
An Analysis of Increased Vertical Scaling in Three-
Dimensional Virtual World Simulation 

Sean C. Mondesire, Ph.D. 
U.S. Army Research Laboratory 

3100 Technology Pkwy 
Orlando, FL 32826 
sean@cs.ucf.edu 

Jonathan Stevens, Ph.D. 
University of Central Florida 

3100 Technology Pkwy 
Orlando, FL 32826 

jonathan.stevens@knights.ucf.edu  

Douglas B. Maxwell 
U.S. Army Research Laboratory 

12423 Research Pkwy 
Orlando, FL 32826 

douglas.maxwell3.civ@mail.mil 
 

 

ABSTRACT 

In this paper, we describe the analysis of the effect of vertical 

computational scaling on the performance of a simulation based 

training prototype currently under development by the U.S. Army 

Research Laboratory.  The United States military is interested in 

facilitating Warfighter training by investigating large-scale 

realistic virtual operational environments. In order to support 

expanded training at higher echelons, virtual world simulators 

need to scale to support more simultaneous client connections, 

more intelligent agents, and more physics interactions.  This work 

provides an in-depth analysis of a virtual world simulator under 

different hardware profiles to determine the effect of increased 

vertical computational scaling. 

General Terms 

Measurement, Performance, Design, Experimentation, and 

Verification. 

Keywords 

Benchmarking; Vertical Scaling; Virtual World Simulation; 

Performance Analysis. 

1. INTRODUCTION 
The U.S. Army Research Laboratory’s (ARL) Human Research 

and Engineering Directorate (HRED) has led an extensive 

investigation of the effectiveness of military personnel training 

within a virtual world simulation [1]. Due to the requirements set 

forth by the military for accurate and high-fidelity simulations [2], 

considerable effort is being made to increase scalability and 

performance in these virtual military trainers. To date, attempted 

horizontal and vertical scaling in these simulators have marginally 

increased the number of human trainers the simulators can 

concurrently support and improved simulator fidelity. 

Unfortunately, these limited successes have left the simulation 

and training community without proven methods and analyses that 

easily transform existing virtual worlds to meet the desired scale, 

accuracy, and performance levels required to conduct military 

training. 

This work extended prior vertical scaling research and maintained 

the goal of increasing scalability in a virtual world simulator. The 

work extended prior vertical scaling efforts by rigorously focusing 

on performance differences achieved when an increased amount 

of processing units were given to a virtual world simulator. In the 

previous vertical scaling investigation, it was found that a doubled 

total amount of CPU cores allocated to a simulator server had a 

greater positive effect on scalability than when the simulator’s 

servers were upgraded to more modern CPU technology [3].  

To expand the previous research, this presented work quantifiably 

measured the impact of increased vertical scaling on simulator 

performance when 1, 2, 4, 8, 16, and 32 CPU cores were 

dedicated to a simulator. This new vertical scaling analysis 

provides a formal analysis of CPU vertical scaling in a virtual 

world simulator to the simulation and training community. 

Furthermore, this work provides a set of expectations that couple 

simulator performance with increased CPU capabilities due to 

vertical scaling. Finally, this work provides further evidence of 

the accuracy of using CPU utilization as a gauge for simulator 

performance and a detection measure for system duress. 

The findings of this work are presented as follows: first a 

background of the military's need for accurate, high-echelon 

virtual training is discussed, along with the classification of 

simulators and a description of the studied MOSES project and 

OpenSimulator. Next, the methodology and experiments for 

analyzing increased vertical scaling with CPU processing 

capabilities is defined. We then present the results of the 

experiments and conclude this work with the main observations 

and this research's follow-on work.  

2. BACKGROUND 
The United States Army continues to expand its use of simulation 

for training in novel ways [4]. One of these new approaches is the 

use of persistent virtual environments for training, employed in a 

distributed manner.  While virtual world technology and training 

is still a relatively new domain [5], the Army has been an early 

supporter of this technology [6]. Recent advancements in 

simulation technology have enabled the rendering of sufficiently 

realistic virtual environments that can support realistic training 

[7]. The focus of this research effort was to analyze various 

methods and server configurations to both improve and optimize 

the user's distributed virtual environment experience.  

2.1 Simulation Classification 
There are four classes of simulation used for training: live, virtual, 

constructive and gaming [8] [9]. Live simulations comprise real 

people operating real systems while virtual simulations 

encompass real people operating simulated systems in simulated 

environments. Constructive simulations involve simulated people 

operating simulated systems. Game-based simulation involves the 

employment of interactive, computer-based applications used for 

training purposes [10]. At times, the four classes may overlap 

 

 

SIMUTOOLS 2015, August 24-26, Athens, Greece
Copyright © 2015 ICST
DOI 10.4108/eai.24-8-2015.2260963



each other during the same training event; this phenomenon is 

referred to as "blended training". 

One of the major advantages of employing virtual, constructive 

and game-based simulation for training are their associated cost 

advantages [11] [12] especially when compared to live training. In 

the current fiscal environment, this is of paramount importance as 

budgets for training continue to decline. Due in large part to its 

distributed nature, virtual world training represents a major 

potential cost reduction candidate for military training [13] 

because users may train together without having to travel to the 

same location. This variation of virtual simulation for training is 

still developing, as evidenced by the absence of any embedded 

instructional strategy [14] and training effectiveness framework 

[15].  

In recognition of the effectiveness of simulation-based training 

[16] [17] [18], the Army's Learning Model explicitly calls for the 

increased use of both virtual and game-based training. Both of 

these classes of simulation allow the Army to maintain Soldier 

proficiency in critical skills at reduced cost [19]. Doing so in a 

distributed manner, such as a persistent virtual environment, 

represents another cost efficient method to support the Army's 

Learning Model. 

A persistent virtual environment, also referred to as a virtual 

world, is an "immersive simulated environment in which a 

participant uses an avatar (a digital representation of oneself) to 

interact with digital agents, artifacts, and contexts" [20].  Up to 

the present, virtual worlds have been primarily employed for 

training either at the individual level, focused on tasks such as 

public speaking anxiety [21], or for collective learning activities, 

such as a classroom, conference or virtual event. In one such 

example, the Linden Lab's Second Life® virtual environment was 

used to host approximately 800 conference attendees attending a 

virtual, distributed conference [22].  

2.2 MOSES 
ARL's HRED has created the Military Open Simulator Enterprise 

Strategy (MOSES) project to develop a three-dimensional training 

simulation platform [23]. The goal of the research project is to 

determine whether or not persistent virtual environments are 

suitable for collective, military training. The MOSES research 

team continues to examine the suitability of virtual worlds for 

collective military training through the software development of 

essential capabilities, such as realistic models (weapons, 

ammunition and their effects), terrain and artificial intelligence as 

well as the optimization of the architecture required to support 

distributed, non-deterministic training. The focus of this paper is 

the latter goal, architecture optimization. The MOSES virtual 

environment is depicted in Figure 1. 

 

 

Figure 1: MOSES Virtual Environment 

 

MOSES is a simulation architecture and management system that 

provides its users with a controllable and expansive virtual world 

[23]. OpenSimulator (OpenSim) is the MOSES project's 

underlying software that simulates all of the virtual world's 

environment, interactions, and behaviors [24]. OpenSim is an 

open-sourced, three-dimensional, persistent virtual world 

simulator that is heavily inspired by the popular social virtual 

world, Second Life®. The aim of both OpenSim and Second 

Life® are to provide social virtual spaces where users interact 

with each other through simulation avatars in building-, 

landscape- and object-rich environments [25]. 

OpenSim is a cross-platform, multi-threaded simulator written in 

the .Net framework. A typical OpenSim instance is a simulator 

server that simulates and hosts a portion of the virtual 

environment, known as a region. Users interact in the region by 

launching a viewer, an external application that connects to an 

OpenSim server. The viewer allows the user to control an avatar, 

which represents the user in the environment. Inside a region, an 

avatar can move throughout the simulated environment, socialize 

with other avatars, create objects and appearances, and more.  

The MOSES project is focused on training military tactics through 

these simulated activities and environments. Previous research has 

shown that MOSES can be an effective collective military training 

simulation [26] at the small unit level. As we attempt to employ 

MOSES at higher echelons of training, architecture limitations 

must be addressed. The foremost challenge remains the number of 

human avatars that may operate simultaneously in the virtual 

environment. In our prior research [3], we discovered that server 

configuration, specifically the number of cores dedicated to the 

MOSES server, had the greatest effect on simulation performance 

than any other variable examined. Expanding on this discovery, 

this work seeks to uncover the relationship between MOSES' 

scalability and vertical scaling with an increased amount of 

processing cores. Succinctly, this follow-on work determines the 

effectiveness of an increased vertical scaling method with a 

popular virtual world simulator. In this paper we discourse on the 

experimentation we conducted to support the aforementioned 

goal. 

3. METHODOLOGY 
To further expand the vertical scaling discoveries made in prior 

research, the presented work measured OpenSim server 

performance on a series of increasing amounts of CPU 

capabilities. Specifically, the analysis compared simulator 

performance when the server was allocated 1, 2, 4, 8, 16, and 32 

CPU cores. Analyzing performance in this manner allowed for the 

effect of CPU total vertical scaling to be determined on a virtual 

world simulator. This analysis was accomplished in two phases: 

1) a minimum degradation load phase and 2) increased vertical 

scaling phase. All tests for both phases used the same hardware 

configuration but varied in number of CPU cores allocated to the 

server. Both phases were analyzed for two independent 

experiments, where each experiment differed in the tested CPU 

type (brand and model). 

3.1 Phase 1: Minimum Degradation Load 
The first phase identified the minimum load each CPU type could 

support with one CPU core to trigger noticeable degradation in the 

simulation's user experience. To make this identification, an 

OpenSim instance was launched with one CPU core. Automated 

users (bots) were incrementally allowed to connect to the 

simulator with a 30 second delay interval until the simulator’s 



averaged host CPU utilization percentage first exceeded 95%. At 

that point, the number of bots in the region was noted as the 

minimum degradation load (MDL). This MDL value represents 

the highest amount of load the simulator can process before 

triggering simulation experience degradation. From previous 

vertical scaling investigations, it has been noted that when the 

simulator’s host CPU utilization percentage average exceeded 

95%, the user experience began to suffer due to simulation lag, 

avatar rubber banding, and unresponsiveness from the simulator. 

This phase was performed on each of the two CPU types when 

OpenSim was allocated a single CPU core. Table 1 displays the 

hardware configuration for the two phase 1 experiments. 

Table 1: Phase 1 Hardware Configuration 

Test 

Case 

CPU 

Type 
# of Cores 

Memory 

(RAM) 

1 
AMD Opteron 

6100 
1 64 GB 

2 
Intel Xeon E7-

4890v2 
1 64 GB 

 

Table 2: Phase 2 Legacy Hardware and Bot Configuration 

Test 

Case 

CPU 

Type 

# of 

Cores 

Memory 

(RAM) 

# of Bots 

(MDL) 

L1 
AMD 

Opteron 6100 
1 64 GB 45 

L2 
AMD 

Opteron 6100 
2 64 GB 45 

L3 
AMD 

Opteron 6100 
4 64 GB 45 

L4 
AMD 

Opteron 6100 
8 64 GB 45 

L5 
AMD 

Opteron 6100 
16 64 GB 45 

L6 
AMD 

Opteron 6100 
32 64 GB 45 

 

Table 3: Phase 2 Prototype Hardware and Bot Configuration 

Test 

Case 

CPU 

Type 

# of 

Cores 

Memory 

(RAM) 

# of Bots 

(MDL) 

P1 
Intel Xeon E7-

4890v2 
1 64 GB 59 

P2 
Intel Xeon E7-

4890v2 
2 64 GB 59 

P3 
Intel Xeon E7-

4890v2 
4 64 GB 59 

P4 
Intel Xeon E7-

4890v2 
8 64 GB 59 

P5 
Intel Xeon E7-

4890v2 
16 64 GB 59 

P6 
Intel Xeon E7-

4890v2 
32 64 GB 59 

 

3.2 Phase 2: Increased Vertical Scaling 
The second testing phase identified OpenSim performance as a 

result of increased vertical scaling. To accomplish this goal, 

different hardware configurations of 1, 2, 4, 8, 16, and 32 CPU 

core allocations were each compared. The comparison was based 

on how well each CPU allocation performed with the minimum 

degradation load for each CPU type. Tables Table 2 and Table 3 

outline the hardware configurations for the two phase 2 

experiments. 

 

3.3 Hardware Configuration 
The two experiments independently evaluated vertical scaling 

with different CPU types. Experiment 1 evaluated OpenSim’s 

scalability on a legacy 2010 Dell R815 server with 48 AMD 

Opteron 6100 CPU cores and a total of 512 GB of RAM. 

Experiment 2’s evaluation took place on a prototype 2015 Intel 

server with 120 Intel Xeon E7-4890v2 CPU cores and 1.5 TB of 

RAM. To allocate the 1-32 cores for each test, the hypervisor 

Proxmox was used. Proxmox provided the capabilities to create 

Ubuntu 14.01 Server virtual machines with specific CPU and 

memory hardware configurations. In all tests, 64 GB of RAM was 

allocated to each virtual machine. 

3.4 Simulator Load 
In most multi-user simulation and video games, connected users 

represent the most scalability load on the system; OpenSim is no 

different. In OpenSim, each logged in user requires an avatar 

presence in the region, causing the simulation to keep track of the 

avatar’s location, appearance, and activities. In addition, avatar 

information is also synchronized to the other avatars and their 

viewers. This synching increases the demand for CPU processing, 

memory usage, and network bandwidth to process and distribute 

world updates between the simulator and connected viewers. 

In previous OpenSim studies, automated bots have been used to 

represent human-users and their associated server load. With 

scripted bots, the simulated avatars are OpenSim objects that 

perform predetermined actions that model human, animal, robot, 

or other behaviors [27]. Bot automated behaviors include 

movement, instant messaging, building construction, and more. 

OpenSim supports scripted bots through the Linden Labs scripting 

language to automate these behaviors in the virtual space. Bots 

have been used to test simulator load, populate virtual regions for 

crowd modeling, and provide the capability to allow human-

operators to interact with the artificially controlled bots for social, 

gaming, and training scenarios. 

The Distributed Scene Graph (DSG) research proposed and made 

changes to OpenSim by decentralizing core functionality of the 

simulator to multiple hosts [28]. The DSG experiments uncovered 

that the traditional bot technology widely used in OpenSim does 

not accurately represent true load on the simulator. The reason is 

that scripted bots do not have the same presence on the simulator 

as a human-controlled avatar would. For instance, network traffic 

is not transmitted and synchronized between the simulator server 

and a separate machine hosting the bot. Second, physics 

calculations for collision detection and gravitational forces for 

individual bots are often not performed due to how the simulator 

handles scripted, non-physical objects. Third, in the DSG 

experiments, hundreds of bots were supported on a single region, 

while 63 human-controlled avatars was the maximum amount the 

simulator could support on the same hardware and test 



configuration. These aspects and result differences conclude that a 

traditional scripted bot generates less CPU processing, memory, 

and network bandwidth resource demands on the simulator than 

required by a human-user. Unfortunately for scalability and load 

testing, the low-resource footprint of a bot is not an accurate 

representation of user load on the simulator.  

To remedy the inaccuracies of the traditional scripted bots, this 

paper employed heavy-weight, realistic load bots to correctly 

measure simulator performance with high performance demands. 

In both of this work’s experiments and all of their tests, new, 

modified automated bots were used to accurately represent 

human-user load onto the OpenSim server. These bots were 

realized through a modification of the open-sourced Phoenix 

Firestorm Viewer application [29]. With the modification, bots 

were able to automatically log into the simulator and interact with 

the virtual environment. Bot interaction included movement 

behaviors: moving forward, turning backwards, left, and right, 

flying, crouching, and teleporting to various points in the region. 

These bots were purposely constructed to generate similar load 

profiles of a typical human user. By modifying the Phoenix 

Firestorm Viewer, the new bots were able to be controlled via 

scripting, perform a random behavior at second intervals, transmit 

and receive simulation updates via network messaging, and 

automatically log into the simulation; these capabilities have 

resulted in controllable bots with comparable scalability and load 

testing footprints to human-users. 

During the experiments, once an OpenSim instance was running 

and the simulator stabilized to accept incoming connections, bots 

were launched sequentially with a delay between each launch. 

Each bot required one new instance of the modified viewer to run 

and represented one avatar in the simulation. All of the bots were 

launched on two separate 2010 Dell R815 servers that were 

independent of the one hosting the legacy server experiment tests. 

Both of these bot servers were also hosted on a separate network 

from the OpenSim server. 

3.5 Metrics 
During the experiments, several metrics were collected that 

quantifiably measured various performance attributes of the 

simulator. The previous vertical scaling work compared the 

usefulness, accuracy, and sensitivity of the Simulator Frames per 

Second to Host CPU utilization percentage. Simulator Frames per 

Second (SimFPS) is the rate at which the simulator can process a 

single simulation frame in one second. Inside a simulation frame 

(Sim Frame), the simulator processes all events necessary to 

update the virtual world, including network messages, user logins, 

scripting, appearance updates, etc; physics calculations such as 

collision detection, gravity, and forces are calculated separately by 

the physics engine and comprises a physics frame.  

Traditionally, many video games and simulations target 60 frames 

per second (FPS) as an industry standard of performance stability; 

originally, OpenSim was no different. In fact, the OpenSim 

community has accepted a standard range of 50-57 FPS to signify 

a stable simulator. When an OpenSim instance reported a SimFPS 

below approximately 47, simulation lag and a deteriorated user 

experience was expect. To extend the earlier definition under 

current OpenSim, SimFPS was calculated by taking the amount of 

simulation frames the simulator processes in a second, which is 

11.3 during optimal, no load conditions, and multiplies it by a 

static correction factor of 5. This presented work has removed the 

correction factor (akin to using a correction factor of 1) because 

the use of the multiplier artificially inflates performance reporting 

with no added benefit. Furthermore, during the execution of phase 

1 for the presented experiments, it was observed that the modified 

SimFPS calculation improved frame rate calculation fidelity and 

also reflected simulator performance. With the new SimFPS 

calculation, when the rate falls below 9 FPS, simulation lag and 

unresponsiveness begins to take place. 

Host CPU Utilization Percentage (Host CPU%) is the average of 

the sum of percentage of CPU usage over the total available CPU 

of all available cores. In the previous research, Host CPU% 

proved to be more sensitive to the increased vertical scaling than 

SimFPS and higher Host CPU% correlated with instances of when 

the simulator’s scalability and user experience began to degrade.  

Further observations from the previous research has encouraged 

this presented work to use host CPU utilization percentage as 

opposed to process CPU utilization. The distinction is that host 

CPU utilization provides a complete quantifiable measure of how 

the entire simulator's CPUs are performing for all parts of the 

system. Process CPU utilization is the sum of each core's total 

CPU usage from a single process (in this case OpenSim.exe) 

divided by the total available CPU usage. Similar to host CPU 

utilization, process CPU utilization can be greater than 100%. 

Traditionally, MOSES only runs OpenSim and core Ubuntu 

services on a simulator's host virtual machine. This standalone 

method of hosting a simulation means host CPU utilization 

provides a measure of all processing that is needed to run an 

OpenSim simulation, where process CPU utilization omits critical 

operating system factors in its reporting. 

Other OpenSim metrics are total frame time and time dilation. 

Total Frame Time (TotFT) is the amount of time the simulator 

requires to process both the simulation and physics frame and an 

optional sleep period. The sleep period is used to throttle the 

simulation from processing simulation events too quickly and is 

relied on for synching the state between the simulation and the 

viewers. Time dilation (Dil) is the rate the simulation throttled. 

Dilation values below or equal to 1 are intended to indicate that 

the simulation is running at normal levels; dilation values over 1 

and the simulation and physics calculations are taking longer than 

the expected frame time. 

Although avatar count, time dilation, Sim FPS, Phys FPS, Host 

CPU%, and total frame time are all gathered for every test, this 

work focuses on simulator performance with the Host CPU% 

measure. During the minimum degradation load phase, these 

metrics are gathered at one second intervals for 30 seconds when 

each avatar logs in before launching the next bot. During the 

vertical scaling phase, the metrics are gathered at one second 

intervals for 50 seconds once the minimum degradation load’s 

amount of avatars have logged in. 

4. RESULTS 
This experiment employed one independent variable, the number 

of cores allocated for server operations. The independent variable 

had six levels, with the number of cores allocated ranging from 1 

to 32, increasing in exponential increments. The dependent 

variable was Host CPU Utilization Percentage (Host CPU %), 

defined as the average CPU usage of the total available CPU of all 

available cores. The experiment was executed twice - once for 

each hardware configuration previously described. For each 

hardware configuration, server performance was captured at 50 

discrete intervals. The experimental procedure was executed 

identically for each server and core configuration. 



4.1 Legacy Server Results 
The first experiment executed used the 2010 Dell R815 server 

with 48 AMD Opteron 6100 CPU cores and a total of 512 GB of 

RAM. Performance metrics were collected in the same manner for 

all six core levels. Table 4 and Figure 2 depict the server's average 

Host CPU% for all six core levels.  

Table 4: AMD Legacy Host CPU % 

 

 

Figure 2: AMD Legacy Host CPU Utilization 

ANOVA found a significant main effect of number of Cores on 

Host CPU Utilization F(5, 299) = 1940.43, p = 0.00.  ANOVA 

was conducted at α = 0.05. Post-hoc pairwise comparisons using 

the Tukey HSD test indicated that the mean Host CPU Utilization 

of all six Core configurations were significantly different from 

each other, p < 0.0001. Host CPU Utilization was found to 

significantly decrease with each corresponding increase in core 

count. Relationally, the Host CPU Utilization of 1 Core > 2 Core 

> 4 Core > 8 Core > 16 Core > 32 Core.   

4.2 Prototype Server Results 
The second experiment executed used the 2015 Intel prototype 

server with 120 Intel Xeon E7-4890v2 CPU cores and 1.5 TB of 

RAM. Performance metrics were collected in the same manner for 

all six core levels. Table 5 and Figure 3 depict the server's average 

Host CPU% for all six core levels.  

Table 5: Intel Prototype Host CPU % 

 

 

 

Figure 3: Intel Prototype Host CPU Utilization 

ANOVA found a significant main effect of number of Cores on 

Host CPU Utilization F(5, 299) = 1508.37, p = 0.00.  ANOVA 

was conducted at α = 0.05. Post-hoc pairwise comparisons using 

the Tukey HSD test indicated that the mean Host CPU Utilization 

of all six Core configurations were significantly different from 

each other, p < 0.0001. Host CPU Utilization was found to 

significantly decrease with each corresponding increase in core 

count. Relationally, the Host CPU Utilization of 1 Core > 2 Core 

> 4 Core > 8 Core > 16 Core > 32 Core.   

5. DISCUSSION 
In this experiment we discovered similar performance results for 

two separate server hardware configurations. As the number of 

cores allocated to server operations increased, the Host CPU 

Utilization performance metric significantly decreased, for both 

servers. For both server hardware configurations, CPU % 

significantly decreased for every subsequent increase in the core 

count. A direct performance comparison was made between 

servers, although the minimum degradation load was different for 

each server. These results are depicted in Table 6 and Figure 4. 

Table 6: 95% Confidence Intervals of Mean Performance 

Difference between Servers 

 

1 Core 2 Core 4 Core 8 Core 16 Core 32 Core

Average 80.4 54.5 43.7 33.2 17.3 9.1

SD 7.0 5.9 4.0 1.4 1.4 0.8

1 Core 2 Core 4 Core 8 Core 16 Core 32 Core

Average 91.2 55.1 44.5 31.6 18.9 9.3

SD 7.0 8.3 6.7 2.8 1.0 0.9

Server 1 Core 2 Core 4 Core 8 Core 16 Core 32 Core

Legacy 80.4 54.5 43.7 33.2 17.3 9.1

Prototype 91.2 55.1 44.5 31.6 18.9 9.3

Difference -10.8 -0.6 -0.8 1.7 -1.6 -0.3

95% CI (-13.6, -8.04) (-3.4, 2.3) (-3.0, 1.4) (0.8, 2.5) (-2.0, -1.1) (-0.6, 0.1)



 

Figure 4: Mean Performance Comparison between Servers 

We discovered significant performance differences between the 

two server configurations when allocated 1, 8 and 16 cores. No 

performance differences were found between the server 

configurations when allocated 2, 4 and 32 cores. We attribute the 

difference in Host CPU % to the varying minimum degradation 

load between each server and instead focus our analysis on the 

trend comparison observed with both server configurations. 

While not surprising, these results confirm and support the results 

of our previous study. Namely, the number of cores dedicated to 

server operations has a practical, and statistical, significant effect 

on performance. This confirmation of our previous work will 

provide valuable insight for the future direction of the MOSES 

architecture as we seek to optimize the virtual world experience 

for our military users. 

6. CONCLUSION 
The presented work analyzed the scalability and system 

performance of increased vertical scaling on a three-dimensional 

virtual world simulator. To perform the analysis, this research 

extended a previous vertical scaling investigation by evaluating 

the performance effects of when CPU capabilities are increased 

exponentially to the open-sourced simulator OpenSim.  

The prior investigation uncovered that an increased amount of 

CPUs dedicated to a simulator has a greater positive performance 

effect than vertically scaling up to more modern CPU technology. 

Additionally, the metric of host CPU utilization was discovered to 

be sensitive enough to be an accurate measure of system load in 

the CPU-intensive simulator. Extending on those observations, 

this work evaluated OpenSim performance for its host CPU 

utilization percentage when the simulator experienced 

performance-affecting scalability load. Experiments under two 

different CPU types have shown that each exponential increase in 

the amount of CPU cores yielded a significant decrease in host 

CPU utilization. Although expected, these findings are 

noteworthy because they indicate that more CPU capabilities 

could result in faster simulation processing, the increased vertical 

scaling could yield more evenly distributed simulator load among 

the additional cores, and the simulator could support more load 

without compromising on the user experience and system 

responsiveness. 

Additionally, this work has made a series of contributions. 

Collectively, this work has provided the simulation and training 

community with an empirical study of increased CPU capabilities 

by vertical scaling, a simple method of measuring system duress, 

and has moved the military training project MOSES and its users 

closer to realizing their higher-echelon training objectives. First, 

this work has provided a set of expectations associated with CPU 

vertical scaling. Now, virtual world users and developers can set 

expectations of their own simulator performances based on the 

presented OpenSim analysis. These expectations can be beneficial 

in determining the amount of hardware necessary to support 

expected simulator loads. Second, with host CPU utilization 

exclusively analyzed in this work, the same community has 

further evidence of the effectiveness of using this metric to gauge 

system performance and indicate periods of simulator duress. 

Again, host CPU utilization proved to be an accurate, sensitive 

metric because OpenSim is a CPU-intensive simulator. This 

empirical study further provides support of using the metric as a 

simple and useful system measure. Finally, this work and its 

presented experiment results move the MOSES project and 

OpenSim closer to accomplishing its scalability objectives set 

forth by the military. The progress is attributed to the project's 

community now having a set of expectations with this method of 

vertical scaling, a new understanding of the hardware costs for 

moving the simulator towards its higher-echelon levels, and a 

deeper notion of the performance improvements CPU capability 

increases can yield. 

To continue the progress of this work, several future research 

investigations have been identified. Two such contributions are 

the creation of a prediction model and a set of benchmark tools. 

The prediction model will produce a mathematical function that 

can determine how much load a simulator can support when given 

a specific set of hardware capabilities. This model will be useful 

for MOSES, OpenSim, and virtual world simulation communities 

to serve a demonstration that highly accurate simulation 

configuration pre-planning is possible. The set of benchmark tools 

will allow virtual world simulation users to easily measure 

simulator performance and diagnose periods of system duress. 

Both works extend this presented work's use of vertical scaling, 

data collection, experiment design, and system measurement. 

7. REFERENCES 
 

[1]  U.S. Army Research Laboratory, "Home," 2015. [Online]. 

Available: http://militarymetaverse.org/. [Accessed 13 3 

2015]. 

[2]  L. Morton, U.S. Army Training Concept, Department of the 

Army, HQ, Colonel, GS, Deputy Chief of Staff, G, 2011.  

[3]  S. Mondesire, J. Stevens and D. Maxwell, "Vertical 

Scalability Benchmarking in Three-Dimensional Virtual 

World Simulation (Pending Publication)," in SummerSim 

Conference, Chicago, IL, 2015.  

[4]  M. C. Mishkind, A. Boyd, G. M. Kramer, T. Ayers and P. A. 

Miller, "Evaluating the Benefits of a Live, Simulation-Based 

Telebehavioral Health Training for a Deploying Army 

Reserve Unit," Military Medicine, pp. (12), 1322-1327, 2013.  

[5]  A. Lele, "Virtual reality and its military utility," Journal of 

Ambient Intelligence and Humanized Computing, pp. 4(1), 

17-26, 2013.  

[6]  M. Schulzke, "Rethinking Military Gaming America's Army 

and Its Critics," Games and Culture, pp. 8(2), 59-76, 2013.  

[7]  J. H. Wong, A. B. Nguyen and L. Ogren, "Serious Game and 

Virtual World Training: Instrumentation and Assessment 

(No. NUWC-NPT-TD-12-118)," NAVAL UNDERSEA 



WARFARE CENTER DIV , NEWPORT, RI, 2012. 

[8]  D. D. Hodson and R. R. Hill, "The Art and Science of Live, 

Virtual and Constructive Simulation for Test and Analysis," 

The Journal of Defense Modeling and Simulation: 

Applications, Methodology, Technology, 2013.  

[9]  P. Roman and D. Brown, "Games – Just How Serious Are 

They?," in Interservice/Industry Training, Simulation, and 

Education Conference (I/ITSEC) , 2008.  

[10]  B. Bergeron, Developing Serious Games (Game 

Development Series), Charles River Media, 2006.  

[11]  J. Orlansky, C. Dahlman, C. Hammon, J. Metzko, H. Taylor 

and C. Youngblut, "The Value of Simulation for Training," 

Institute for Defense Analyses, Alexandria, 1994. 

[12]  M. Riecken, Powers, J. C. J., S. K. Numrich, P. M. Picucci 

and M. & Kierzewski, "The Value of Simulation in Army 

Training," in The Interservice/Industry Training, Simulation 

& Education Conference (I/ITSEC), 2013.  

[13]  D. Dutta, "Simulation in Military Training: Recent 

Developments," Defence Science Journal, pp. 49(3), 275-

285, 2013.  

[14]  J. J. Vogel-Walcutt, L. Fiorella and N. Malone, "Instructional 

strategies framework for military training systems," 

Computers in Human Behavior, pp. 29(4), 1490-1498, 2013.  

[15]  R. N. Landers and R. C. Callan, "Training evaluation in 

virtual worlds: Development of a model," Journal For 

Virtual Worlds Research, p. 5(3), 2012.  

[16]  T. M. Sotomayor and M. D. Proctor, "Assessing Combat 

Medic Knowledge and Transfer Effects Resulting From 

Alternative Training Treatments," The Journal of Defense 

Modeling and Simulation: Applications, Methodology, 

Technology, 2009.  

[17]  T. C. Lisk, U. T. Kaplancali and R. E. Riggio, "in 

multiplayer online gaming environments," Simulation & 

Gaming, p. 1046878110391975, 2011.  

[18]  C. A. Blow, "Flight School in the Virtual Environment: 

Capabilities and Risks of Executing a Simulations-Based 

Flight Training Program," ARMY COMMAND AND 

GENERAL STAFF COLLEGE, no. SCHOOL OF 

ADVANCED MILITARY STUDIES, 2012.  

[19]  R. J. Stafford and M. W. Thornhill II, "The Army Learning 

Model: Changing the Way Sustainers Train," Army 

Sustainment, pp. 44(2), 28, 2012.  

[20]  L. Dawley and C. Dede, "Situated learning in virtual worlds 

and immersive simulations," in Handbook of research on 

educational communications and technology, New York, 

Springer, pp. 723-734. 

[21]  O. D. Kothgassner, A. Felnhofer, L. Beutl, H. Hlavacs, M. 

Lehenbauer and B. Stetina, "A virtual training tool for giving 

talks," Entertainment Computing-ICEC 2012, pp. 53-66, 

2012.  

[22]  N. S. Shami, T. Erickson and W. A. Kellogg, "Common 

Ground and small group interaction in large virtual world 

gatherings," in ECSCW 2011: Proceedings of the 12th 

European Conference on Computer Supported Cooperative 

Work, Aarhus Denmark , 2011.  

[23]  U.S. Army Research Laboratory, "Military Metaverse," 

[Online]. Available: http://militarymetaverse.org/. [Accessed 

14 April 2015]. 

[24]  Overte Foundation, "Main Page," 10 11 2014. [Online]. 

Available: http://opensimulator.org/. [Accessed 13 3 2015]. 

[25]  Linden Research, Inc., "Second Life Official Site," 2015. 

[Online]. Available: http://secondlife.com/. [Accessed 13 3 

2015]. 

[26]  S. Lackey, J. Salcedo, G. Matthews and D. Maxwell, 

"Virtual World Room Clearing: A Study in Training 

Effectiveness," in Interservice/Industry Training, Simulation, 

and Education Conference (I/ITSEC) 2014, Orlando, FL, 

2014.  

[27]  Linden Research, Inc, "Bot - Second Life Wiki," 16 11 2011. 

[Online]. Available: http://wiki.secondlife.com/wiki/Bot. 

[Accessed 13 3 2015]. 

[28]  J. G. W. A. R. H. L. Douglas B. Maxwell, "A Distributed 

Scene Graph Approach to Scaled Simulation-Based Training 

Applications," in Interservice/Industry Training, Simulation 

& Education Conference (I/ITSEC), Orlando, Fl, USA, 2014.  

[29]  The Phoenix Firestorm Project Inc., "Firestorm Viewer," 

2015. [Online]. Available: http://www.firestormviewer.org/. 

[Accessed 13 3 2015]. 

 

 

 

 

 

 

 

 

 

 

 

 


