
Hardware-software co-simulation for medical X-ray control
units

Bruno Kleinert
Universität Erlangen-Nürnberg

Martensstraße 3
91058 Erlangen, Germany

bruno.kleinert@cs.fau.de

Gholam Reza Rahimi
Universität Erlangen-Nürnberg

Martensstraße 3
91058 Erlangen, Germany
rahimi.r.g@gmail.com

Marc Reichenbach
Universität Erlangen-Nürnberg

Martensstraße 3
91058 Erlangen, Germany

marc.reichenbach@cs.fau.de
Dietmar Fey

Universität Erlangen-Nürnberg
Martensstraße 3

91058 Erlangen, Germany
dietmar.fey@cs.fau.de

ABSTRACT
In this paper we present our solution to master the complex-
ity of product adaption cycles of a medical X-ray control
unit. We present the real hardware and software platform
and our mapping of it to a virtual X-ray control unit, im-
plemented as our hardware-software co-simulation. To re-
duce complexity for hardware developers, we developed our
own XML-based abstract system description language which
is mapped onto instantiations of parameterizable SystemC
template modules. We verified the correctness of our virtual
X-ray control unit by co-simulating unmodified software to
hardware components, which we implemented in our system
description language from the specification of the real sys-
tem. Due to reduced complexity of our virtual X-ray control
unit, it can be used as a time and cost saving test platform
for future hardware and software adaption cycles.

Keywords
Hardware-software co-simulation, virtual machines, QEMU,
SystemC

1. INTRODUCTION
In this paper we present a simulation environment to master
complexity of adaption cycles of an X-ray control unit used
in a medical device. The current state of the art of our estab-
lished industry partner to develop such devices happens with
little computer-assistance. Boards, wired interconnections,
sequences and logical functions of software and hardware are
frequently available only as drawings.

In this paper we present our simulation of the control unit
with the virtual machine [2] QEMU [1] and the hardware

x86_64 PC

QNX PCIe
card

NIC

FPGA board

FPGA

input
signals

X-ray transformer
control output
signals

Ethernet bus

Figure 1: X-ray control unit architecture overview.

simulator SystemC [4], which we connected to each other.
We managed to lower complexity by developing our own ab-
stract XML-based system description language (SDL) that
is interpreted by our SystemC-based hardware simulator.

The resulting hardware-software co-simulation executes un-
modified software from our industry partner. We imple-
mented functionality of the hardware in our own SDL and
co-simulated it to our extended QEMU.

This paper is organized as follows. In Section 2 we present
the real X-ray control unit. Section 3 presents our simula-
tion environment we developed as a virtual copy of the real
control unit. The correctly working simulation of the virtual
control unit is presented in Section 4, while related projects
and works are discussed in Section 5. Section 6 concludes
this paper and Section 7 presents future improvements to
the current state of our work.

2. SYSTEM OVERVIEW
In this section we present the current state of the real X-ray
control unit, built from an x86 64 PC and an FPGA board.

Components of the control unit are depicted in Figure 1.
The PC executes application software. An Ethernet net-
work interface card (NIC) connects the PC to other system
components. The FPGA board is connected to the PC via
PCI Express.

2.1 Software component

SIMUTOOLS 2015, August 24-26, Athens, Greece
Copyright © 2015 ICST
DOI 10.4108/eai.24-8-2015.2261148



v
irtu

a
l sy

ste
m

QEMU

QNX emulated
PCIe card

SystemC
HW simulation

input stimuli
signals

output signal traces

Linux host computer
software simulation hardware simulation

IPC

Figure 2: Virtual control unit.

As shown in Figure 1, application software can use the NIC
and the connection to the FPGA via QNX device drivers.
Via the Ethernet connection, control software transmits data
and control commands. For development purposes, a telnet
connection can be established to a QNX command line in-
terface. We use this interface and a test program that allows
read and write accesses to registers in the FPGA (see fol-
lowing Section 2.2 for details).

The test program communicates with the FPGA and hence
allows to verify a correctly operating connection and oper-
ation of the FPGA. This is also applicable to our virtual
control unit.

2.2 Hardware component
The shown PCI Express card serves as an adapter for a
cable that connects the FPGA to a PCI Express card slot
on the mainboard of the PC. From the PC it is accessed as
a memory mapped device.

The FPGA is programmed to process safety signals and gen-
erates control signals for the transformer of the X-ray source.
Hundreds of simple finite state machines (FSM) and logic
processing gates build a complex system.

Memory mapped registers serve for purposes to obtain sys-
tem status information or to send control data. New data
for the PC is signaled via MSI-X interrupt requests (IRQ)
or alternatively via pin-based routed IRQ. An interrupt ser-
vice routine (ISR) in QNX consumes the newly available
data. When the ISR has finished, the read data is typically
made available to application software through system call
interfaces of QNX.

3. SIMULATION ENVIRONMENT
As mentioned in Section 1, a challenge in our work is the
hardware-software co-simulation of the software and hard-
ware components, as presented in Section 2. In the following
Sections, we present our SystemC-based hardware simulator
and our hardware-software co-simulation.

Figure 2 presents our virtual control unit. The QEMU and
SystemC Linux processes running on a Linux host computer
are shown. QEMU and SystemC exchange data via an emu-
lated PCI Express connection, implemented using inter pro-
cess communication (IPC) techniques. Software and hard-
ware simulation are separately highlighted by dashed boxes.

Our XML-based SDL and virtual control unit are presented
in the following Sections.

3.1 System description language
Our SDL allows the use from primitive up to complex build-
ing blocks, i.e., from binary logic gates up to complete state
machine blocks. The language is designed to be extensi-
ble and puts no upper limit on the complexity of building
blocks. All building blocks form a library. From this li-
brary, developers use elements in their system descriptions.
In our concrete case, these are the basic FSMs and logic
components, that are used to implement the complex signal
processing network of the real X-ray control unit.

For hardware simulations, input stimuli patterns are neces-
sary. For our simulator, stimuli patterns are also described
in an XML-based language.

3.2 Hardware simulation
We developed a hardware simulator, that is able to interpret
our SDL as input and instantiates parameterizable SystemC
template modules with parameters extracted from system
descriptions.

We map elements in our SDL to parameterizable SystemC
modules. To use a building block in our SDL, an equivalent
parameterizable SystemC template module has to exist. All
these template modules build a library of available mappable
modules in our SDL. The mapping and instantiation is done
during the start of our simulator when the XML tree of a
system description is traversed.

The design of our SDL and hardware simulator makes time-
consuming re-compilations of SystemC unnecessary, as the
parameterizable SystemC template modules are compiled
together with our simulator.

3.3 Hardware-software co-simulation
We extended QEMU by an emulation of the real PCI Ex-
press card. The FPGA is connected by PCI Express to the
PC via memory mapped registers.

Figure 3 shows our implementation of the coupling between
QEMU and SystemC. Between QEMU and SystemC Linux
processes, data to read, write or to signal an IRQ is ex-
changed by three POSIX named pipes. One to transfer a
datum from QEMU to SystemC, one to read a datum from
SystemC, and one to signal an IRQ from SystemC to QEMU.
Newly available data is signaled via POSIX signals to the
according process. A POSIX signal handler in a receiving
process is executed to read new data from its input named
pipe. The information transmitted through the write and
read named pipes is a register address and the correspond-
ing data, while the IRQ number is sent through the IRQ
named pipe.

When a register in the SystemC process changes, the sim-
ulated hardware sends the new datum through the read
named pipe and triggers an IRQ by writing the IRQ num-
ber to the IRQ named pipe and send a POSIX signal to the
QEMU process. If there is an ISR installed in the guest
operating system, it will be executed to handle the IRQ.

In contrast to QEMU-SystemC [7], our lightweight extension
of QEMU allows the use of kernel-based virtual machine



write access

read access

PCIe card
(emulated)

write access

read access

1 MB Bar
(emulated)PCIe bus

(emulated)device driver

QNX
(virtualized)

QEMU

1 MB
registers

SystemC module

SystemC

system description

<XML>
named pipes

Inter-process-communication (IPC)

stimuli description

<XML>

IRQ IRQ

Figure 3: Overview of our hardware-software co-simulation.

(KVM) [3], which results in increased execution performance
of guest systems.

4. RESULTS
We could successfully execute unmodified test software from
our industry partner to write and read arbitrary registers of
the emulated PCI Express card.

We verified our hardware-software co-simulation by a counter
state machine in our SDL. One register to start the counter,
one to stop it and one to read the current value of it.

5. RELATED WORK
FAUmachine [5] is targeted at fault tolerance testing of guest
software [6]. It can not utilize virtualization performance en-
hancements of CPUs at the time of this writing, while our in-
terests include also high performance. The integrated VHDL
simulator does not meet the requirements of the hardware
we want to simulate at the time of this writing.

Another existing hardware-software co-simulator is QEMU-
SystemC [7]. We tried to use QEMU-SystemC but it termi-
nated unexpectedly in several scenarios, required a particu-
lar outdated version of the GCC compiler suite to work as
expected. Attempts to make it work for our needs turned
out to be more time consuming than implementing our own
solution. Furthermore, QEMU-SystemC terminates unex-
pectedly when KVM for performance increases is enabled.

6. CONCLUSION
We presented our contribution to master the complexity of
product adaption cycles of a medical X-ray control unit. We
presented the real control unit that is built from two compo-
nents, an x86 64 PC to which an FPGA board is connected.
While the PC executes application software, the FPGA pro-
cesses safety input signals and controls the transformer of
the X-ray source.

For future development of this control unit, we developed
our virtualized control unit. We mapped logical functions,
implemented for the FPGA, to our hardware simulator based
on SystemC. We mapped QNX and application software un-
modified to the virtual machine QEMU. To speed up guest
system execution, we configured QEMU to utilize the Ker-
nel Virtual Machine of Linux, which was not applicable to
other co-simulators. We extended QEMU to exchange data
with SystemC via inter process communication.

We developed our own abstract system description language,

interpreted by our hardware simulator based on SystemC.
To simulate systems, our language is mapped to pre-compiled
parameterizable SystemC template modules.

We verified the correctness of our hardware-software co-
simulation by using software from our industry partner. It
proofed that our connection between QEMU and SystemC
works like in the real X-ray control unit.

By our simulation of the X-ray control unit, less lines of
code need to be written to model a hardware system on an
abstract level in comparison to a SystemC model. Software
and hardware can be tested with our virtual control unit.

7. FUTURE WORK
In the current state of our hardware-software co-simulation,
the simulated times of QEMU and are not synchronized
thoroughly. In future, we want to develop an adaptive in-
terface to keep simulated times synchronized dynamically.

8. REFERENCES
[1] F. Bellard. QEMU, a Fast and Portable Dynamic

Translator. In USENIX Annual Technical Conference,
FREENIX Track, pages 41–46, 2005.

[2] R. P. Goldberg. Survey of virtual machine research.
Computer, 7(6):34–45, 1974.

[3] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and
A. Liguori. kvm: the Linux virtual machine monitor. In
Proceedings of the Linux Symposium, volume 1, pages
225–230, 2007.

[4] P. R. Panda. SystemC - a modeling platform
supporting multiple design abstractions. In System
Synthesis, 2001. Proceedings. The 14th International
Symposium on, pages 75–80, 2001.

[5] S. Potyra. Transparente und hochperformante
VHDL-Cosimulation im Kontext der virtuellen
Maschine FAUmachine. PhD thesis,
Universitätsbibliothek der Universität
Erlangen-Nürnberg, 2013.

[6] S. Potyra, V. Sieh, and M. D. Cin. Evaluating
fault-tolerant system designs using FAUmachine. In
Proceedings of the 2007 workshop on Engineering fault
tolerant systems, page 9, 2007.

[7] T.-C. Yeh, G.-F. Tseng, and M.-C. Chiang. A fast
cycle-accurate instruction set simulator based on
QEMU and SystemC for SoC development. In
MELECON 2010 - 2010 15th IEEE Mediterranean
Electrotechnical Conference, pages 1033–1038, April
2010.


