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Abstract 

While energy efficiency is essential to extend the battery life of embedded devices, performance cannot be ignored. High 

performance superscalar embedded processors are more energy efficient than low performance scalar processors, however, 

they consume more power which is very limited in battery operated deeply embedded industrial devices. In this paper we 

propose an energy efficient dual issue embedded processor that can deliver up to 60% improvement in IPC (instruction-

per-cycle) performance with less than 20% increase in power consumption compared to a single issue scalar processor. In 

contrast to traditional multi-issue embedded processors that use power intensive superscalar techniques to extract 

instruction-level parallelism from applications, the proposed processor uses simple hardware techniques to resolve 

instruction scheduling conflicts. The processor is optimized for implementation on a low cost FPGA which makes it a 

suitable candidate for cost sensitive embedded industrial applications.  
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1. Introduction

The challenge in designing energy efficient embedded 

devices is how to increase the device computational 

performance while using the least amount of power. Most 

embedded communication devices like remote sensors in 

industrial applications operate on batteries and in some 

cases these batteries cannot be replaced so frequently or at 

all. In these cases, alternative energy sources like energy-

harvesting are used. However, energy-harvesting techniques 

supply very limited amount of power; for example, a 36.5 x 

64 mm 3-Volts solar panel from PowerFilm delivers 66 

mWatts in 100% sun and less than 20 mWatts in 25% sun 

which is a typical threshold intensity used by portable 

devices [1]. To put these numbers into perspective, the 

single issue ARM Cortex-M4 scalar processor consumes 

16.5 mWatts at 500 MHz whereas the dual issue ARM 

Cortex-A7 superscalar processor consumes 50 mWatts at 

500 MHz [5], well above the 20 mWatts that the PowerFilm 

solar panel can deliver. 

Although the Cortex-M4 scalar processor consumes 

much lower power than the Cortex-A7, it can only issue a 

single instruction per cycle which limits its performance 

potential. In contrast, the Cortex-A7 superscalar processor 

can issue multiple instructions per cycle which allows it to 

complete tasks faster than scalar processors and, 

consequently, turn off unused resources to save energy in 

the long run. Overall, the Cortex-A7 delivers 1.5x higher 

performance than the Cortex-M4 while consuming 3x more 

power [5]. Because the Cortex-A7 consumes more power 

than the scalar Cortex-M4 processor, therefore, it cannot be 

used in battery operated embedded devices or embedded 

devices powered by an energy harvesting source such as the 

PowerFilm solar panel mentioned earlier. The challenge for 

next generation embedded industrial devices is how to 

balance the increasing demand for higher performance with 

longer battery life. The ideal solution is to design an 

embedded processor that can deliver performance 

comparable to a superscalar processor while consuming the 

same, or as close as possible, amount of power as a single 

issue scalar processor. 
*Corresponding author Email: mito@ece.ubc.ca 

and Intelligent Systems 

09 2015 -01 2016 | Volume 

3 | Issue 6 | e4

EAI Endorsed Transactions on Industrial Networks 



EAI
European Alliance
for Innovation

M. Ito and H. Lozano

 2 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

b
a
s
ic

m
a
th

b
it
c
o
u
n
t

q
s
o
rt

s
u
s
a
n
.s

m
o
o
th

in
g

s
u
s
a
n
.e

d
g
e
s

s
u
s
a
n
.c

o
rn

e
r

d
ijk

s
tr
a

p
a
tr

ic
ia

b
lo

w
fi
s
h
.e

n
c
o
d
e

b
lo

w
fi
s
h
.d

e
c
o
d
e

ri
jn

d
a
e
l.
e
n
c
o
d
e

ri
jn

d
a
e
l.
d
e
c
o
d
e

s
h
a

a
d
p
c
m

.e
n
c
o
d
e

a
d
p
c
m

.d
e
c
o
d
e

C
R

C
3
2

F
F
T

IF
F
T

s
tr

in
g
s
e
a
rc

h

jp
e
g
.e

n
c
o
d
e

jp
e
g
.d

e
c
o
d
e

IP
C

Figure 1. IPC performance of an ideal dual issue embedded processor. 

The reason superscalar processors consume more power 

than scalar processors is because they use aggressive and 

complex hardware techniques, such as out-of-order issue, 

speculative execution, etc., to issue more than one 

instruction per cycle. The amount of effort needed to issue 

multiple instructions per cycle depends on how much 

instruction level parallelism (ILP) is contained in the target 

applications. Instruction level parallelism is a measure of the 

number of independent instructions that can be issued in 

parallel every cycle independent of any other external 

factors such as hardware resource limitations. In 

applications with high ILP, the processor doesn’t need to 

use aggressive techniques to extract available parallelism in 

the code, instead simple scalar techniques will suffice. The 

amount of ILP varies between applications. For example, 

references [23] and [24] showed that general purpose 

applications have an average IPC of four regardless of the 

type of CPU used, whereas reference [9] showed that 

embedded applications can achieve IPC higher than two 

using a high-end four-instruction wide superscalar Compaq 

Alpha 21264 processor. 

Figure 1 shows the max IPC for a number of embedded 

applications using an ideal two-instruction wide in-order 

scalar processor with four pipeline stages, perfect branch 

prediction, unlimited number of registers, unlimited number 

of memory ports and unlimited number of functional units. 

Results indicate that on average 1.5 instructions are issued 

every cycle. Benchmarks that have long basic blocks of code 

such as susan.edges, susan.corner, rijndael and sha tend to 

have much higher ILP which translates to higher IPC 

because it is easier for the processor to locate independent 

instructions that it can issue in parallel. The IPC 

performance of these benchmarks is well above average; it 

is actually close to the max issue capacity of a dual issue 

processor. These results confirm that there is an abundance 

of ILP in embedded programs that can be easily extracted 

using minimal effort. 

We propose a dual issue embedded processor that uses 

simple hardware techniques to extract available ILP from 

applications. The proposed processor delivers up to 60% 

higher IPC than a single issue scalar processor while using 

only 20% more power. The average increase in IPC is 

around 40%. The proposed processor can fetch, decode and 

issue two instructions simultaneously every cycle. The dual 

issue processor uses approximately 30% more logic gates 

than the single issue processor when implemented on a low 

cost FPGA which helps keep the power consumption low. 

The main reason we limited ourselves to dual-issue 

processors is because increasing the processor width beyond 

two instructions is very difficult to achieve, especially when 

targeting an FPGA. The main source of difficulty is the 

implementation of a multi-port register file (RF). The RF of 

a four instructions wide processor uses four write ports and 

eight read ports whereas FPGA memories as well as most of 

low cost standard embedded memories have only two ports 

that can be configured as read/write ports or one read port 

and one write port. In section 4 we will explore in detail the 

implementation of a multi-port register file using dual port 

memories. 

The main characteristics of the proposed dual issue scalar 

processor are:  

• A short in-order 4-stage pipeline that executes a rich

32-bit RISC instruction set based on the MIPS

instruction set [2].

• Tightly coupled program and data memories with zero-

wait states using Harvard architecture.

• A static branch predictor that performs within a 5%

range of an ideal branch predictor.

• Result forwarding scheme that uses FPGA built-in

features without any additional external logic.

• An optimized multi-port register file (RF) that uses a

novel memory redundancy technique.
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A custom cycle accurate C simulator that models a single 

issue RISC processor and a multi-issue superscalar RISC 

processor is used to evaluate architectural design decisions 

in the early phases of the design process. All the processor 

implementation details such as issue width, number of 

memory ports, number of functional units, etc. can be 

configured statically by the user. Once all the processor 

features were optimally evaluated, the processor is 

implemented in a low cost FPGA to measure performance, 

power consumption and resource usage. 

The paper is organized according to the following outline. 

Related works are discussed next in section 2. The 

simulation environment including benchmarks and base 

processor architectural details are described in section 3. A 

detailed description of the dual issue processor is included in 

section IV. Section V discusses results and the conclusion is 

presented in section VI.  

2. Related Work

2.1. Processor Survey 

These processors are either used as standalone embedded 

processors or as embedded cores in multi-core processors. 

For our study we limit our analysis to standalone dual issue 

in-order processors that target the low cost and low power 

embedded market. This type of embedded processors are 

characterized by single thread execution, the use of tightly 

coupled data and instruction memories with optional zero 

wait state access, a short pipeline usually three or four stages 

deep, simple static or no branch prediction, in-order 

instruction issue and single cycle execution for most 

instructions. Table 1 compares a number of academic and 

commercial processors. The main observations are: 

• The majority of embedded processors listed in Table 1

use a RISC instruction set. The only exception is Intel

ATOM embedded processor which uses a CISC

instruction set. Despite the popular belief that RISC

processors are more efficient than CISC processors, a

recent study comparing RISC and CISC has shown that

the choice of an instruction set has no impact

performance nor energy efficiency [25].

• The PATMOS processor is designed for academic

research on time-predictable multi-core architecture

and hard real-time embedded systems. It can be

configured as a standalone processor or as a core in a

multi-core processor.

• The LEON3 is part of the LEON family of processors

originally designed by the European Space Agency

(ESA) and currently maintained by Gaisler

(www.gaisler.com).

• The NIOS-II and MicroBlaze are FPGA soft cores

provided by Altera and Xilinx, respectively. These

cores come in different configurations and features and

are mostly used as micro-controller rather than fully

fledged embedded processors.

• Most processors have very short pipelines, three to five

stages. The exception again is Intel ATOM processor

which has a 16-stage deep pipeline. The reason is that

the ATOM processor dynamically converts complex

CISC instructions into RISC-like micro-operations

using multiple pipeline stages.

• A wider pipeline does not necessarily translate to

higher performance. Dual issue ATOM and PATMOS

have a much lower Coremark/MHz score than single

issue microAptive and Cortex-M4. The performance of

PATMOS dual issue version is only 7% higher than the

performance of PATMOS single issue version [26].

The authors in [26] attribute this weak performance to

deficiencies in PATMOS instruction set and compiler.

• The ATOM processor Coremark performance is poor

due to the additional delay caused by the long 16-stage

pipeline; long latency operations which are common in

the Coremark benchmark incur an additional penalty in

processors with a deep pipeline similar to ATOM [1]

[8]. In contrast, the Cortex-M4 which has a short 3-

stage pipeline can deliver a much higher Coremark

performance than ATOM despite its smaller size.

• The microAptive and ARM Cortex-M4 cores have the

highest Coremark/MHz score of all processors. The

biggest differentiating factor is that these two

processors are modern RISC cores that combine a

number of advanced architectural features such as

complex addressing, traditionally used in CISC

processors, with RISC simple and efficient

implementation.

2.2. Other Areas of Embedded Processor 
Design 

The majority of academic research in the area of embedded 

processor architecture focuses on superscalar techniques, 

with some of the work specifically targeting FPGA 

implementation [10]. Some of the works investigated the use 

of simple scalar cores in multi-core processors targeting 

standard-cell implementations [11] as well as FPGA [13] to 

speed up the execution of multi-threaded applications. Some 

research looked into specific aspect of the architecture in 

isolation from other architectural elements, for example the 

design of the register file [12]. Reference [12] gives a brief 

introduction for the different techniques that implement 

multi-port register file using standard two port memories. 

Reference [17] combined several of these techniques to 

optimize the implementation of a 6-write and 12-read ports 

register file used in a wide superscalar processor. However, 

their technique similar to most previous multi-port 

techniques requires an additional pipeline stage to read data 

from the register file. Other works investigated the design of 

embedded processors that target specific applications such 

as biomedical [18] or Smartgrid [19].These processors tend 

to be heavily customized and more closely resemble an 

application-specific-integrated-circuit (ASIC) than a general 

purpose processor. Our focus is on multi-issue techniques 

for energy efficient embedded processors. 
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Table 1. List of academic and commercial embedded processors. ISA refers to the processor/core instruction-set-
architecture which can be either CISC (Complex-Instruction-Set Computer) or RISC (Reduced-Instruction-Set 
Computer). 

Processor Core ISA Instruction 
Width 
(bits) 

Issue Width 
(instructions) 

Number of 
Stages 

Instruction 
Issue 

Coremark/MHz 
[7] 

PATMOS [26] RISC 32 2 5 in-order 1.90 

LEON3 [20] RISC 32 1 7 in-order 1.80 

Altera NIOS-II (s/f) [3] RISC 32 1 5 - 6 in-order 1.60 

Xilinx MicroBlaze [4] RISC 32 1 3 - 5 in-order 1.90 

Imagination Tech. 
microAptive [2] 

RISC 32 1 5 in-order 3.44 

Intel ATOM [6] CISC 32 2 16 in-order 2.28 

ARM Cortex-M4 [5] RISC 32 1 3 in-order 3.40 

3. Simulation Environment

3.1. Benchmarks 

The MiBench benchmark suite [9] is used to cover a wide 

range of embedded applications grouped into six 

categories: automotive, consumer, network, office, 

security and telecom. All benchmark programs are cross 

compiled and statically linked on a Linux host machine 

using a GNU MIPS32 cross-compiler version 4.4.3 and a 

GNU lib version 2.4. Each benchmark program is run to 

completion using the MiBench provided large data set and 

outputs are compared to the outputs generated by 

executing the same benchmark program natively on the 

Linux host machine. Table 2 lists the benchmark 

programs and the total number of instructions executed 

for each benchmark. The binary image size of each 

benchmark is listed in the last column of Table 2. These 

numbers represent the minimum size in bytes that each 

program occupies in program memory for a bare metal 

implementation with minimal operating system (OS) 

support. 
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Figure 2. Instruction type distribution using the large data set per MiBench benchmark (IMUL=integer multiply, 
IDIV=integer division, IALU=integer ALU as listed in the text, SHIFT=logical and arithmetic shifts, 
CONTROL=conditional & unconditional branch, MEM=memory load/store, REGMOVE=register move, 
FP_ARITH=floating point arithmetic operations and FP_LOGIC=floating point logic operations).
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Table 2. MiBench benchmark list with the 
corresponding total number of instructions executed 
per run using the large data set and each program 
binary image size in bytes. 

Benchmark Category Total Number 
of Instructions 
Executed 

Program 
Size 
(bytes) 

basicmath automotive 3,211,569,629 788,464 

bitcount automotive 595,183,708 608,512 

qsort automotive 616,386,556 621,904 

susan.smoothing automotive 392,905,660 684,480 

susan.edges automotive 69,545,376 684,480 

susan.corner automotive 23,397,130 684,480 

jpeg.encode consumer 115,060,309 694,112 

jpeg.decode consumer 25,411,302 706,560 

stringsearch office 6,227,880 608,848 

dijkstra network 289,665,966 605,840 

patricia network 918,545,085 607,680 

blowfish.encode security 1,949,847,190 614,128 

blowfish.decode security 1,946,194,228 614,128 

rijndael.encode security 451,426,609 644,384 

rijndael.decode security 439,654,189 644,384 

sha security 130,156,790 605,792 

ADPCM.encode telecom 611,853,238 603,136 

ADPCM.decode telecom 524,099,205 603,136 

CRC32 telecom 6,014,143,443 604,320 

FFT telecom 501,452,631 663,584 

IFFT telecom 316,676,257 663,584 

Figure 2 shows the distribution per operation type for 

each MiBench benchmark program. The Integer 

Arithmetic and Logic Unit (IALU) category contains the 

following combination of integer arithmetic and logical 

operations: integer addition, integer subtraction, bitwise 

logical operations and operands comparison. The SHIFT 

category contains all bitwise logical and arithmetic shift 

operations which in some benchmarks represent 10% of 

the total number of operations. There are several 

observations to be drawn from the results of Figure 2: 

• The percentage of floating point instructions in the

MiBench benchmark programs does not exceed

0.5%. Only the FFT and IFFT benchmarks have a

measurable percentage of floating point instructions

equal to 4% and 7% respectively. Therefore, floating

point operations are emulated in software instead of

using a dedicated floating point functional unit in

hardware.

• Ninety-five percent (95%) of instructions in the

benchmark programs, except the susan.smoothing

benchmark, are distributed between only three types

of operations: ALU operation which includes logical

and arithmetic shift operations, memory operations

and control operations.

• The percentage of integer multiplications does not

exceed 0.2% which eliminates the need to add a

second multiplier in the dual-issue version of the

processor. Using a single multiplier constitute a

major reduction in the size and power consumption

of the dual-issue processor.

• The average percentage of integer ALU operations is

approximately 50% and more than 70% of ALU

operations are addition and subtraction operations.

These results are very meaningful for the dual-issue

processor because instead of duplicating the

complete ALU unit which happens to be the largest

logic block in the processor, we just duplicate the

adder to keep number of gates and power

consumption low without degrading performance.

• Forty percent (40%) of instructions in almost half the

benchmarks are memory load and store instructions.

These numbers show the importance of having a high

speed interface between the data memory and the

processor core. In our case we use tightly coupled

memories with zero wait state to allow memory

accesses to execute in a single cycle on a 4-stage

pipeline processor.

• The percentage of conditional and unconditional

control instructions varies from 5% to 25%. The

adpcm benchmarks contains the highest number of

control operations of all benchmarks due to the

predominance of short loops that convert 16-bit

linear PCM speech samples to 4-bit samples.

• The high percentage of REGMOVE operations in the

susan.smoothing benchmark, as well as in the

basicmath, susan.edges and susan.corner benchmark

but to a much lesser degree,  is a result of scaling and

moving 64-bit multiplication results into 32-bit

registers. In the FFT and IFFT benchmarks

REGMOVE instructions are used to move 64-bit

floating point results into 32-bit registers.

• The distribution of instructions in embedded

applications closely resembles the distribution of

instructions in general purpose applications reported

in [23] and [24]. The only minor difference is the

number of control operations in general purpose

applications is marginally higher.

NOP (no-operation) instructions are used in the 

MIPS32 ISA to fill empty instruction slots and branch 

delay slots in case the compiler is unable to find valid 

instructions to schedule in these slots. Branch delay 

instructions are instructions that immediately follow a 

branch instruction and must be executed before the branch 

is executed, i.e. taken or not taken. The percentage of 

NOP instructions can be as high as 30% the total number 

of instructions in a program. The jpeg.encode benchmark 

has the highest percentage of NOP instructions in the 

MiBench benchmarks at approximately 25%, while the 

average percentage is only around 15%. The drawback of 

NOP operations is that they insert bubbles in the pipeline 

which results in a considerable loss in performance and 

energy efficiency. 
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Figure 3. Top level block diagram of the 4-stage 
base processor. 

3.2. Base Processor Architecture 

Figure 3 shows the top level diagram for the base scalar 

processor. A custom cycle accurate simulator written in C 

is used to conduct a thorough evaluation of different 

architectural features as well as to collect run-time 

statistics (e.g. total number of cycles, number of 

mispredicted branches, etc.). All the processor features 

such as the number of pipeline stages, branch prediction 

technique, etc. can be configured by the user dynamically 

at runtime. The simulator models a 32-bit RISC processor 

with a Harvard memory configuration and 4-stage 

pipeline: fetch, decode, execute and memory access. We 

experimented with different pipeline stages ranging from 

three up to six and found out that a four stage pipeline is 

less complex to implement in hardware than a five or six 

stage pipelines and produced better IPC performance, 

20% on average, than a three stage pipeline which was 

severely impacted by frequent pipeline stalls from multi-

cycle memory access operations. Figure 4 shows the 

percentage of increase in IPC for a 4-stage pipeline 

compared to a 3-stage pipeline. Benchmark programs that 

contain a large percentage of memory operations and a 

low percentage of control operations such as susan.edges 

and susan.corner benefited the most from adding a 

dedicated pipeline stage for memory access. The increase 

in IPC in these two benchmarks ranges from 30% to 40% 

respectively which is remarkable considering that the 

hardware overhead for adding a fourth pipeline stage is 

minimal. Benchmark programs with a high percentage of 

memory and control operations such as qsort and FFT 

achieved a 20% increase on average but did not perform 

as well as the susan benchmarks because the frequent 

interruption of the pipeline by the control operations 

inserted too many bubbles in the pipeline that eliminated 

any gain from adding the extra pipeline stage. 

The processor implements the complete MIPS32 

instruction set [2] excluding all floating point and co-

processor instructions. Instruction distribution results 

presented in the previous section clearly showed that 

embedded benchmark programs, with the exception of the 

FFT and IFFT benchmarks, contain insignificant numbers 

of floating point operations (the average percentage is 

around 0.5%) which does not justify adding a dedicated 

floating point functional unit in the processor.  
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Figure 4. Increase in IPC for a 4-stage processor 
compared to a 3-stage processor. 

ALU 

The processor largest block is the ALU which consumes 
60% of the processor total logic gates. The ALU includes a 
32-bit fixed-point adder with overflow detection, a 32-bit 
fixed-point multiplier with a 64-bit accumulator, a 32-bit 
logic unit that performs bitwise operations and a 32-bit 
shift unit for bitwise logical and arithmetic shifts. All ALU 
operations excluding division which is emulated in 
software, execute in a single cycle. In the FPGA, the 32-bit 
multiplier is implemented using the FPGA hardwired 
embedded multipliers which reduces the total logic 
elements (LE) count by 20% compared to implementing 
our own multiplier using standard logic. The drawback is 
that several 18-bit multipliers need to be cascaded together 
to perform 32-bit wide multiplications which increases the 
latency of multiplication operations and reduces the 
processor clock top speed by almost 40%, from 100 MHz 
down to 60 MHz. 

Instruction Decoder 

The instruction decoder main function is to extract the 

relevant fields, e.g. addresses of the source and 

destination registers, from newly fetched instructions and 

generate the control signals needed to perform the 

operation associated with each instruction. The decoder is 

also responsible for detecting control instructions, 

calculating the branch target address using a dedicated 32-

bit adder and forwarding the result to the instruction fetch 

unit to update the program counter for the next fetch 

cycle. For conditional branches, a branch recovery 

address is calculated and temporarily stored in a register 

in case the branch prediction outcome is wrong and the 

processor needs to resume normal program execution. In 

an always-taken static predictor, the branch recovery 

address is calculated by incrementing the current program 

counter (PC) by two instructions slots and storing the 

result in the branch recovery address register. An 

alternative solution would be to store the current PC in the 

branch recovery address register and increment when a 

branch outcome is mispredicted. In a 4-stage pipeline, the 

decode and execute stages are just one cycle apart which 

means that the calculation of the branch recovery address 

can be easily done one cycle later in the ALU instead of 

the decoder. Despite covering a number of functions, the 

instruction decoder uses less than 5% the total number of 

logic gates in the processor.  
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Figure 5. IPC performance of the base processor using different branch prediction techniques (no-pred=no 
branch prediction, static-taken=static predictor with default taken prediction, static-not-taken=static predictor with 
default no-taken prediction, perfect = perfect branch prediction). 

Branch Prediction 

All branch instructions, except for the indirect jump 

instructions which store the target address in a general 

purpose register, are executed during the decode stage. A 

branch predictor allows conditional branches to be 

dispatched before they are executed to prevent stalling the 

pipeline. Figure 5 compares IPC results of a single issue 

processor using: a static branch predictor with two 

prediction heuristics (always taken and always no-taken), 

a processor without a branch predictor (no-pred) and a 

processor with a perfect predictor (perfect). Results reveal 

that IPC degrades by as much as 10% when no branch 

predictors are used. On the other hand, a simple static 

predictor can boost the average IPC performance to 

within 5% the IPC performance of a perfect predictor. 

Simulation results also reveal that the always taken 

heuristic performs better than the always not-taken 

heuristic by an average of 2% which agrees with reference 

[18] results. Figure 6 shows the IPC performance for each 

heuristic per benchmark. Although the difference is 

insignificant, we decided to use the always taken heuristic 

for the rest of our simulations. A more idealistic solution 

would be to make the choice of heuristic selectable by the 

user. 
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Figure 6. IPC results for a static branch predictor 
using an always taken and always not-taken 
heuristics. 

Performance improves by as little as 5% when the static 

branch predictor is upgraded to a bimodal dynamic 

predictor with a 2-bit saturating history counter. Figure 7 

shows the gain in IPC for a bimodal branch predictor 

using different branch history table (BHT) sizes relative 

to the static predictor. A fully-associative bimodal 

predictor with a 4K direct-mapped BHT achieves a 2% to 

6% gain in IPC compared to the static predictor which 

matches very closely the performance of a perfect 

predictor.  However, a BHT with 4K entries is too big and 

consumes too much power to be used in a low power 

embedded processor. A BHT with a more realistic number 

of entries of 64 or 128 achieves a 2% to 4% improvement 

in IPC, respectively, which is too small to justify the 

added logic and complexity. Also, accessing the BHT 

requires an additional pipeline stage between decode and 

execute stages which increases the number of speculative 

instructions that has to be flushed out from the pipeline 

when a branch is mispredicted. An increase in the number 

of missepculated instructions reduces the energy 

efficiency of the processor which is critical in battery 

operated embedded devices. A shorter pipeline with fewer 

missepculated instructions is also the reason why a simple 

branch predictor performs so well. 
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Figure 7. IPC results for a bimodal branch predictor 
relative to IPC results of a static predictor using 
different BHT sizes. 
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Figure 8. Multi-port emulation techniques using 
dual-port modules. 

Register File 

The RF has one write port and two read ports and contains 

32 general purpose registers each 32-bit wide. However, 

standard embedded memories have only two ports that 

can be configured as read ports or write ports. Adding 

three or more ports requires the design of custom 

memories. An alternative solution is to emulate multi-read 

and multi-write memories using basic two port memories 

[10]. There are three different techniques, depicted in 

Figure 8, for emulating multi-port memories using 

standard dual-port memories: 

• Replication technique is used to emulate single

write and multiple read memories. The RAM module

is duplicated once per read port. A write is

broadcasted to all the modules at once. Data is read

individually from each module.

• Banking technique can emulate multiple write and

multiple read memories by dividing the RAM

module into as many RAM sub-modules as there are

read and write ports. Dividing the RF into sub-

modules each hardwired to a read/write pair of ports

means that data stored in one sub-module cannot be

read at any read port which makes the data “non-

coherent”.

• Pumping technique supports a variable number of

write and read ports by clocking the RAM module at

higher speed than data writes and reads. This

technique is also known as “time-multiplexing”.

Clocking the RAM module at higher speed than the

write and read ports might not be feasible if the read

and write ports are already operating at the processor

max speed.

We chose a combination of the replication and the 

banking methods (Figure 9) because it uses the least 

amount of logic resources compared to the other surveyed 

techniques for a 1-write and 2-read RF. The drawback is 

that we need double the number of memory bits. 

However, the 32-entry by 32-bit register file uses a total 

of 2-Kbits which can easily fit in a single embedded 

memory block on the FPGA. 

Figure 9. One write and two read ports RF. 

Result Bypass 

When a true dependency exists between two consecutive 

instructions, results must be made available to the decode 

stage as soon as instruction execution finishes (see 

diagram below). Otherwise, program execution has to be 

stalled for at least one cycle until the result is written back 

to the register file or data memory before it can be 

retrieved by the consuming instruction. The solution is to 

forward the result directly to the decode stage while, 

simultaneously, writing it back to the destination register 

or memory location. 

This technique is known as result bypass and is usually 

implemented using a multiplexer and logic comparators. 

For the FPGA implementation, instead of using dedicated 

bypass logic we use the write-through built-in feature that 

exists in FPGA embedded memories [3] [4]. This 

technique embeds the external bypass multiplexers and 

logic gates into the memory modules themselves which 

becomes transparent to the end user. Using the write-

through feature, the new data can be written to a memory 

location and read from the same memory location at the 

exact same clock edge. Although the write-through 

technique uses approximately the same amount of logic as 

the traditional bypass method with the external 

multiplexers and logic gates, its biggest advantage is it 

simplicity and transparency to the user. 

3.3. FPGA Implementation 

The base scalar processor is coded in Verilog and 

implemented on an Altera Cyclone-IV E 22K using Altera 

QuartusII web edition toolset version 13.0 [3]. Table 3 

lists the FPGA features and compilation options used for 

the base processor. The compilation uses a timing driven 

place and route algorithm with balanced optimization 

technique (giving area and speed equal weights) and 

normal physical synthesis effort for post place and route 

optimization.  
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Table 3. Compilation options for Quartus-II tools. 

Option Value 

Target device EP4CE22F17C7 

Core voltage 1.2 V 

Logic elements (LE) 22,320 

Memory bits 608,256 

Optimization technique Balanced 

Synthesis Timing driven 

Physical synthesis effort level Normal 

Fitter Auto Fit 

A subset of the MiBench benchmarks is simulated 

using Modelsim-Altera before the final implementation in 

hardware using an off-the-shelf development board. 

Compiled benchmarks are downloaded and stored in the 

internal program memory during the initialization phase 

of the FPGA and then executed until completion. The 

built-in JTAG interface in the FPGA serves as a 

programming and communication link between the host 

system and the FPGA through the Quartus-II toolset. All 

logic memories are implemented using the inferred RAM 

technique to make the code portable between different 

FPGA vendors as well as between FPGA and ASIC. 

There are 32 Kbytes of data RAM and 8 Kbytes of 

program RAM. 

Table 4 shows a summary of the FPGA resources used 

by the base scalar processor. The total number of FPGA 

LE is approximately 1.8K which corresponds to merely 

7% of the total LE in the Cyclone IV-E 22K FPGA. The 

total number of RAM bits reported in Table 3 does not 

include program and data memory which can be 

configured by the end user independently from the 

processor core. The 3-port RF uses only 3% of the total 

number of embedded memory modules (M9K) in the 

FPGA. The 32-bit wide fixed point multiplier uses four 

18-bit embedded multipliers cascaded together to form a 

32-bit multiplier. If the multiplier width is reduced to 16-

bits, the processor speed can be increased to 100 MHz. 

However, a 16-bit multiplier has to be pipelined to 

perform 32-bit multiplications which will increase 

multiplication latency. The pie chart in Figure 10 shows 

the percentage of processor total logic cells that each 

module consumes. The ALU is by far the largest module 

in the processor but, surprisingly enough, it only 

consumes 42% of the total processor core power budget. 

Decoder

15%

Register 

File

5%

Connectivity

23%

ALU

57%

Figure 10. Percentage of processor logic elements 
(LE) per module. 

Table 4. FPGA implementation results. 

Resource Base Processor 

Logic elements (LE) 1,831 

LUT / Registers 1,809 / 347 

Logic RAM (bits) 2K 

Physical RAM block (M9K) 2 

Embedded 9-bit multipliers 8 

Speed (MHz) 60 

Dynamic power (mWatt/MHz) 0.46 

Coremark/MHz 2.51 

Dynamic power estimates were generated using Altera 

PowerPlay tool which is part of Quartus-II. Signal activity 

results generated by Modelsim gate level simulation were 

fed to PowerPlay to give an accurate power estimates. 

The average dynamic power dissipation of the single issue 

processor is around 27.5 mWatts when operated at 60 

MHz which gives a power rating equal to 0.48 

mWatts/MHz. Most of the processor power shown in 

Figure 11 (a), 52% to be exact, is consumed by the 32 

Kbytes data memory whereas the much smaller 8 Kbytes 

program memory consumes 12% of the total power. If we 

factor out the power consumed by the data and program 

memories then the ALU will end up representing 42% of 

the total core power as shown in Figure 11 (b). The RF 

will consume 28% and the decoder 11% with the 

remaining power consumed by the processor top level 

connectivity and glue logic. 

Decoder

5%

Data RAM

52%

Program 

RAM

12%

Register 

File

10%

Connectivity

6%

ALU

15%

Decoder

11%

ALU

43%

Connectivity

18%

Register 

File

28%

Figure 11. Percentage of total processor power 
consumed per module with (a) program and data 
RAMs and (b) standalone core. 

The single issue base processor achieves a 2.51 

Coremark/MHz performance which is somewhere in the 

mid-range performance scale compared to processors 

listed in Table 1. The main reason that our processor has a 

lower Coremark/MHz rating than the MicroAptive and 

Cortex-M4 is because of the lack of a commercial 

compiler that can fine tune the code for the specific 

processor architecture as well as the lack of optimized 

bare metal libraries. On the other hand, our processor 

achieved a 10% higher Coremark/MHz result than 

ATOM. Similarly, the single issue base processor 

achieved 57% and 32% higher Coremark/MHz result than 

FPGA based soft cores Xilinx MicroBlaze and Altera 

NIOS-II, respectively. 
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4. Dual Issue Processor

The single issue processor average IPC performance even 

under ideal conditions, i.e. when branches are predicted 

perfectly, does not exceed 0.87 instructions per cycle as 

shown in Figure 5. To increase the IPC performance of 

the single issue processor beyond the scalar level, the 

pipeline needs to be widened to allow more instructions to 

issue each cycle. Figure 1 results clearly show that the 

MiBench benchmark programs have enough ILP to issue 

two-instructions in parallel during most cycles. The 

traditional way of extracting ILP from applications is to 

use superscalar speculative techniques such as out-of-

order issue. However, these aggressive instruction 

scheduling techniques are power intensive and are not 

well suited for low power embedded devices. Instead we 

use simple scalar techniques to resolve instructions 

scheduling conflicts, both software conflicts like true-

dependencies and hardware conflicts like resource 

allocation, which can be quite challenging especially 

when the number of instructions issued in parallel is 

higher than two. In this section we evaluate some of the 

implementation challenges of a dual issue scalar processor 

and propose a simple solution to each challenge. The 

order in which the items are listed is irrelevant and does 

not represent the challenge severity level. 

4.1. Register file 

Decoding and executing two instructions simultaneously 

each cycle requires two writes and four reads to the 

register file, which is double the number of ports used in 

the single issue processor. The method used for the single 

issue processor can be used for the dual issue processor 

but the implementation becomes more complex [10]. 

Related Work 

A number of prior works have researched the challenge 

of implementing multi-port RF using dual-port RAMs. 

Reference [14] proposed a 2-write and 4-read 64-entry RF 

using a combination of replication and banking 

techniques. The drawback of this method is that the RF is 

divided into two banks and each bank is hardwired to a 

separate write port which results in a “coherence’ problem 

as each write port can write to only a single RF bank. In 

addition, writes have to be coordinated to avoid two 

writes to the same bank. To avoid the “coherence” 

problem, reference [15] proposed generating a 2-bit tag 

for every register write and storing the tag in a live value 

table (LVT). The tag indicates which RF replica the latest 

register value is stored in. A register read must access the 

LVT to retrieve the corresponding tag which requires an 

additional pipeline stage between decode and execute. 

Adding an extra pipeline stage especially between decode 

and execute will increase the number of speculative 

instructions that are flushed from the pipeline following a 

branch misprediction which increase power waste and 

decreases energy efficiency. 

Figure 12. Two write and four read ports RF. 

In order to eliminate the LVT, reference [15] authors 

proposed XORing the content of RF replicas to generate 

the latest register value. This technique uses more RAMs 

than LVT and it has a much higher latency [16]. 

Reference [17] proposed replacing the huge 

multiplexers used in the pumping technique with very 

wide serial to parallel (output) and parallel to serial 

(input) shift registers. This technique uses much higher 

clock frequency to clock the RF than the pumping 

technique which can be unfeasible to implement if the 

read and write interface is clocked at the max speed. 

Proposed Technique 

We propose a novel memory tagging technique similar 

to LVT though without the additional pipeline stage. The 

new method uses the same amount of RAMs as LVT 

which adds up to a total of eight RF replicas, or two RF 

replicas per read port, for the 2-write and 4-read port RF. 

Because we only use two RF replicas per read port, the 2-

bit tag can be reduced to a single bit. This simplification 

allows replacing the LVT with a simple 32-bit tag register 

as shown in Figure 12. Registers stored in RAM1-0/1/2/3 

are assigned a 1-bit tag value of one and, reciprocally, 

stores in RAM0-0/1/2/3 need to clear the corresponding 

bit in the tag register which represents a 1-bit tag value of 

zero. Reads are executed by retrieving the bit value that 

corresponds to the register being read from the tag register 

to determine which of the two RAM modules the datum is 

stored in. If the retrieved tag register bit is set then the 

datum is read from the RAM1 module and vice versa. 
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4.2. True Dependency Stalls 

In the single issue processor true dependencies exist only 

between two consecutive instructions in different pipeline 

stages. Forwarding the result from the execution stage to 

the decode stage resolves the dependency and avoids 

stalling the pipeline. In a dual issue processor, true-

dependencies can potentially exist between two parallel 

instructions. In this case, the pipeline has to be stalled for 

at least one clock cycle until the first instruction executes 

and its result is forwarded to the next instruction. Figure 

13 shows an example of true-dependency between two 

parallel instructions. Although, instruction fetching is 

halted for a single cycle, in the next two consecutive 

cycles only a single instruction is issued which reduces 

the IPC by half during these two cycles. 

The solution shown in Figure 13 (bottom) is to issue 

instruction I2 in parallel with I1 to fill up the empty fetch 

slot and maintain the flow of instructions coming to the 

decoder. In the following cycle, I3 is moved to the first 

slot and a new instruction I4 is fetched from program 

memory to fill one of the empty instruction slots. This 

process is equivalent to sliding instructions by a single 

slot which can be easily achieved by incrementing the 

program counter by one instruction instead of the usual 

two instructions. The advantage of this solution is that we 

can reuse the exact same circuit that detects true-

dependency and slides instructions between different 

decoder slots to process control instructions (see next 

section for details). With this technique, only a single 

instruction slot is wasted instead of two instruction slots 

(see Figure 13) which results in a 50% reduction in 

wasted instruction slots per true-dependency. 

I0:   add reg2, reg3, 0x01 (reg2 = reg3 + 0x01) 
I1:   add reg4, reg2, 0x02 (reg4 = reg2 + 0x02) 

Pipeline 
Stages 

Cycles (one clock cycle per column) 

Fetch I0:I1 I2:I3 bubble I4:I5 … … 

Decode I0:I1 I1 I2:I3 … … 

Execute I0 I1 I2:I3 … 

Memory 
Access 

I0 I1 I2:I3 

Pipeline 
Stages 

Cycles (one clock cycle per column) 

Fetch I0:I1 I2:I3 I3:I4 … … … 

Decode I0:I1 I1:I2 I3:I4 … … 

Execute I0 I1:I2 I3:I4 … 

Memory 
Access 

I0 I1:I2 I3:I4 

Figure 13.  Example (top) of a true dependency 
between instructions within the same cycle and 
(bottom) a proposed solution to reduce the number 
of wasted instruction slots. 

4.3. Branch Misprediction 

Recovering from a mispredicted branch outcome is a 

difficult task in a dual issue pipeline because a branch 

instruction can be in any of the two available instruction 

slots.  The calculation of the recovery address as well as 

the selection of instructions to be flushed out from the 

pipeline depends on which instruction slot in the decoder 

the branch instruction occupies. A simple solution is to 

decode the branch instruction only when it is located in 

the first decoder slot which guarantees that the instruction 

in the second slot is always going to be the delay slot 

instruction. When a branch instruction is detected in the 

decoder second slot, an exception is triggered which halts 

the issue of the branch instruction. 

Although the branch instruction issue is delayed for 

one clock cycle, the branch target instruction is still 

fetched unless the branch delay slot instruction is not 

present in the fetch unit because of a previous branch 

instruction. In that case the delay slot instruction is 

fetched first. In the following cycle, the branch instruction 

is moved to the first slot and issued together with the 

delay slot instruction. The technique used to align 

branches to the first instruction slot is identical to the 

technique used to resolve true-dependency between 

instructions which consists of sliding instructions over by 

one slot. As a result, the true-dependency stall resolution 

logic can be reused as is to align branches to the first 

decoder slot with some minor additional logic for 

detecting branch instructions when they are present in the 

decoder second slot. 

In some cases the delay slot instruction is not present in 

the fetch unit and has to be explicitly fetched which 

occurs when a branch instruction is decoded in the 

previous cycle and the target address of that branch 

instruction is loaded into the fetch unit instead of the 

current branch delay slot instruction (Figure 14 bottom). 

The issuing of the branch instruction as well as the 

fetching of the branch target address are delayed for an 

additional cycle until the delay slot instruction is fetched 

and loaded into the decoder unit. This process introduces 

a single bubble (empty slots) in the pipeline which cannot 

be avoided. Our simulation showed that the percentage of 

times that a delay slot instruction is not present in the 

fetch unit when a branch is detected in the decoder is less 

than 15% on average for the MiBench benchmark 

programs which is relatively low. 

The decision to delay the issue of branch instructions 

until they are located in the first decoder slot wastes only 

a single decoder slot and only when the delay slot 

instruction I2 is present in the fetch unit as shown in 

Figure 14. Otherwise, if the delay slot instruction I2 is not 

present in the fetch unit (Figure 14 bottom example) then 

both approaches, i.e. issue branch instructions from the 

second decoder slot or delay branch instructions until they 

are moved to the first slot, have the same performance 

because the branch instruction is delayed anyway until the 

delay slot instruction is fetched regardless of which 

decoder slot the branch is located in. 
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I0:  add reg3, reg2, 0x1 
I1:  beqz reg0, addr 
I2:  add reg0, 0x01   (this is a delay slot instruction) 

Pipeline 
Stages 

Cycles (one clock cycle per column) 

Fetch I0:I1 I2:I3 I3:I4 … … … 

Decode I0:I1 I1:I2 … … … 

Execute I0 I1:I2 … … 

Memory 
Access 

I0 I1:I2 … 

Pipeline 
Stages 

Cycles (one clock cycle per column) 

Fetch I0:I1 I8:I9 I2:I3 I3:I4 … … 

Decode I0:I1 I1 I1:I2 … … 

Execute I0 bubble I1:I2 … 

Memory 
Access 

I0 bubble I1:I2 

Figure 14.  Example of a branch instruction located 
in the second slot and the corresponding delay slot 
instruction I2 (top) present and (bottom) not present 
in the fetch unit. 

Using the above described technique to align branches 

to the first decoder slot and load the delay slot instruction 

into the second decoder slot guarantees that the effects of 

predicting or mispredicting a branch outcome will be 

equivalent as shown in Figure 15. The result in both cases 

is a single bubble or just two wasted instruction slots per 

branch instruction. Processors that don’t have a delay slot 

instruction such as the ARM Cortex can issue branch 

instructions directly from the second decoder slot. 

I0:  beqz reg0, In // If (reg0==0) then branch to In 

I2:  add reg0, 0x01   // this is a delay slot instruction 

Pipeline 
Stages 

Cycles (one clock cycle per column) 

Fetch I0:I1 I2:I3 In:In+1 … … … 

Decode I0:I1 I2:I3 In:In+1 … … 

Execute I0:I1 bubble In:In+1 … 

Memory 
Access 

I0:I1 bubble In:In+1 

Pipeline 
Stages 

Cycles (one clock cycle per column) 

Fetch I0:I1 I2:I3 In:In+1 I4:I5 … … 

Decode I0:I1 I2:I3 bubble … … 

Execute I0:I1 I2:I3 bubble … 

Memory 
Access 

I0:I1 I2:I3 bubble 

Figure 15.  Example of (top) a correctly predicted 
and (bottom) a mispredicted branch instruction. 

4.4. Duplication of Resources 

ALU 

Processing two instructions per cycle requires that all the 

processor resources be duplicated, including the ALU. 

However, duplicating all the functions in the ALU will 

increase the total number of LE dramatically. Considering 

that the ALU uses 60% of the processor total LE and 

consumes 42% of total power, therefore adding two 

complete ALUs will increase power consumption by 2x. 

We know from previous instruction distribution 

analysis that some of the operations appear very 

infrequently in the benchmarks like for example the 

multiplication instructions; adding an additional multiplier 

will have minimal impact on performance and increase 

power consumption unnecessarily. The dynamic power 

supplied to the additional multiplier can be either toned 

down using a variable clock [27] or turned off completely 

using clock gating [28] but it will hurt performance 

because it takes at least several cycles to restore the clock 

to its full speed. Static power consumption is even more 

difficult to switch off because it requires complex layout 

modifications to isolate each multiplier [29] and the 

response time of dc-to-dc voltage regulators is very slow 

[30] which preclude using these techniques in an 

embedded processor with a short pipeline. The only 

alternative is to reduce the number of duplicated resources 

to a minimum in order to minimize the increase in power 

consumption. 

In order to determine which ALU resources are the 

most critical to performance, we conducted a thorough 

quantitative analysis for all benchmarks by selectively 

duplicating one ALU resource at a time and comparing 

the IPC results to the results of a dual issue processor with 

a single ALU (1-ALU Figure 16) to verify if there is any 

measurable improvement in performance. Results are 

summarized in Figure 16 and discussed in section 5. 

Memories 

A simple way to fetch two 32-bit instructions in 

parallel is to increase the program bus width from 32 bits 

to 64 bits. This simple scheme will work as long as we 

always fetch two consecutive instructions from memory. 

On the other hand, data accesses are not necessarily 

aligned which means that separate address and separate 

read/write ports are needed for each datum. In a dual issue 

processor, data memory needs to support two reads and 

two writes simultaneously which adds up to four 

read/write ports. Using any the methods evaluated for the 

RF implementation would be unfeasible because data 

memories are much larger than RFs; for example in our 

processor we use 32 Kbytes of data RAM. We measured 

the percentage of cycles during which two data memory 

accesses are issued in parallel using the compiler default 

settings and found it to be less than 3% on average for the 

MiBench programs. Therefore, we modified the GNU 

compiler to enforce mutual exclusivity between memory 

operations for the dual issue processor. 
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Figure 16. IPC results for a dual issue processor relative to the IPC of a single issue processor using a static 
branch predictor with an always taken heuristic under different ALU configurations. The ideal case is for a 
processor with two complete ALU units.  

5. Results

5.1. Simulation 

Simulation results for the dual issue processor are 

summarized in Figure 16. These results include the 

duplication of resources evaluation discussed in section 

4.3. The main observations are: 

Dual Issue 

• The average increase in IPC for a dual issue

processor is around 40%. Some benchmarks like

rijndael and sha experienced an approximately 1.6x

improvement in IPC. Because the dual issue

processor lacks advanced superscalar techniques to

issue instructions out-of-order it can only extract

parallelism from within basic blocks boundaries

which favours benchmarks with longer basic blocks

like rijndael and sha. On the other hand, the worst

performing benchmark, adpcm, still managed to

achieve at least a 20% gain in IPC. Benchmarks with

a high percentage of control instructions like adpcm

might benefit from using a dynamic branch predictor

combined with out-of-order issue to increase the

prediction success rate. Figure 7 results show that

adpcm (telecom group) IPC increased by 5% when a

bimodal branch predictor was used.

• The next best performing benchmarks are

susan.edges and susan.corner which experienced a

1.5x speedup. These benchmarks have a much higher

percentage of memory operations than the rijndael

and sha benchmarks but share the common

characteristic of low control operations. A low

percentage of control operations translate to less

interruption to the pipeline and consequently shorter

overall program latency.

• Despite the low percentage of control operations in

the susan.smoothing benchmark, it did not perform

as well as the other susan benchmarks because the

high percentage of IMUL operations increased the

percentage of true-dependencies between the

multiplication operations and the REGMOV

operations that loads the result of the multiplication

into the RF.

• One benchmark program that did not perform as

good as expected is jpeg. Although the jpeg

benchmark is a compression and decompression

application similar to rijndael, it performed much

worse than rijndael. The reason is that the length of

basic block in the rijndael benchmarks is almost 2x

longer than in the jpeg benchmarks, which translates

to higher ILP and better speedup.

• Using just an advanced branch predictor is not

enough to improve jpeg IPC results as Figure 7

results show (the consumer group IPC only improved

by 2%). Out-of-order issue is mandatory in order to

fetch and issue instructions beyond the jpeg basic

block boundaries.

• The amount of ILP in a basic block that can be

extracted by the processor using available hardware

resources is a key factor for improving performance.

Resource Duplication 

• The ideal case results in Figure 16 are for a dual

issue processor with two complete ALU units.

Considering that the ALU uses 60% of the processor

total LE and consumes 42% of the processor total

power budget, it would be unfeasible to implement it

in hardware. However, we include these results for

comparison reasons only. For example, most

benchmarks approached ideal performance with just

minor resource duplications.
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• The average drop in IPC for a single ALU

configuration is around 2% which is negligible. Few

benchmarks like susan, adpcm.encode and

jpeg.decode experienced an IPC loss higher than 5%.

Although the IPC loss is higher than the average it is

still acceptable considering that the total gain in IPC

is higher than 10%. In the case of the susan

benchmarks the gain in IPC is almost 1.5x.

Increasing the number of adders to two helped these

benchmarks recover all the lost performance.

• Only the rijndael benchmarks experienced a loss in

IPC from using a single logic unit. Adding a second

logic unit to the ALU managed to recover just half

the lost IPC. The remaining lost IPC is tied to the

other ALU functions such as logic shifts.

5.2. FPGA Implementation 

Table 5 compares the FPGA implementation results of the 
dual issue processor with the results of the single issue 
processor listed in Table 4. The main observations are: 

• The max speed of the dual issue processor is the

same as the single issue processor because it is

determined by the speed of the worst case path which

goes through the 32-bit multiplier.

• The total number of FPGA logical elements

increased by approximately 30% (Figure 17), from

1.8K to 2.3K which is less than 10% of the FPGA

total resources. The biggest increase was in the RF

which grew from 87 LE (5% of total LEs) to 494 LE

(22% of total LEs).

• The total number of RAM bits used by the RF

quadrupled from 2-Kbits to 8-Kbits using our

proposed 1-bit tagging method.

• Power consumption increased by 20% (Figure 18),

from 0.48 mWatts/MHz to 0.57 mWatts/MHz. The

RF power consumption as a percentage of total

power is much higher in the dual issue processor,

56% compared to 28%, which makes it the dominant

power consuming module in the processor. The ALU

power consumption went down to less than 30% total

power because we only added an extra 32-bit adder.

• The Coremark/MHz performance increased by

almost 36% compared to the single issue processor.

The 3.40 Coremark/MHz score is equal to

MicroAptive and Cortex-M4 Coremark/MHz scores.

The reason that the MicroAptive and Cortex-M4

single issue processors can achieve such as high

score is because they use advanced commercial

compilers, such as Green Hills (http://www.ghs.com)

and IAR (http://www.iar.com), to fine tune and

optimize the benchmark code for the specific

processor architecture [31]. In our case we use the

open source GNU compiler which although can

achieve very good performance it consistently

delivered lower Coremark results than commercial

compilers [7].

Table 5. Summary of FPGA resource utilization for 
the dual issue processor with a single ALU. 

Resource Single Issue Dual Issue 

Logic elements 1,831 2,278 

Logic RAM (bits) 2K 8K 

Physical RAM 
block (M9K) 

2 8 

Embedded 9-bit 
multipliers 

8 8 

Speed (MHz) 60 60 

Dynamic power 
(mWatt/MHz) 

0.48 0.57 

Coremark/MHz 2.51 3.40 

Decoder

15%

ALU

51%

Connectivity

12%

Register 

File

22%

Figure 17. Percentage of processor logic cells per 
module for dual issue processor. 

Decoder

13%Register 

File

56%

Connectivity

6%

ALU

25%

Figure 18. Percentage of total processor power per 
module for standalone dual issue core. 

6. Conclusion

A single issue scalar processor can operate on a very low 

power budget but its performance is constrained. On the 

other hand, a multi-issue superscalar processor can deliver 

multiple fold increase in performance but is power 

intensive. To address this problem, a dual issue scalar 

processor capable of processing up to two instructions 

simultaneously every cycle is introduced. The processor 

delivers an average 40% higher IPC than a single issue 

processor while consuming only 20% more power. 

Applications that contain a large amount of instruction-

level parallelism are particularly suitable for the dual 

issue processor and experience up to 70% improvement in 

IPC. The dual issue processor is implemented on a low 

cost FPGA using less than 10% of the total logic elements 

which leaves plenty of resources to implement additional 

functions. The proposed processor is an ideal candidate 

for embedded industrial devices that are powered by 

green sources of energy similar to PowerFilm embedded 

solar panels. 
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