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Abstract 

In recent years, single-channel physiological recordings have gained popularity in portable health devices and research 
settings due to their convenience. However, the presence of electrooculogram (EOG) artifacts can significantly degrade the 
quality of the recorded data, impacting the accuracy of essential signal features. Consequently, artifact removal from 
physiological signals is a crucial step in signal processing pipelines. Current techniques often employ Independent 
Component Analysis (ICA) to efficiently separate signal and artifact sources in multichannel recordings. However, 
limitations arise when dealing with single or a few channel measurements in minimal instrumentation or portable devices, 
restricting the utility of ICA. To address this challenge, this paper introduces an innovative artifact removal algorithm 
utilizing enhanced empirical mode decomposition to extract the intrinsic mode functions (IMFs). Subsequently, the 
algorithm targets the removal of segments related to EOG by isolating them within these IMFs. The proposed method is 
compared with existing single-channel EEG artifact removal algorithms, demonstrating superior performance. The findings 
demonstrate the effectiveness of our approach in isolating artifact components, resulting in a reconstructed signal 
characterized by a strong correlation and a power spectrum closely resembling the ground-truth EEG signal. This 
outperforms the existing methods in terms of artifact removal. Additionally, the proposed algorithm exhibits significantly 
reduced execution time, enabling real-time online analysis. 
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1. Introduction

Measurement of the various physiological signals in the 
human brain is a crucial process in assessing an individual's 
well-being. Electroencephalography (EEG) represents a non-
linear and non-stationary electrophysiological signal of the 
central nervous system, providing comprehensive insights 
into brain activity. EEG data serves as a vital resource for 
human brain research, disease diagnosis, and rehabilitation 
engineering. Despite its significance, EEG data is highly 
vulnerable to external interference, such as electrooculogram 
EOG [1], electromyogram (EMG) [2] and electrocardiogram 
(ECG) artifacts [3]. These artifacts severely compromise 

EEG recording quality, potentially leading to 
misinterpretation of neural information [4]. Consequently, 
noise cancellation becomes a crucial pre-processing step for 
EEG data, ensuring accurate analysis and interpretation. 
Moreover, in recent years, EEG signal acquisition devices 
have become more portable and user-friendly, especially with 
the growing prevalence of brain-computer interfaces (BCIs) 
[5], [6], [7], [8]. There is a rising demand for fewer channels 
in specific applications such as portable anaesthesia depth 
monitoring and portable emotional state recognition [9], and 
portable sleep monitoring [10], where a single channel 
suffices for the intended purpose. This evolution underscores 
the need for advanced noise cancellation techniques, enabling 
precise EEG data analysis despite challenging recording 
conditions.  
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The commonly utilized filters are frequently 
employed for artifact removal in cases where there are non-
overlapping frequency bands between signals and 
interferences. However, optimizing the bandwidth selection 
of these filters has proven challenging due to the nonlinear 
and nonstationary nature of EEG signals. Furthermore, 
separating noise becomes challenging when there is spectral 
overlap between brain signals and interferences. To address 
these challenges, more sophisticated algorithms like blind 
source separation (BSS), adaptive filtering, wavelet 
decompositions (WT), and empirical mode decomposition 
(EMD) have been proposed to efficiently eliminate 
interferences from EEG signals [11], [12], [13], [14], [15], 
[16], [17]. One popular BSS technique, independent 
component analysis (ICA), effectively separates multi-
channel EEG signals into independent components, 
comprising both sources and artifacts [18], [19]. By removing 
artifact-related independent components (ICs), clean EEG 
signals can be reconstructed. However, BSS-based methods 
are effective only when the number of EEG channels is 
sufficiently large. 

While several methods have been suggested to 
effectively eliminate EOG signals [18], [20], [21], [22], [23], 
[24], these techniques pose challenges when applied to 
single-channel portable BCI systems, as they typically 
require multiple EEG channels for optimal separation. Kumar 
introduced an approach in 2008 that employs wavelet 
transform soft thresholding to remove single-channel EOG 
artifacts [24]. However, this method demands substantial 
prior knowledge and adversely affect EEG source signal 
components. Although source separation techniques require 
multiple channels, they can be used on a single-channel in 
association with WT or EMD [12], [25]. Mammone proposed 
a WT-ICA algorithm in 2012, combining wavelet transform 
and independent component analysis to eliminate EOG 
artifacts [11], [25]. For example, wavelet transform has been 
applied as a bandpass filter to decompose the single-channel 
biomedical signal into several components. The ICA is then 
employed on these decomposed components to extract the 
sources and eliminate the artifacts [12]. This algorithm 
satisfies the ICA a priori condition through wavelet 
decomposition of single-channel EEG signals. Nevertheless, 
the performance of wavelet transform mainly depends on the 
selection of wavelet kernel functions. In addition, the wavelet 
transform not only increases observed signals but also 
decomposes the source signal into several sub-source signals. 
An alternating decomposition method, empirical mode 
decomposition is an adaptive method capable of handling 
non-linear and non-stationary signals more effectively by 
decomposing the signal into single modes, known as intrinsic 
mode functions, without linearity assumptions [26]. That is, 
each successive EMD will generate an IMF with lower 
oscillations than the previous IMF and naturally retain the 
physical properties of the signal. Later, ICA is applied on the 
IMFs to extract the hidden sources.  However, the EMD may 
produce the disparated frequency bands in one IMF or similar 
oscillation in different IMFs, known as “mode-mixing”. 
Thus, for resolving a mode-mixing problem when using 
EMD, an extended noise-assisted method known as the 

ensemble EMD (EEMD) was developed [27]. Later, the 
EEMD-based methods such as Complete ensemble empirical 
mode decomposition have been developed and proved to be 
efficiently decompose biomedical signals [28], [29]. 
Although these decomposition methods have been previously 
employed as useful methods to decompose the single channel 
EEG signal into components consisting signals and undesired 
noises, the repetitive number of ensemble of EEMD-based 
methods causes the intensive computation and is thus not 
suitable for the real-time system. Additionally, a significant 
limitation of source separation techniques like ICA is their 
inability to be applied online [14]. While some real-time 
applications have been proposed by computing ICA on a 
sliding window in a recurrent manner [30], [31] there is 
currently no efficient online algorithm available. 
Furthermore, the effectiveness of ICA is influenced by the 
length of the signal [32]. That is too short can hinder the 
reliable separation of sources, while an excessively long 
signal can lead to changes in the properties of the sources over 
time, resulting in improper isolation of artifacts. These 
constraints render ICA and similar BSS-based methods 
impractical for real-time continuous monitoring scenarios. 

In this article, we introduce a highly effective 
approach for removing the EOG artifact from a single-
channel EEG signal. Our method utilizes an enhanced 
empirical mode decomposition technique, specifically the 
masking EMD, associated with EOG detection based on the 
envelope of each intrinsic mode function to remove the EOG 
artifact. To gauge its performance, we conducted a 
comparative analysis with existing removal methods, namely 
VMD-SOBI [33] and EEMD-ICA [12]. In Section II, we 
offer a concise overview of our proposed methods. Section III 
presents a detailed comparison of the outcomes obtained from 
these techniques. Finally, in Section IV, we provide a 
conclusion based on the obtained results. 

2. Methods 
 
2.1. Empirical Mode Decomposition (EMD) 

EMD stands out as an adaptive and data-driven 
methodology that operates without the constraints of 
linearity assumptions. It dynamically decomposes the 
characteristics of raw signals into individual modes called 
intrinsic mode functions, all without the need for 
predetermined band-pass filter cut-offs. Consequently, each 
EMD algorithm functions as a natural dyadic filtering bank 
[34], as described in the following equation: 
 

𝑥𝑥(𝑡𝑡) = �𝐼𝐼𝐼𝐼𝐼𝐼𝑗𝑗(𝑡𝑡) + 𝑟𝑟(𝑡𝑡)
𝑛𝑛

𝑗𝑗=1

 (1) 

Let x(t) be the input data, the following steps outline the 
process used to identify Intrinsic Mode Functions:  
1. Identify time-series local maxima and minima of x(t) 
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2. Perform a cubic spline interpolation between all local 
maxima to compute the upper envelope emax(t) and the 
lower envelope emin(t). 

3. Estimate the mean value of each data time-point 
between the upper and lower envelope as m1(t) = (emax(t) 
+ emin(t))/2 

4. Subtract the mean value from the original signal to 
provide the local components h1(t) = X(t)–m1(t). 

5. The sifting procedure was implemented to ensure that 
the component ℎ1(𝑡𝑡) met the criteria to be classified as 
an Intrinsic Mode Function. The stopping criterion for 
the sifting process is defined in Equation (2), 
calculated from the two consecutive components as: 

𝛿𝛿𝑚𝑚 = �
�ℎ1(𝑚𝑚−1)(𝑡𝑡) − ℎ1(𝑚𝑚) (𝑡𝑡)�

2

ℎ21(𝑚𝑚−1)(𝑡𝑡)

𝑁𝑁

𝑡𝑡=0

 
(2) 

A threshold value for 𝛿𝛿 (i.e., standard deviation) can be set 
between 0.2 and 0.3 to stop the sifting process [35]. The 
process is reiterated until only a monotonic time-series or 
residue r(t) remains, signifying the underlying trend within 
x(t). 

To enhance the decomposition process and mitigate mode-
mixing issues inherent in the original EMD, an improved 
algorithm called masking EMD was employed [36], [37], 
[38], [39]. Masking EMD robustly decomposes the signal 
into physically meaningful nonlinear components, as 
demonstrated in prior research [39]. A notable advantage of 
masking EMD is its ability to extract intrinsic mode functions 
(IMFs) without the need for a specified number of iterations, 
which significantly reduces computational costs and 
enhances execution speed. Thus, it is a crucial step toward 
efficient real-time EOG artifact removal in practical 
applications. 

2.2. The proposed algorithm 

In conventional approaches, the decomposition process is 
followed by the application of ICA-based methods to 
eliminate EOG-related components. However, a significant 
drawback of source separation techniques like ICA is their 
limited applicability in real-time scenarios. Moreover, the 
performance of ICA is adversely affected by signal length, 
leading to improper isolation of artifacts. 
The proposed algorithm addresses these challenges by 
efficiently detecting and removing only the EOG-related 
segments from the signal, with minimal execution time for 
online applications. The algorithm comprises three key steps: 
1. Decomposition: Raw signals are decomposed into 
components.; 2. Detection: EOG-related segments are 
identified within these components.; 3. Removal and 

Reconstruction: The EOG-related segments are removed, and 
the clean signal is reconstructed. The details of analysis flow 
were conducted as follows: 
1. The original signal x(t) is firstly decomposed into several 

IMFs by using masking EMD, with these known as the 
first layer IMFs. 

2. Then the Hilbert transform method is applied to estimate 
instantaneous frequencies and amplitudes of the IMFs. 
This step gives the time-frequency characteristics of the 
original signal and is known as the Hilbert-Huang 
Transform (HHT). The mean instantaneous frequencies 
were calculated to define the low-frequency IMF ranging 
from 0.5 to 8 Hz since those IMFs include strong 
amplitude of EOG signal. 

3.  Construct the envelop of each given low-frequency IMFs 
by using the instantaneous amplitudes of IMFs extracted by 
Hilbert transform. 
4. At the low-frequency IMFs, the EOG amplitude is typically 
dominant and lasts for about 1 second. Thus, we define the 1-
s segment of EOG signal in low-frequency IMFs using a 
threshold of 2 times the standard deviation of entire signal. 
Then, we replace those EOG segments by zeroes from low-
frequency IMFs. 
5. After EOG segment removal, the clean signal is 
constructed by summing all the IMFs. 

 
 

Figure 1. The flowchart of the proposed algorithm. 

2.3. Dataset for Benchmarking 

The Semi-Simulated EEG/EOG [40] includes 55 recordings 
obtained from 19 EEG electrodes, sampled at a frequency of 
200 Hz. Each EEG recording is accompanied by an equal 
number of EOG signals. These EOG signals are incorporated 
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linearly into the EEG signal, leading to recordings affected by 
artifacts. 

2.4. Performance Metrics 
 
Correlation 
 
In time domain, we used the Pearson correlation coefficient, 
which is a widely accepted measure of the statistical 
relationships between signals, to measure the linear temporal 
correlation between original signal and clean signal. We 
defined the change in correlation R as in Equation (3): 
 

𝑅𝑅 =
∑ (𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)𝑛𝑛
𝑖𝑖=1

�∑ (𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)2𝑛𝑛
𝑖𝑖=1 �∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2𝑛𝑛

𝑖𝑖=1
 

(3) 

Where 𝒙𝒙� and 𝒚𝒚� are the sample means of signal x and 
y, respectively. 

Spectral Coherence 

In EEG analysis, the majority of extracted features are 
derived from the frequency domain. Therefore, assessing the 
enhancement in spectral coherence before and after artifact 
removal is crucial to determine the efficacy of the artifact 
removal process. Evaluating the increase in spectral 
coherence between the clean signal and the original signal 
post-artifact removal serves as a significant metric [41]. This 
enhancement in coherence, denoted as Icoh, is defined as in 
Equation (4): 
 

𝐼𝐼𝑐𝑐𝑐𝑐ℎ =
(𝐶𝐶after  − 𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 )

(1 − 𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 )
 

(4) 

 
where 𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  and 𝐶𝐶after represent the average magnitude 
squared coherence estimates within the 1–10 Hz band. These 
values are computed by comparing the ground truth with the 
signal before and after artifact removal, respectively 
 
Execution time 

The execution time was determined by analyzing a 7-second 
sample at a sampling rate of 200 Hz using simulated data. 
Each method was iteratively applied to the identical dataset 
10 times to calculate the average execution time. This metric 
holds significance as it assesses the ability of both the 
proposed and existing methods to operate in real-time 
scenarios. The benchmarks were conducted using Matlab 
2015a, running on a system equipped with an AMD Ryzen 5 
CPU (2.1 GHz) and 16 GB RAM. 
 
 

3. Results 

3.1 Application of the proposed method 
on Synthetic Signals. 

In EEG signals, eye blink artifacts often manifest as spike-
type signals. For our simulation study, we focused on 
separating mixed signals resembling these spike-type 
artifacts. To create this spike-type source signal, we first 
segmented a one-second eye blink epoch from a single-
channel EEG recording in the Semi-Simulated EEG/EOG 
dataset. This segment was then positioned at 3.5 seconds 
alongside a segmented EOG in a zero-magnitude 7-second 
signal. The magnitudes of the EOG were rescaled to achieve 
various signal-to-noise ratios (SNR) ranging from -5 dB 
(representing a large artifact) to +5 dB (indicating a small 
artifact, as shown in Fig. 2). Finally, the simulated signal was 
constructed by adding the real EEG signal to the spike-type 
source signal at different SNR levels. 

 

 
 

Figure 2. The illustration of EOG-related IMFs removal 
from a simulated signal (SNR = +5db). 
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Figure 2 illustrates the proposed method's process of 
decomposing raw data into Intrinsic Mode Functions and 
subsequently removing EOG-related segments from these 
IMFs. Initially, the raw data underwent decomposition using 
Masking Empirical Mode Decomposition (EMD), resulting 
in 8 IMFs (Figure 2A). Among these, IMFs 3, 4, 5, and 6 
contained EOG-related components. The segments 
corresponding to EOG artifacts within these IMFs were 
accurately identified and replaced with zeroes, as shown in 
Figure 2B. The reduction in artifact components of the clean 
signal was measured through cross-correlation and 
enhancement in spectral coherence (Icoh), comparing the 
algorithm's output to the ground truth signal (refer to Figure 
3 for details). 

 
 

Figure 3. The clean signal reconstructed from a simulated 
signal and its power spectrum obtained by the proposed 

method. 
 
The results obtained from our proposed method 

demonstrate its efficacy. The artifact-free EEG signals were 
reconstructed (indicated by the red line in Figure 3) with a 
strong correlation of 0.96 and 0.94 at SNR levels of +5dB and 
-5dB, respectively, compared to the ground truth signal. 
Furthermore, the method significantly improved spectral 
coherence, yielding Icoh values of 0.43 and 0.54 at +5dB and 
-5dB, respectively. These findings underscore the robustness 
and accuracy of our approach in artifact removal. 

To further validate our approach, we conducted a 
benchmarking analysis, comparing it with alternative artifact 
removal algorithms suitable for single-channel EEG 
recordings, namely EMD-ICA and VMD-SOBI. Our findings 
revealed that our proposed method outperformed the other 
tested techniques in terms of correlation and spectral 
coherence. It consistently achieved the highest correlation 
and exhibited significant improvements in spectral coherence 
across various signal-to-noise ratios (see Figure 4). These 

results decisively confirm that our method preserves 
information in the time domain and avoids spectral distortion 
in the frequency domain. 

Interestingly, the performance of the VMD-SOBI method 
showed similarities to our method in terms of correlation. 
However, it showed a low improvement of spectral coherence 
and similar to the results of EMD-ICA method. Moreover, the 
EMD-ICA method indicated a decline in correlation as the 
EOG artifact increased. This outcome serves as strong 
evidence that ICA and similar BSS methods might not be the 
most effective choices for removing the EOG artefact. 

We compared the practical implementation performances 
of various algorithms by measuring the execution time 
required to analyze a 7-second data segment from the 
simulated data. The proposed method exhibited a mean 
execution time of 0.35 seconds, significantly outperforming 
VMD-SOBI (execution time = 7.6 seconds) and EMD-ICA 
(execution time = 1.1 seconds). 

 

 
 

Figure 4. The performance of the proposed method 
comparing to two existing methods (VMD-SOBI and EMD-

ICA) 
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Figure 5. The illustration of analyzing a single subject 
from semi-EEG dataset. A. The decomposition of raw 

signal. B. The EEG signal before and after artifact 
removal. C. The power spectrum of ground-truth EEG, 

clean EEG and raw EEG. 
 

In summary, our proposed method demonstrates superior 
performance compared to VMD-SOBI and EMD-ICA in 
terms of enhancing spectral coherence and reducing 
execution time. This improved performance is primarily 
attributed to the pivotal role of masking EMD, which serves 
as the initial step in decomposing single EEG channels. Our 
findings align with prior research indicating that masking 
EMD robustly decomposes signals into physically 
meaningful nonlinear components, surpassing the capabilities 
of original and ensemble EMD methods used in EMD-ICA 
[38], [39]. Additionally, the execution time of masking EMD 
is significantly lower than VMD decomposition utilized in 
VMD-SOBI, as shown in our result. By leveraging the robust 
decomposition capabilities of masking EMD, our innovative 
method precisely localizes the EOG segment using the 

envelope of each IMF, rather than relying on ICA or SOBI 
for artifact removal. This facilitates their direct removal 
without the necessity of discarding the entire decomposed 
signal and thus the computation cost is not highly required as 
in SOBI and ICA enabling it to apply in real time. As a result, 
our proposed approach has the potential to preserve vital EEG 
features, unlike VMD-SOBI and EMD-ICA. 
 
3.2 Application of the proposed method 
on Semi-Simulated EEG/EOG dataset. 

In the analysis of the semi-Simulated EEG/EOG dataset, 
our proposed method effectively eliminated EOG artifacts, 
resulting in clean EEG signals characterized by high 
correlation and a closely aligned power spectrum, especially 
within the EOG-related frequency range (0.5 Hz - 8 Hz), 
when compared to the ground-truth EEG, as demonstrated in 
the Figure 5. Furthermore, our method consistently 
outperformed both VMD-SOBI and EMD-ICA algorithms in 
terms of both correlation and spectral coherence across 
different subjects. As illustrated in the Figure 6, our method 
exhibited an average correlation value of 0.83 and an average 
spectral coherence of 0.05 across subjects. In terms of 
correlation, VMD-SOBI demonstrated a similar performance 
(mean correlation value = 0.77) to our proposed method, 
whereas EMD-ICA exhibited the lowest value of 0.42 across 
subjects.  

 
4. Conclusion 

In this study, we introduced and validated an innovative 
algorithm for removing EOG artifacts from single-channel 
EEG data in real-time. Our method, based on data-driven 
masking EMD, operates automatically without the need for 
auxiliary input, parameter tuning, or human intervention. 
Through testing, our approach consistently outperformed 
comparable algorithms relying on blind source separation, in 
both simulated and semi-simulated EEG data. Furthermore, 
our results demonstrated that our algorithm not only 
outperforms existing methods but also exhibits lower 
computational costs. Its performance remains robust for real-
time applications, making it particularly valuable for studying 
cognitive functions and other specialized care unit 
applications where only a limited number of electrodes are 
available, and real-time analysis is essential. The enhanced 
spectral coherence achieved through our method ensures 
reliable reconstructed of clean signals, further emphasizing 
its suitability for such applications. 

 
Additionally, our algorithm includes an automatic 

detection and removal feature for EOG artifacts, rendering it 
suitable for unsupervised EEG devices. These findings 
highlight the potential of our approach in advancing EEG 
artifact removal techniques for practical and real-time 
applications.
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Figure 6. The performance of the proposed method and two existing methods across subjects in term of correlation and Icoh 
(improvement of spectral coherence). 
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