video streams. Their

corresponding IP addresses are used using the
VideoCapture() method.

(f) To read frames from the three video sources, start
an endless loop.
(i) Read the frame from parking A in the first

video feed.
(ii) See if the difference between the current time

and the start time exceeds the fpsLimit.

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

| Volume 10 | Issue 4 |

 An Intelligent Raspberry-Pi-Based Parking Slot Identification System

5

(iii) If so, change the frame's color space from
BGR to RGB.

(iv) To determine the number of available parking
spaces, use the converted picture and the
detectobj() method.

(v) Subtract the number of full parking spaces
from the total number of spaces to determine
the number of unoccupied spaces.

(vi) Utilize the initialize_app() and connect to the
Firebase Firestore database operations.

(vii) Add the number of empty and filled parking
spaces for parking A to the Firestore
database.

(viii) For parking B and parking C, repeat
steps 1 through 7.

(ix) Close all windows after releasing the video
capture.

(g) End of the algorithm

The diagrammatical structure of the brief system design is
shown in Fig. 3.

Figure 3. System Design

4. Cost And Comparison with existing
systems

This section presents a detailed breakdown of the estimated
costs associated with implementing the intelligent
Raspberry Pi-based parking slot identification system. By
accurately assessing the expenses, we aim to provide an
understanding of the financial implications and feasibility
of the proposed system [11].
This section also presents a comparative analysis of the
cost associated with implementing an intelligent Raspberry
Pi-based parking slot identification system in contrast to
existing systems.

4.1. System Components

The Hardware Components which are used to make the
following identification system are:

• Raspberry Pi boards
• Hard Cardboard plank
• Black, white, and yellow Chart papers.
• SD card
• High-speed micro-SD card reader
• Miniature toy Cars

4.2. Quantity and Cost of Components

The Quantity and Cost of Components are shown in Table
1.

Table 1. Quantity and Cost of Components

Component Quantity Unit Cost
(₹)

Total Cost
(₹)

Raspberry Pi board 1 ₹ 5,256 ₹ 5,256

Hard cardboard plank 1 ₹150 ₹150

Chart papers (Black,
white and yellow)

3 ₹12 ₹36

Miniature toy Cars 2 ₹199 ₹398

SD Card 1 ₹459 ₹459

High-speed micro-SD
card reader

1 ₹59 ₹59

Sum Total ₹6,358

4.3. Software and Development Cost

The Software’s Components that are used to make the
following identification system are:

• DroidCam Android App (Free Google Play Store
application)

• Firebase Realtime Database (Open-Source real-
time database)

• Flutter (Open-Source mobile app development
platform)

As all of the above Software components are free of cost
and are open source, the cost relating to software
components is zero.

From sections 4.2 and 4.3 we deduce the total cost of the
prototyping model to be INR ₹6,358/-.

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

| Volume 10 | Issue 4 |

 R. Agarwal et al.

6

4.4. Comparison with existing systems

In the prototyping scale, various existing systems can be
compared to an intelligent Raspberry Pi-based parking slot
identification system. Here are a few examples along with
their approximate costs in INR:

Ultrasonic Sensor-based System
Description: A system that utilizes ultrasonic sensors to
detect the presence of vehicles in parking slots.
Cost: The cost of an ultrasonic sensor-based system can
range from ₹2,500 to ₹6,000, including the cost of sensors,
Arduino, or similar microcontrollers, wiring, and other
necessary components.

Infrared Sensor-based System
Description: A system that employs infrared sensors to
detect vehicle occupancy in parking slots.
Cost: The cost of an infrared sensor-based system can
range from ₹3,000 to ₹7,000, depending on the number of
sensors, microcontrollers, wiring, and other associated
components.

Arduino-based Parking System
Description: A system based on Arduino microcontrollers
that can detect and monitor parking slot occupancy.
Cost: The cost of an Arduino-based parking system can
range from ₹3,000 to ₹8,000, depending on the number of
parking slots, sensors used, and additional components
required.

All these systems mentioned above require multiple
sensors in each parking slot. This will cause the overall cost
to rise much more than its expected price range.

This also increases the complexity of these systems,
introducing many problems such as Delay, Challenges in
System Integration, Greater Risk of Errors, and reduced
ease of use.

Comparing the costs, it is evident that the intelligent
Raspberry Pi-based parking slot identification system (on
a small scale) priced at ₹6,358/- (INR) offers a competitive
advantage over the existing systems mentioned above in
terms of affordability and functionality.

5. Results and Discussion

We are considering three parking spaces - Parking A,
Parking B, and Parking C. Three scenarios might occur:

5.1. Completely empty parking place (let's
assume parking A as an example)

The ML model in this instance fails to identify a sizable
fraction of green or blue color. Thus, no slots are detected
as occupied. The app shows the same thing. The parking
spot widget in the app stays green, suggesting there are still
spaces available. Fig. 4. represents the input (parking

condition) and output (Empty and filled slots detection) for
case-1.

Figure 4. Empty parking (a) Parking condition (b)
Empty and filled slots detection.

5.2. When all parking spaces are fully
occupied (let's assume parking B as an
example)

In this instance, a lot of green and blue colors are detected
by the ML model. Therefore, the number of vacant slots is
zero. The app shows the same thing. When no parking
spaces are available, the parking spot widget turns red. Fig.
5. represents the system input and output for case-2.

Figure 5. Fully filled parking (a) Parking condition (b)
Empty and filled slots detection.

5.3. When any parking space is partially
occupied (let's assume parking C as an
example)

The ML model in this instance finds a large percentage of
green or blue color. Thus, the numerical value of vacant
and filled slots is determined. The app shows the same
thing. The parking spot widget in the app stays green,
suggesting there are still spaces available. Fig. 6 represents
the case 3 condition.

 (a) (b)

 (a) (b)

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

| Volume 10 | Issue 4 |

 An Intelligent Raspberry-Pi-Based Parking Slot Identification System

7

Figure 6. Fully filled parking (a) Parking condition (b)
Empty and filled slots detection.

Hence, the proposed system is detecting the free and
occupied slots effectively as shown in Table 2.

Table 2. System observation for all the cases

Case Parking
Slot

% of
Green

% of
Blue

Occupied
Slots

Empty
slots

1 A 0.0 0.010
41

0 2

2 B 11.35
41

3.164
7

2 0

3 C 9.743
4

8.354
1

2 1

 6. Conclusion and future remarks

Everybody's life now depends on their vehicles. Everyone
drives because traffic is so common. These days, it takes
time to find a parking spot while outside. A crucial source
is also to provide car parking. This proposed effort aims to
reduce petrol costs and find the most suitable available
space.

IoT-based smart cities are a ground-breaking innovation
that has been built and is continuously developing and
enhancing services. One of these services, Smart Parking,
exemplifies the updated parking procedure. This differs
significantly from the old network in terms of time savings,
reduced traffic congestion, and reduced pollution. The
updated system lowers labor costs by reducing system
complexity.

Automatic Parking Slot Occupancy Detection is an
excellent concept for smart parking since it accurately and
instantly assesses vacant and occupied parking spaces. This

study's main objective was to identify cars and open
parking spots from a stream of video images. This was to
improve the city's parking infrastructure and reduce
emissions while boosting locals' quality of life. The
structure developed helps reduce pollution since navigation
is regulated. Time is saved, and movement is easier, thanks
to technology. The Android app offers accurate location
data.

The experimental investigation suggests that additional
modifications to the current model can enhance the parking
system. Future implementations will make it easier to
locate outdoor parking spaces more precisely.

References
[1] Pham, T. N., Tsai, M. F., Nguyen, D. B., Dow, C. R., &

Deng, D. J. "A cloud-based smart-parking system based on
Internet-of-Things technologies", IEEE Access, 3, pp. 1581-
1591, (2015).

[2] Zhang, Kai & Batterman, Stuart. "Air pollution and health
risks due to vehicle traffic", Science of The Total
Environment, 450-451. 307-316, (2013).

[3] Z. Faheem, S. A. Mahmud, G. M. Khan, M. Rahman, and
H. Zafar. "A survey of intelligent car parking system," J.
Appl. Res. Technol., vol. 11, no. 5, pp. 714–726, (2013).

[4] Khanna and R. Anand. "IoT based smart parking system,",
International Conference on Internet of Things and
Applications (IOTA), Pune, pp. 266-270, (2016).

[5] S. Srikanth, P. Pramod, K. Dileep, S. Tapas, M. U. Patil et
al., "Design and implementation of a prototype smart
parking (SPARK) system using wireless sensor networks,"
in Advanced Information Networking and Applications
Workshops, 2009. WAINA'09. International Conference
on. IEEE, pp. 401–406, (2009).

[6] Mr. Basavaraju S R "Automatic Smart Parking System
using the Internet of Things (IoT)", in International Journal
of Scientific and Research Publications, Volume 5, Issue 12,
ISSN 2250-3153, December (2015).

[7] Jermsurawong Jermsak .; Ahsan Umair .; Haidar
Abdulhamid.; Dong Haiwei.; Mavridis Nikolaos: Statistical
analysis to observe the parking demand for vacancy
detection using a single camera for one day. J Transpn Sys
Eng & IT, 14(2), 33-4, (2014).

[8] Ashutosh Kumar Singh, Mohit Prakash et al., “Smart
Parking System using IoT”, in International Research
Journal of Engineering and Technology (IRJET) e-ISSN:
2395-0056 Volume: 06 Issue: 04, pp. 2970- 2972, (2019).

[9] Hilal Al-Kharusi, Ibrahim Al-Bahadly, “Intelligent Parking
Management System Based on Image Processing”, World
Journal of Engineering and Technology, Scientific
Research, 2, 55-67, (2014).

[10] Agarwal, R., Suthar, J., Panda, S. K., & Mohanty, S. N.
(2023). Fuzzy and Machine Learning based Multi-Criteria
Decision Making for Selecting Electronics Product. EAI
Endorsed Transactions on Scalable Information
Systems, 10(5). https://doi.org/10.4108/eetsis.3353.

[11] Agarwal, R., & Godavarthi, D. (2023). Skin Disease
Classification Using CNN Algorithms. EAI Endorsed
Transactions on Pervasive Health and Technology, 9.
https://doi.org/10.4108/eetpht.9.4039.

[12] Alenezi, F.; Armghan, A.; Mohanty, S.N.; Jhaveri, R.H.;
Tiwari, P. Block-Greedy and CNN Based Underwater
Image Dehazing for Novel Depth Estimation and Optimal

 (a) (b)

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

| Volume 10 | Issue 4 |

https://doi.org/10.4108/eetsis.3353
https://doi.org/10.4108/eetpht.9.4039

 R. Agarwal et al.

8

Ambient Light. Water 2021, 13, 3470.
https://doi.org/10.3390/w13233470

[13] K. Vikas, K. V. Goud, S. Ponaganti, A. N. Reddy, K.
Nagasai and S. N. Mohanty, "Agricultural Land
Classification Based on Machine Learning Algorithms,"
2022 13th International Conference on Computing
Communication and Networking Technologies (ICCCNT),
Kharagpur, India, 2022, pp. 1-4, doi:
10.1109/ICCCNT54827.2022.9984254.

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

| Volume 10 | Issue 4 |

https://doi.org/10.3390/w13233470

