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Abstract

Model Checking is a technique for automatically checking the model representing software or hardware about
whether they satisfy the corresponding specifications. Traditionally, the model checking uses deterministic
algorithms, but the deterministic algorithms have a fatal problem. They are consuming too many computer
resources. In order to mitigate the problem, an approach based on the Ant Colony Optimization (ACO) was
proposed. Instead of performing exhaustive checks on the entire model, the ACO based approach statistically
checks a part of the model through movements of ants (ant-like software agents). Thus the ACO based
approach not only suppresses resource consumption, but also guides the ants to reach the goals efficiently. The
ACO based approach is known to generate shorter counter examples too. This article presents an improvement
of the ACO based approach. We employ a technique that further suppresses futile movements of ants while
suppressing the resource consumption by introducing a smell-like pheromone. While ACO detects the semi-
shortest path to food by putting pheromones on the trails of ants, the smell-like pheromone diffuses differently
from the traditional pheromone. In our approach, the smell-like pheromone diffuses from food, and guides
ants to the food. Thus our approach not only makes the ants reach the goals farther and more efficiently
but also generates much shorter counter examples than those of the traditional approaches. In order to
demonstrate the effectiveness of our approach, we have implemented our approach on a practical model
checker, and conducted numerical experiments. The experimental results show that our approach is effective
for improving execution efficiency and the length of counter examples.
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1. Introduction
Model Checking is a technique that checks whether
the design of a software or hardware described as a
state transition model satisfies the property specified
by the user, which is called a specification [1]. Tools
that automatically perform the model checking are
called model checkers. General model checkers use a
deterministic algorithm for the checking, which often
consumes too much machine resources because they
exhaustively check their search spaces. In order to
mitigate this problem, techniques based on Ant Colony

∗Corresponding author. Email: tkumazawa@acm.org

Optimization (ACO) [2] have been proposed [3–6].
They are nondeterministic algorithms. ACO is a swarm
intelligence-based method inspired by the behaviors
of ants’ collecting food, and a multi-agent system that
exploits artificial stigmergy (artificial pheromone) for
the solution of combinatorial optimization problems.
In other words, ACO is a kind of statistic algorithms
that is categorized into meta-heuristics [7]. Since ACO
only searches a part of entire search space based on
the property in which pheromone attracts ants, the
ACO based model checking can suppress the use of the
computational resources.

One of the major features of the model checker
is to present an error trace to its users (called a
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counter example), which helps the users understand
why the model violates the property [8]. Thus, the
shorter the presented counter example is, the more
comprehensible it is for the users. As an optimization
method, ACO based model checking enables model
checkers to generate shorter counter examples.
We propose a new ACO-based model checking

that consumes less computational resources than the
traditional ACO approaches do. Most model checking
techniques deal with properties roughly categorized
into safety and liveness [9, 10]. Safety properties state
that undesirable things never hold, while liveness
properties assert that the desirable things finally hold.
Our approach handles the safety and focuses on the fact
that finding the violation of the safety is reduced to
the reachability problem on directed graphs. In other
words, the model checking for the safety just searches
final (i.e. error) states starting with a specific start state.
For safety checking, a path from the start state to a final
state is a counter example.
In the ACO based model checking, ants move in

the directed graph to look for a final state. Ants
probabilistically choose the move direction according
to the amounts of pheromone trails on the graph
deposited by preceding ants. This behavior of ants helps
ants to find relatively short paths to the final states,
because the paths that have much pheromone tend be
selected by many ants. Thus pheromone trails represent
the quality of paths to the final state in terms of path
length. In order to further assist ants to search final
states, we introduce another special pheromone that
attracts ants to the final states. The attraction of the
pheromone efficiently guides ants, and localizes the
search space, so that our approach can achieve the less
consumption of the resources. We can summarize the
contributions of our approach to the traditional ACO
based approaches as follows:

1. Suppressing memory consumption,

2. Decreasing the time for completing checking, and

3. Shortening obtained counter examples.

The structure of the balance of this article is
organized as follows. The next section presents
preliminaries of our approach. In the third section, we
give a brief explanation of a traditional ACO based
approach for safety. After that, in the fourth section, we
introduce the smell-like pheromone and the details of
our ACO approach that takes advantages of the smell-
like pheromone. In the fifth section, we demonstrate the
feasibility of our approach, and conclude our discussion
in the sixth section.

2. Model Checking

In this section, we give an overview of model checking,
and explain the problems that we address.

2.1. Overview

Formal verification is one of the techniques that
verify properties of software or hardware. The formal
verification techniques can be categorized into two
kinds in terms of their approaches. One is logical
reasoning approach that represents properties of
software as a mathematical theorem such as Hoare logic
or predicate calculus. The logical reasoning verifies
software using a tool such as theorem provers. It is,
however, difficult for the provers to verify software
in completely automatic manner, and therefore, they
require some interactions with the users.
The other one is Model Checking, which is proposed

by Clarke et al [1, 11] and known as one of the most
successful research topics in Software Engineering. The
model checking was initially applied for the verification
of communication protocols [12] and hardware circuits.
Model checking is currently used for verifying software
without any support from users. Model checking
consists of the following steps: 1) representing the
model of a system as a state transition system such as
an automaton, 2) describing a specification representing
required property with temporal logic such as Linear
Temporal Logic (LTL) [13] or Computation Tree Logic
(CTL) [11], and 3) checking whether the state transition
system satisfies the specification. The final step is
automatically performed by a model checker. For
example, SPIN [10, 14] is one of the most popular
model checkers. It checks whether a model described
in Promela satisfies the specification described in
LTL. Promela is the description language specifically
designed for SPIN. At this time, SPIN converts the
model and the negation of the specification into Büchi
automata, then builds their intersection to exhaustively
search for its accepting paths on it. If some accepting
paths are found, it means the model does not hold the
specification, and the corresponding paths are shown as
the counter examples. Otherwise the fact of satisfaction
is notified.
In the case of safety checking, the Büchi automaton of

the given specification has the property that every path
from its start state to its accepting state is accepting.
Thus, its accepting states are considered to be final error
states. Owing to the property, the accepting states of the
intersection are also final error states, to which paths
show counter examples. In other words, in order to
find counter examples, it is sufficient to search for the
accepting states on the intersection.
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2.2. Challenges and Related Work
In this article, we tackle with two problems of model
checking: state explosion problem and incomprehensive
counter examples.
In model checking, the automata tend to be very

large. Actually, the size of an automaton increases
exponentially as the size of the corresponding model
becomes large. The exponential increase is called state
explosion, which may cause exhaustion of resources
and may lead to system failure. In order to mitigate
the state explosion, techniques such as Partial Order
Reduction that decreases the number of states [15],
and Bitstate Hashing that reduces the memory area
occupied by each state [10] have been proposed. Also,
Symbolic Model Checking is known that it does not
consume too much memory [16]. They are, however,
are symptomatic treatments, and therefore, do not
essentially solve the problem.
The other problem is related to the length of counter

examples. Because a counter example is presented to
the user as a diagnosis of specification violation, it
is highly desirable to make it comprehensible for the
human user. As mentioned above, a counter example
is represented as the path over the directed graph. It
means that the counter example is more understandable
if it is small enough in lengthwise. That is to say,
we need to aim at the model checking methods that
generate as short counter examples as possible.
Traditionally, the search techniques adopted by most

model checkers are based on Depth First Search (DFS),
such as Nested Depth First Search [10]. However, DFS
may find long counter examples because there is no
guarantee of the shortness of paths that DFS searches.
Recently, parallel algorithms have been studied as

promising techniques to improve the performance of
model checkers. Holzmann et al. parallelizes Breadth
First Search (BFS) to verify safety properties and
implements the proposed algorithms on SPIN [17, 18].
Their technique can be used for the detection of the
shortest counter examples, because BFS is guaranteed
to find shortest counter examples unlike DFS. They also
extend the proposed algorithm to handle the subset of
liveness properties.
Apart from the improvements for traditional deter-

ministic approaches, some heuristics algorithms have
been proposed. They are effective in cases where
counter examples are required, although it is difficult
for the algorithms to prove that the given model holds
the specification because heuristics cannot give exact
solutions but quasi-optimal solutions. Edelkamp et al.
developed HSF-SPIN [12, 19], which is an extension
of SPIN with heuristic search algorithms such as A*,
Weighted A*, Iterative A* or Best First Search. The HSF-
SPIN gives shorter counter examples and consumes less
memory than the deterministic approaches. Groce and

Visser proposed some heuristics for model checking
of Java programs, based on the specifications to be
checked, the structures of the programs, and users’
definition [20]. Their evaluation was conducted with
DFS, Best First Search, A* and Beam Search.
Recent researches have shown that various meta-

heuristic approaches provide more favorable results
than traditional deterministic algorithms do in terms
of efficiency. Alba et al. showed the applications of
Genetic Algorithm (GA) for detection of deadlock, and
unnecessary states and transitions [21]. Godefroid et al.
proposed a GA based model checking technique [22].
The GA based approaches were the first applications
of meta-heuristics for model checking. Alba et al. later
showed the effectiveness of Ant Colony Optimization
(ACO) for the model checking [3]. We describe the
details of the ACO approaches in the next section. Their
approach is extended to the checking of safety with
Partial Order Reduction [5] and that of liveness [6].
As another work, Francesca et al. proposed a deadlock
detection technique using ACO [23]. They utilize the
heuristics based on the structures of models to tell ants
estimated directions to food. In the paper [24], Ferreira
et al. presented a novel technique based on Particle
Swarm Optimization (PSO) that finds safety violations.
Chicano et al. compared several deterministic and
nondeterministic software model checking algorithms
using Java PathFinder [25]. Their target algorithms
include DFS, BFS, A*, GA, ACO, PSO, Simulated
Annealing, Random Search, and Beam Search. They
reported that meta-heuristic techniques effectively
found safety violations and short counter examples.
Note that the work was the first one that applies
Simulated Annealing to software model checking.
In addition to those already mentioned, there are

some heuristic or meta-heuristic extensions. Staunton
et al. proposed the heuristic search algorithms for
model checking based on Estimation of Distribution
Algorithm [26, 27]. Yousefian et al. proposed a
safety checking technique for graph transformation
systems based on GA to deal with the state explosion
problem. [28]. Rafe et al. proposed a hybrid algorithm
combining PSO with Gravitational Search Algorithm
in order to find deadlocks in graph transformation
systems [29]. Poulding and Feldt extended a variation of
Monte-Carlo Tree Search algorithm for heuristic model
checking [30].
It is worth noting that meta-heuristic approaches

draw a lot of interest from the viewpoint of Search-
Based Software Engineering (SBSE) [31]. SBSE refers
to a research area of Software Engineering that
uses meta-heuristic optimization methodologies. For
example, Shousha et al. used GA for the detection of
concurrency problems (i.e., starvation and deadlocks)
in design models described in Unified Model Language
(UML) [32]. Their method does not adopt model
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procedure ACO

Initialization

while terminationCondition do

ConstructAntSolutions

UpdatePheromones

od

end procedure

Figure 1. Pseudo code of ACO

checking and aims at presenting a technique that
is suitable to UML models. Our approach can be
positioned as part of the verification techniques in
SBSE.

3. ACO Based Approach
In this section, we give the basics of ACO, and then,
describe ACOhg that is a variant of ACO proposed by
Alba et al. [3–5] for model checking with large state
spaces.

3.1. ACO
ACO is one of the meta-heuristic search algorithms
inspired by the behaviors of ants that discover paths
from their nest to food. It is known that ACO is
effective for some optimization problems such as
routing, assigning and scheduling problems. When
ACO is applied to model checking problems, a problem
is a model expressed in as a directed graph, where the
nest and food are the start and error states respectively.
The paths between these nodes represent candidate
solutions of the model checking problem, i.e. counter
examples.
In ACO, agents corresponding to ants cooperatively

search the shortest paths through indirect communi-
cations using pheromone. The optimal paths found by
ants correspond to the optimal solution in optimization
problems. The effect of the pheromones is represented
as weight on edges, which are assigned to the paths that
ants have visited. The pheromones play a role as guides
that induce ants to select shorter paths to error states.
The basic model of ACO was given by Ant System

(AS) proposed by Dorigo et al. [33]. In most cases,
however, AS was not as powerful as other heuristic
methods, and needs extensions for practical use. One
of the most powerful extensions is Max-Min Ant
System (MMAS) [34]. MMAS, which is a kind of
iterative algorithms, not only updates pheromones at
each iteration step based on the best solution over the
previous iterations, but also gives the upper and lower
limits to pheromone value. The extension prevents
MMAS going into local minimums.

Figure 1 shows how a typical ACO metaheuristic
algorithm works. Basically, ACO is the repetition of

ConstructAntSolutions step for searching paths, and
UpdatePheromones step for updating the distribution
of pheromone. Also, terminationCondition is satisfied
when some solutions are found or the number of the
repetition exceeds a fixed number. In the following, we
discuss each step in more detail.
Initialization step initializes pheromones on edges

for preparation of searching by ants. While regarding
the start state and final states as the nest and food
respectively, pheromones with random strength are
randomly located between these states.
ConstructAntSolutions step makes each ant proba-

bilistically transit states starting from the start state to
find candidate solutions. At this time, a transition to the
next state is selected using the following equation:

pkij =
[τij ]α[ηij ]β

Σl∈Ni
[τil]α[ηil]β

, if j ∈ Ni (1)

In the equation, Ni is the set of states to which an ant
can move from state i; j is the destination state of one
step movement of the ant; τij is the value of pheromone
on the edge (i, j); and η is heuristic value representing
the number of transitions to a final state, which is set
to a smaller value than actual one. The heuristic value
is estimated based on the locations of final states, or the
length and property of a specification that are described
in LTL. Also, α and β are empirically determined values
in order to adjust the effects of the heuristic value
and pheromone value, respectively. When ants have
moved on edges in the fixed number of times, or some
candidates of solutions are found, UpdatePheromones
step follows.
UpdatePheromones step updates the pheromone value

on each edge. The pheromone strengths on selected
edges are increased according to the appropriateness
of the edges. At the same time, the pheromones on the
other edges are updated as follows:

τij ← (1 − xi)τij (2)

In the equation, xi is set to a value between 0 and 1. This
is the value representing the degree of evaporation of
pheromones. Through the update process, the priorities
of previously selected edges are decreased step by step
until some ants select the edges again.

3.2. ACOhg
It is difficult for traditional ACOs to handle state
transition systems for model checking that have
thousands of nodes. Because there can be billions
of edges in such systems, they require a number of
megabytes in a memory to record pheromone values.
Especially, the size of a model of concurrent system is
known to be huge. For example, the size of the model of
Dining Philosophers with n philosophers is 3n, which
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Figure 2. Expansion Technique

Figure 3. Missionary Technique

increases exponentially. The simple solutions such as
prohibiting revisits to the same states are not effective,
because some ants may run into brick walls, or may
wander from state to state for a long time even if they
finally reach the final states. Thus, the behaviors of
the traditional ACO in model checking may result in
the state explosion without finding any candidates of
solutions. In addition, as a more fatal problem, the
traditional ACO has to initially set pheromone values
to all the transitions. This may also consume too much
memory.

In order to mitigate the problems of the traditional
ACO, Alba et al. proposedACO for huge graphs (ACOhg),
which can perform searching with less memory than the
traditional ones [3, 4]. The basic idea of ACOhg is to
give the upper limit λant to the number of move steps
of ants at one stage. This search manner suppresses

the time and memory consumption, but limiting of
move steps may prevent ants from reaching the final
states. That is, λant has to be decided so as to find
the final states. ACOhg gives two kinds of techniques
for determining λant ; they are expansion technique and
missionary technique.

In the expansion technique, once the system cannot
find a final state in the search for the current λant , λant
is increased by the value given as a parameter, and then
the system searches the wider area defined by the new
λant again as shown in Figure 2. The process starts with
small λant and repeats until it finds some final states.
The expansion technique increases λant just enough,
so that the memory consumption can be suppressed.
Also, it is easy to implement because it is a simple
extension of the traditional ACO. On the other hand,
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its behavior becomes closer to the traditional ACO’s as
λant increases.
The missionary technique is similar to the expansion

technique, but searches are performed from not the
start state but some states on the edge of the previously
searched area, i.e. ignoring old pheromone as shown in
Figure 3. The new start state on the edge is selected
from the states that ants reach at the previous stage.
This search manner enables ACO to gradually extend
the search area without changing λant , so that it only
requires constant time and memory consumption at
each stage.
Both approaches decide the strength of pheromones

to be assigned based on a fitness function. The fitness
function returns the degree of penalty for the trail of
each ant, which becomes very large in the case where
the trail includes some cycles, or no final state. Based
on the fitness function f , abest with the lowest penalty
f (abest) is determined, and then, the pheromone of its
trace is strengthened as follows:

τij ← τij +
1

f (abest)
,∀(i, j) ∈ abest (3)

ACOhg, which is based on MMAS, also uses the
fitness function for calculating the limit values τmax and
τmin of the pheromone value for each trail as follows:

τmax =
1

ρf (abest)
, (4)

τmin =
τmax

a
(5)

In the equation, ρ and a are constants that control the
range of the pheromone values. Also, the missionary
approach uses the fitness function to decide the next
start states at each stage.

4. Extended ACOhg
We extend ACOhg by introducing a new kind of
pheromones in order to suppress futile movement of
ants. We call the extended ACOhg EACOhg. This section
presents the outline of EACOhg, and then describes the
details of the new pheromone guiding ants to the final
states.

4.1. Outline of EACOhg
ACOhg can suppress the analysis time and memory
consumption, but it searches from the start state in
any directions like the traditional ACO. If there is
information about the direction, the search area can
be localized. We extend ACOhg so as to use the
direction information to find the final states. In the real
world, the direction information corresponds to smell
diffused from food. Indeed, ants can recognize not only

Figure 4. Diffusing of smell

1: τ ← initialize_pheromone();
2: γ ← { node | node ∈ F };
3: while step ≤ msteps ∧ ∄i ∈ [1..colsize]ai∗ ∈ F do
4: for k = 1 to colsize do
5: ak ← ∅;
6: while |ak | ≤ λant ∧ T (ak∗ ) − ak , ∅ ∧ ak∗ < F do
7: node← select_successor(ak∗ , T (a

k
∗ ), τ, γ, η);

8: ak ← ak + node;
9: τ ← local_pheromone_update(τ, ξ, (ak∗ , node));

10: end while
11: if f (ak) < f (abest) then
12: abest ← ak ;
13: end if
14: end for
15: τ ← pheromone_evaporation(τ, ρ);
16: τ ← pheromone_update(τ, abest);
17: γ ← scatter_goal_pheromone(γ);
18: λant ← λant + σ ;
19: end while

Figure 5. Algorithm of EACOhg

pheromones, but also the smell, which is important
information to reach unfound food in the early stage.

In our model, we regard the smell as another kind of
pheromones. We call this goal pheromone. We made the
goal pheromone stronger than the normal pheromone.
Once the goal pheromones are put on transition edges,
the edges are selected in preference to the edges
with the normal pheromone as shown in Figure 4.
The search manner localizes the search area further,
contributing to finding the final states more quickly and
generating shorter counter examples, although memory
consumption may increase a little to hold the goal
pheromones.

Figure 5 shows the pseudo code of EACOhg, where
the kth ant is represented by ak , and a path where
ak traversed is represented by |ak |. Also, akj and ak∗
represent the jth node and the last node on the path
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respectively. T (ak∗ ) represents the set of nodes to which
ak can transit from ak∗ .
The EACOhg starts with randomly assigned

pheromone value in [0 − 1.0] to all the edges as shown
in line 1. After that, the search step, which consists
of movement of ants and update of pheromones, is
repeated until the number of repetitions exceeds upper
limit msteps or some ants reach the final states F in the
loop body in lines 3–19.
Each stage performs a movement within λant and the

movement causes pheromone update. The destination
node to which to move is probabilistically selected
based on the strength of the pheromone value τ
through function select_successor in line 7. This node
is appended to ak . At this time, the pheromone
on the selected edge is enhanced through function
local_pheromone_update in line 9. Thus, the best path
based on the fitness function f in the stage is always
held in abest .
Once the operation in the current stage is completed,

pheromone values are globally updated for the effect
of evaporation and enhancing pheromones on abest

through the functions pheromone_evaporation and
pheromone_update respectively in lines 15 and 16.
Furthermore, in our algorithm, the goal pheromone is
diffused through the function scatter_goal_pheromone.
Finally, in order to search a wider area in the case where
no ant reaches the final states. λant is increased in line
18.

4.2. Goal Pheromone
The existence of the goal pheromone shows that there
are some paths from the current state to the final states.
Therefore, it is enhanced in order to attract ants more
strongly through the following properties:

1. Attracting ants more strongly than normal
pheromone,

2. Non-volatility, and

3. Defusing from the final states to their peripheries.

Note that the above properties induce ants to select
relatively short paths to the final states, which leads to
short counter examples.
The normal pheromones behave along with MMAS

and hence, have the value less than or equal to τmax.
The goal pheromone is set to the value more than τmax
in order to attract ants more strongly than normal
pheromones. Moreover, while the normal pheromone
evaporates, the goal pheromone does not evaporate and
has a constant value. It is derived from the fact that the
smell is always supplied by the source, i.e. food. Thus,
once an ant finds some goal pheromones, it moves to the
edges with them with high probability. The behavior of
an ant is implemented by select_successor.

(a) Input model

(b) Generated model

Figure 6. Models of LTSA

The goal pheromone is assigned on in-edges of
the current states by scatter_goal_pheromone in order
to make them defuse. At that time, the pheromone
is scattered on only some edges that are randomly
selected. The scatter manner contributes to suppressing
time and memory consumption.

5. Experimental Results
In order to demonstrate the effectiveness of our
approach, we have implemented our extended ACO,
EACOhg, on a practical model checker called LTSA
(Labeled Transition System Analyzer) [9, 35]. LTSA
is one of the model checkers that can be customized
easily, and can handle models that are suitable for our
purpose. LTSA supports the checking of Fluent Linear
Temporal Logic [35], which is a kind of LTL specialized
for event-based systems described as Labeled Transition
Systems. For example, wemay give amodel with several
final states as an input of LTSA as shown in Figure
6(a), while LTSA generates models with a single final
state, which is an error state corresponding to the
final states for checking safety, as shown in Figure 6
(b). The property of single final state of the models
makes handling of models easy. In Figure 6 (b), the
red state labeled 0 is the initial state, and the state

7
EAI

European Alliance
for Innovation

EAI Endorsed Transactions on 
 

0  - 04 2016 | Volume 3 | Issue  | e1



T. Kumazawa et al.

Table 1. Settings of coefficients

coefficients values
mstep 100
colsize 10

α 1.0
β 2.0
η 1.0
ρ 0.2
a 5
Pp 70
Pc 70

Pp and Pc are weights
of penalties used by
the fitness function for
no final state and the
path with some cycles.

Figure 7. Preliminary execution time on small model

−1 is the single final state. LTSA generates the models
as directed graphs in Aldebaran form, for which we
have extended the checking phase. Also, in the phase,
we have implemented goal pheromones in accordance
with the description Section 4.2, for which we have
chosen random values in tenfold range i.e. [0.0-10.0] so
that goal pheromones have much more influence than
normal pheromones. Notice that the random setting of
each goal pheromone contributes to mitigating local
minimum problem as well as normal pheromones.

We used values as shown in Table 1 for the coefficients
and constants that appear in equations and algorithms.
Most of these values can be basically the same values
as ACOhg because EACOhg is a simple extension of
ACOhg. However, the values of Pp and Pc have to be
empirically decided.

We decided the best settings for Pp and Pc
through preliminary experiments. In the preliminary
experiments, we generated two models with small and
middle sizes based on dinning philosophers problem,
checking them for dead lock safety while changing Pp
and Pc from 10 to 1000. Figures 7 and 8 show execution
time for each experiment, where the small and middle
models have 213 and 7,773 states respectively. Note that
the figures are semi-logarithmic plots. As shown in the
figures, the execution time decreases at first as they
increase, regardless of the size of models. Once Pp and Pc

Figure 8. Preliminary execution time on middle model

Figure 9. Execution time

reach 70, the execution time does not decrease. Thus, we
decided to adopt 70 as Pp and Pc in main experiments.
In the main experiments, we prepared three models:

model A with 3843 states, model B with 31747
states, and model C with 266,218 states adjusting the
parameters of two kinds of examples Mutex_fluent and
DatabaseRing. We conducted three experiments in terms
of execution time, the length of counter examples,
and memory consumption. In each experiment, we
compared our approach with ACOhg for models A, B
and C, where we show the average of the results of one
hundred times applications for each model.
As shown in Figure 9, our approach is more efficient

than ACOhg. It shows that goal pheromones guide
ants to the final states, suppressing the chances going
out their ways. Furthermore, Figure 10 shows that
our approach generates much shorter counter examples
than ACOhg. The fact also substantiates the efficiency
of our approach by the shorter trails of ants.
On the other hand, our approach consumes more

memory than ACOhg as shown in Figure 11. The
increase of the memory consumption fell within 10%
at most, and was 5% in average, though. Considering
that our approach have achieved 23% more efficient
execution and 50% shorter counter examples in their
averages, we can say that the increase is negligible.
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Figure 10. The length of counter examples

Figure 11. Memory consumption

6. Conclusions and Future Directions

We have proposed a novel ACO based model checking,
i.e. EACOhg that further suppresses futile movements
of ants while suppressing the resource consumption
by introducing smell-like pheromone. The smell-like
pheromone diffuses from goals and guides ants to the
goals. Thus our approach not only makes the ants reach
the goals further more efficiently but also generates
much shorter counter examples than the existing best
ACO based approach, ACOhg.
In order to show the effectiveness of our approach,

we implemented the EACOhg on a practical model
checker, and conducted experiments. The results of
the experiments show that our approach is effective
for improving execution efficiency and the length
of counter examples. Future work involves the
enhancement of EACOhg and its evaluation based on
more realistic case studies.
We have observed that our approach does not achieve

effectiveness in the very large model (model C) as
shown in Figures 9 and 10. The reason may be that
the effect of the smell-like pheromone is compromised
in a large model. In order to overcome this problem,

we plan to add directionality in diffusing the smell-like
pheromone.
We are pursuing further improvements of EACOhg

to make it more practical and complete. We envisage
that the improvements should be achieved by the
combination of EACOhg with heuristics and the
optimization methods of classical model checking.
Some researchers showed that appropriate heuristics
can improve the efficiency of model checking in the
wide range of problem domains [12, 19, 20, 23]. Most
heuristics are problem-specific. They depend on the
specifications to be checked and the structures of the
target system models. Therefore we have to carefully
investigate which heuristic methods contribute to the
performance improvements of EACOhg.
Traditional model checking researches have proposed

various kinds of optimization techniques as noted
in Section 2. Although most of the methods aim
at optimizing deterministic search, EACOhg can be
applicable to some of them such as Partial Order
Reduction (POR) [5]. In addition, we plan to extend
EACOhg to the checking of liveness, because EACOhg
only targets on the safety checking and does not
support the check the properties such as Response
and Existence [36]. In the case of liveness checking,
counter examples may have infinite length and contains
cycles. Thus, we have to investigate the effects of
goal pheromones on finding paths with cycles. One
approach is proposed by Chicano and Alba [6]. As the
next phase, we plan to apply our method to safety
checking with POR and liveness checking so as to
demonstrate the applicability of our approach.
Finally and the most importantly, we have to apply

EACOhg to practical models of software systems or
communication protocols to evaluate its effectiveness
empirically. For example, the recent work by Chicano et
al. [25] evaluates several meta-heuristic model checking
techniques using communication protocols. Similarly,
Shousha et al. [32] uses models of a bank fund transfer
problem and a cruise control problem. EACOhg is
not built on the specific programming or modeling
languages, hence it is possible to adapt to the real world
systems. A candidate data set for our empirical research
is the Software-artifact Infrastructure Repository [37],
which is used for evaluation by Poulding and Feldt [30].
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