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Abstract

This study delves into the application of deep learning training techniques using a restricted dataset,
encompassing around 400 vehicle images sourced from Kaggle. Faced with the challenges of limited
data, the impracticality of training models from scratch becomes apparent, advocating instead for the
utilization of pre-trained models with pre-trained weights. The investigation considers three prominent
models—EfficientNetB0, ResNetB0, and MobileNetV2—with EfficientNetB0 emerging as the most proficient
choice. Employing the gradually unfreeze layer technique over a specified number of epochs, EfficientNetB0
exhibits remarkable accuracy, reaching 99.5% on the training dataset and 97% on the validation dataset. In
contrast, training models from scratch results in notably lower accuracy. In this context, knowledge distillation
proves pivotal, overcoming this limitation and significantly improving accuracy from 29.5% in training and
20.5% in validation to 54% and 45%, respectively. This study uniquely contributes by exploring transfer
learning with gradually unfreeze layers and elucidates the potential of knowledge distillation. It highlights
their effectiveness in robustly enhancing model performance under data scarcity, thus addressing challenges
associated with training deep learning models on limited datasets. The findings underscore the practical
significance of these techniques in achieving superior results when confronted with data constraints in real-
world scenarios.
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1 Introduction
1 Deep learning and Convolutional Neural Networks 
(CNN) have demonstrated remarkable efficacy in 
vehicle classification, a s s ubstantiated b y numerous 
studies [1], [2], [3], [4]. Nevertheless, their inherent 
effectiveness o ften r elies o n a  c rucial factor—an 
extensive dataset for training robust classification 
models. This requisite becomes particularly challenging 
in scenarios where data availability is limited, a 
circumstance addressed in this study.

The present investigation focuses on vehicle classi-
fication, u tilizing a  m eticulously c urated dataset com-
prising 400 images sourced from Kaggle. Figure 1 
illustrates representative samples extracted from the

1+ Corresponding author: Hoang-Dieu Vu (email:
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dataset. The dataset is carefully structured, featuring
four distinct classes—truck, bus, car, and motorcy-
cle—each containing precisely 100 images. This delib-
erate curation introduces a unique challenge due to the
restricted data available for each class. To ensure a well-
balanced representation within the limited dataset, a
thoughtful partitioning is employed, creating distinct
training and validation subsets, both maintaining an
even 50:50 ratio.

This emphasis on a balanced representation is
pivotal, especially when dealing with a limited dataset,
as it mitigates biases that might emerge if one
class is overrepresented. The challenge of achieving
accurate and robust vehicle classification in the face
of such constraints underscores the importance of
innovative methodologies, such as transfer learning and
knowledge distillation, which are explored in this study
to enhance model performance under data scarcity.
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Many studies [5] [6] have advocated for transfer
learning as a common and effective choice to bolster
accuracy in such constrained scenarios. The study
[6] further highlights that the similarity of features
between the source and target domains significantly
influences the performance of transfer learning. This
is particularly pertinent in the current context, given
that ImageNet [7] includes vehicle images, aligning
with the nature of the problem under investigation.
Furthermore, employing advanced training techniques,
such as fine-tuning all layers with the same learning
rate and gradual unfreezing with three layer groups and
discriminative learning rates, can provide additional
enhancements to model performance.

Figure 1. Sample Images from the Dataset

In light of the aforementioned considerations, the
present study adopts a strategic approach, incorporat-
ing transfer learning by employing pre-trained mod-
els with pre-existing weights derived from the expan-
sive ImageNet dataset—an extensive repository com-
prising millions of images across thousands of cate-
gories. This approach enables the network to capital-
ize on the general features acquired during its initial
training on this vast dataset. And among the models
under consideration—EfficientNetB0, ResNetB0, and
MobileNetV2—EfficientNetB0 emerges as the most
adept choice, especially when addressing the complex-
ities associated with a dataset featuring both clear and
unclear views of objects.

Furthermore, within the framework of a highly
limited dataset as in this study, adhering to the
recommendation proposed by [6] to fine-tune all
layers with the same learning rate may not yield
optimal results. Conversely, gradual unfreezing proves
to be a promising methodology, showcasing superior
performance in enhancing model accuracy.

Moving beyond conventional training methodologies,
the investigation explores the transformative potential
of knowledge distillation as a pivotal remedial measure,
overcoming inherent limitations in training models
from scratch. This approach notably boosts accuracy
in both training and validation sets, demonstrating a
substantial improvement from initial levels. Further-
more, this principle extends to scenarios involving fine-
tuning all layers. While not deemed an optimized solu-
tion for our constrained dataset, knowledge distillation
emerges as a viable alternative, yielding commendable
enhancements. This is evident in a significant increase
in accuracy, further validating the efficacy of knowledge
distillation across different training scenarios.

Our contributions to this research encompass the
following key aspects:

• The benefits of this work for vehicle classification
are evident in its ability to address the chal-
lenges posed by limited datasets. By introducing
strategic methodologies tailored to data scarcity,
such as transfer learning, gradual unfreezing, and
knowledge distillation, this study aims to advance
the field of vehicle classification, offering practical
solutions for real-world applications where data
constraints are prevalent.

• The exploration of training techniques, specifi-
cally the application of transfer learning with
gradually unfreeze layers and knowledge distilla-
tion. Through this exploration, we aim not only
to discern the potential of these techniques in
optimizing model performance within the con-
straints of a small dataset but also to conduct a
comprehensive performance comparison among
models. This investigation contributes valuable
insights into effective strategies for enhancing
model efficacy under conditions of data scarcity,
providing a nuanced understanding of training
methodologies in deep learning and facilitating
informed model selection.

• The study introduces a novel approach by
employing the gradually unfreeze layer technique
over a specified number of epochs, resulting
in EfficientNetB0 achieving remarkable accuracy,
reaching 99.5% on the training dataset and 97%
on the validation dataset. In contrast, training
models from scratch yields notably lower accu-
racy. Furthermore, the study highlights the piv-
otal role of knowledge distillation, overcoming
this limitation and significantly improving accu-
racy from 29.5% in training and 20.5% in valida-
tion to 54% and 45%, respectively.

2. Methodology
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2.1. Description of proposed solution/design

In the pursuit of addressing the challenge of vehicle
type classification within the domain of computer
vision, three neural network architectures have been
selected for examination: MobileNetV2, EfficientNetB0
and ResNet50. These architectures hold significance
in the field of computer vision due to their distinct
features and design principles. These models are
imported from the TensorFlow framework and
are subjected to specific design considerations.
Furthermore, the research encompasses an exploration
of the potential of knowledge distillation, with specific
emphasis on the distillation of knowledge from
ResNet50 to EfficientNetB0. This additional approach
is undertaken to compare its performance with the
standalone models and to provide a comprehensive
evaluation of the impact of knowledge distillation
within the context of limited data availability.

MobileNetV2 [8]:. MobileNetV2 is a lightweight and
efficient convolutional neural network (CNN) architec-
ture designed for mobile and edge devices. Introduced
as an improvement over its predecessor, MobileNetV1
[9], MobileNetV2 incorporates several key features to
enhance its performance while maintaining a low com-
putational footprint.

The original paper on MobileNetV2 [8] does not
provide a formal architectural graph of the model;
however, in a related study [10], a comprehensive
architectural graph of the model has been made
available.

The architecture of MobileNetV2 is characterized by
a streamlined design that leverages inverted residuals
and linear bottlenecks. Inverted residuals involve the
use of lightweight depthwise separable convolutions
followed by linear bottlenecks, which help reduce the
computational cost of the network. This design choice
contributes to the model’s efficiency by minimizing the
number of parameters and computations.

The core building block of MobileNetV2 is the
inverted residual with linear bottleneck. It consists
of a sequence of operations, including a lightweight
depthwise separable convolution, a 1x1 convolution for
feature integration, and linear bottlenecks to maintain
representational capacity. The linear bottlenecks utilize
shortcut connections to enable information flow across
the network and mitigate the risk of information loss
during the depthwise separable convolution operations.

MobileNetV2 also introduces a novel feature called
"linear bottleneck residual connection," which facili-
tates the direct flow of information between layers. This
connection aids in preserving crucial features and gra-
dients throughout the network, contributing to better
training and performance.

The architecture incorporates a global depthwise
separable convolutional layer at the end of the network
to capture contextual information globally, enhancing
the model’s ability to understand relationships between
different features. Additionally, MobileNetV2 employs
a width multiplier and a resolution multiplier as
hyperparameters, allowing users to balance the trade-
off between computational efficiency and model
accuracy.

Overall, MobileNetV2 stands out for its efficiency and
effectiveness in resource-constrained environments.
Its architectural innovations, including inverted
residuals, linear bottlenecks, and global depthwise
separable convolutions, make it a compelling choice
for applications on mobile devices and edge computing
platforms where computational resources are limited..
In this study, the base model of MobileNetV2 is
imported, excluding the top layer, to leverage its
inherent capabilities for vehicle type classification.

Figure 2. MobileNetV2 Architecture [10]

EfficientNetB0 [11]:. EfficientNetB0 is part of an efficient
convolutional neural network (CNN) family designed
with a focus on achieving high performance while
optimizing computational efficiency. The architecture
features systematic scaling of depth, width, and
resolution. Compound scaling is employed, ensuring
a balanced expansion of model capacity across
dimensions.

Similar to MobileNetV2, the original publication for
EfficientNetB0 [11] did not include a specific graphical
representation of its architecture. Nonetheless, a related
study [12] has released a readily accessible architectural
diagram.
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The baseline architecture starts with a 3x3 convo-
lutional layer for initial feature extraction. Repeating
blocks follow, consisting of depthwise separable convo-
lutions and inverted residuals similar to MobileNetV2.
These blocks enable efficient information processing
while maintaining model expressiveness.

Depthwise separable convolutions, a fundamental
building block, separate spatial and channel-wise
convolutions, reducing parameters and computations
for increased efficiency. Inverted residuals with linear
bottlenecks aid in feature propagation within the
network.

EfficientNetB0 integrates a Feature Pyramid Network
for efficient multi-scale feature capture, enhancing
the model’s ability to understand both local and
global context. Squeeze-and-Excitation (SE) blocks
recalibrate channel-wise feature responses, focusing
on informative channels for improved discriminative
power.

The architecture concludes with global average pool-
ing and fully connected layers for final classification.
Global average pooling aggregates feature informa-
tion globally, reducing spatial dimensions for increased
robustness to input variations.

EfficientNetB0’s systematic scaling, efficient building
blocks, and incorporation of mechanisms like SE
blocks and Feature Pyramid Network contribute to
its effectiveness. Its ability to balance model size and
computational efficiency makes it widely adopted in
resource-constrained environments, such as mobile
and edge devices. In the context of this study, the base
model of EfficientNetB0 will be integrated, excluding
the top layer, to harness its scalability and efficiency for
vehicle type classification.

ResNet50 [13]. ResNet50 is a renowned deep convolu-
tional neural network architecture that addresses chal-
lenges associated with training very deep networks. The
architecture introduces residual blocks, featuring skip
connections to facilitate the learning of residuals or
differences between input and output. This innovation
alleviates the vanishing gradient problem, enabling the
training of deep networks effectively.

The original documentation for ResNet50 [13] did
not provide a detailed architectural diagram either.
Consequently, we are utilizing a diagram from a study
conducted by Hindawi [14] to illustrate the model
structure.

ResNet50’s architecture involves stacking multiple
residual blocks, resulting in a total of 50 layers.
The bottleneck architecture within each residual block
incorporates 1x1, 3x3, and 1x1 convolutions. This
design reduces the computational load while preserving
crucial features.

Figure 3. EfficientNetB0 Architecture [12]

Skip connections play a vital role in ResNet50
by allowing the direct flow of information between
layers. These connections mitigate the vanishing
gradient problem during backpropagation, enhancing
the efficiency of learning.

The architecture includes a global average pooling
layer towards the end, which computes the average of
each feature map, reducing spatial dimensions before
the final fully connected layer for classification.

ResNet50’s structural design, particularly the use
of residual blocks and skip connections, has made
it a benchmark for training deep neural networks.
Its effectiveness in image classification and other
computer vision tasks, along with its application in
transfer learning with pre-trained models on datasets
like ImageNet, contributes to its widespread adoption
in various domains.

Knowledge Distillation [15]. Knowledge Distillation is
a model compression technique involving a teacher
model, soft targets, and a student model. The teacher
model, a well-trained and complex neural network,
generates soft targets—probability distributions over
classes—instead of hard labels. The student model,
smaller and less complex, aims to replicate the
knowledge embedded in the teacher. The training
process minimizes the difference between the student’s
predictions and the soft targets, encouraging the
student to capture nuanced knowledge.

A temperature parameter scales the soft targets,
influencing the level of confidence in predictions.
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Figure 4. ResNet50 Architecture [14]

Higher temperatures yield softer probability distribu-
tions, allowing the student to explore a broader solution
space during training.

The loss function in training includes traditional hard
label cross-entropy loss and knowledge distillation loss,
penalizing deviations from the soft targets provided by
the teacher. This encourages the student to mimic the
teacher’s behavior.

Optionally, the trained student model may undergo
fine-tuning on the original training data without the
teacher’s guidance, refining the model and adapting it
to specific dataset characteristics.

Knowledge Distillation, with its focus on transferring
rich knowledge from a complex teacher to a simpler
student, is valuable for compressing models without
compromising performance. This makes it suitable
for deployment on edge devices and in scenarios with
limited computational resources.

Figure 5. Response-based knowledge distillation [16]

In this study, the application of Knowledge Distil-
lation proves successful in compressing ResNet50 into
smaller models like MobileNetV2 and EfficientNetB0.
ResNet50, with its complexity, may be impractical for
resource-constrained devices. Knowledge Distillation
transfers its knowledge to lightweight models, ensuring

a balance between size and performance. The cho-
sen student models, MobileNetV2 and EfficientNetB0,
designed for efficiency, inherit ResNet50’s knowledge,
tailored to match their requirements. The process
includes learning from the original data and soft targets
from ResNet50. Fine-tuning adapts the student models
to the target dataset, maintaining high performance in
a computationally efficient manner. Knowledge Distil-
lation proves versatile, optimizing neural networks for
real-world applications with limited resources.

Gradually Unfreeze Layers. In the fine-tuning phase of
our deep learning approach, we employ a carefully
structured strategy known as ’gradually unfreeze
layers.’ Following an initial pre-training on a large-scale
dataset, where the model acquires general features, all
layers are frozen to preserve the knowledge gained.
The subsequent unfreezing process is conducted
incrementally, starting from the last layers and
progressing towards the initial layers. This stepwise
unfreezing strategy is designed to exploit the high-
level representations encoded in deeper layers while
preventing overfitting, particularly when dealing with
smaller, more specialized datasets.

The rationale behind the gradual unfreezing method-
ology is rooted in the balance between leveraging the
richness of information in deep layers and maintaining
model generalization. Unfreezing too many layers at
once may lead to overfitting, making the model less
adaptable to the nuances of the target dataset. The
gradual release of constraints allows the model to fine-
tune its learned features judiciously, adapting to the
intricacies of the specific task. This approach aligns
with our empirical observations, where the controlled
adaptation of layers has proven effective in enhancing
model performance while preserving its ability to gen-
eralize effectively across diverse datasets. The details of
this methodology are meticulously outlined in the sub-
sequent sections, providing clarity on our experimental
setup and guiding reproducibility in future studies.

2.2. Solution limitations
Acknowledging the limitations posed by the dataset’s
size, comprising approximately 400 images, the study
anticipates potential challenges related to model
performance. Given the predominance of augmented
data within the training set, the study recognizes
the possibility of models exhibiting tendencies toward
overfitting or underfitting.

Additionally, it is essential to underscore the
significance of parameter tuning as a critical component
in addressing these limitations. The study will place
particular emphasis on the systematic fine-tuning of
model parameters and hyperparameters. This iterative
process is expected to facilitate the optimization of
model complexity, thereby enhancing the model’s
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ability to generalize effectively while minimizing the
risk of overfitting or underfitting.

2.3. Design approach and implementation
methodology
In the pursuit of this research’s design approach, pre-
trained models MobileNetV2, ResNet50, and Efficient-
NetB0 are reconstructed via the TensorFlow framework,
followed by tailored adaptations for the vehicle type
classification task. The fundamental implementation
steps encompass feature extraction, model customiza-
tion, and the subsequent training phase. To address
the potential of overfitting, a proportion of the dataset
(50%) is allocated for testing purposes, with flexibility
for potential adjustments to optimize validation accu-
racy. This allocation exhibits flexibility in accommo-
dating potential refinements for the optimization of
validation accuracy.

Knowledge distillation was also incorporated into the
research, with a specific focus on distilling knowledge
from ResNet50 to EfficientNetB0. This knowledge
distillation approach is intended not for performance
enhancement but rather for comparative analysis
against other fine-tuned models. The iterative and
systematic nature of this approach emphasizes the
research’s dedication to establishing a solution that is
resilient and dependable, especially when operating
within the constraints imposed by a limited dataset.

3. Results and Discussion
3.1. Experimental and Result
This section delineates the experimental design and
methodology employed to scrutinize various training
techniques within the constraints of limited datasets.
Table 1 presents a detailed overview of the utilized
training methods, encompassing base, pre-trained, fine-
tuned, and distillation-based approaches. The primary
focus is on MobileNetV2 and EfficientNetB0, each
subjected to distinctive training strategies.

Experimental Framework

• Base training: Models are trained from scratch
without pre-existing weights, serving as the
baseline for comparison.

• Pre-trained training: Models are initialized with
pre-trained weights from the ImageNet dataset,
freezing all layers except the final classification
layer during the initial training.

• Fine-tuned training: The last 10 layers of the
model are unfrozen after 40 epochs to refine
learned features based on dataset characteristics.

• Fine-tuned all layers training: A variant of the
aforementioned fine-tuned training methodology

involves the comprehensive unfreezing of all
layers as opposed to only the last 10 layers.

• Knowledge Distillation Knowledge distillation
transfers knowledge from the larger pre-trained
ResNet50 to MobileNetV2 and EfficientNetB0.
In this investigation, the distillation process
underwent multiple refinements. Distillation-
base involves building models without pre-
trained weights and subsequently applying dis-
tillation. Distillation1 and Distillation2 are vari-
ations applied to pre-trained models, each with
distinct parameter tweaks—Distillation1 with a
temperature of 10 and alpha of 0.01, while Dis-
tillation2 adopts a temperature of 5 and alpha of
0.05. Notably, in knowledge distillation, all layers
are unfrozen to enhance adaptability.

• Gradually Unfreeze A systematic unfreezing of
the last 10 layers was implemented. Following
an initial 20 epochs of pre-training with all
layers frozen for stability, a strategic unfreezing
schedule was adopted. Specifically, 2 layers were
unfrozen after the 20th epoch, followed by an
additional 3 layers every 40 epochs, culminating
in the gradual release of the final 2 layers after the
subsequent 40 epochs.

Table 1. Models’ performance comparision

Models Accuracy
Train Validation

MobileNetV2

Pre-trained 92.00% 88.50%
Fine-tuned 95.50% 92.00%
Distillation1 90.00% 32.00%
Distillation2 91.00% 52.50%

ResNet50 Pre-trained 90.42% 91.25%
Fine-tuned 96.25% 72.50%

EfficientNetB0

Base 29.50% 20.50%
Distillation-base 61.00% 42.00%

Pre-trained 96.50% 91.50%
Fine-tuned 99.00% 95.50%

Fine-tuned all layers 54.00% 45.50%
Distillation1 99.50% 76.00%
Distillation2 93.50% 82.00%

Performance of EfficientNetB0 and ResNet50. In the com-
prehensive analysis of the results, it becomes evi-
dent that EfficientNetB0 exhibits superior performance,
yielding training and validation dataset accuracies of
99% and 95.5%, respectively. In contrast, for intricate
models such as ResNet50, preserving the frozen state
of layers contributes to enhanced data generalization,
consequently leading to improved validation accuracy.
This persistent trend endures despite the recognition
that unfreezing layers may afford superior performance
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Figure 6. MobileNetV2 Performance

Figure 7. EfficientNetB0 Performance

on the training dataset, albeit at the cost of a substantial
decline in accuracy on the validation dataset.

Knowledge Distillation Strategies. The efficacy of
ResNet50 as a source for knowledge distillation
to models like EfficientNetB0 is grounded in its
inherent complexity and capacity to capture intricate
features. EfficientNetB0 and ResNet50 share a similar
structure, both employing residual connections,
which facilitates the knowledge transfer between
the two models. As a deep and well-established
architecture, ResNet50 possesses a wealth of learned
knowledge from its extensive training on large-
scale datasets, making it a potent teacher model.
The transfer of knowledge from ResNet50 to more

lightweight models like EfficientNetB0 stands to
benefit from the comprehensive and nuanced features
encapsulated within ResNet50’s architecture. This
strategic knowledge distillation process thus facilitates
the enhancement of the targeted models’ performance
by leveraging the wealth of information encoded in
ResNet50.

Conversely, MobileNetV2 exhibits a distinct
structure compared to ResNet50 and EfficientNetB0.
MobileNetV2 utilizes “inverted residuals” blocks
instead of the “bottleneck” blocks found in ResNet50
and EfficientNetB0. This could create a context
mismatch between the features of the teacher and
student models, making knowledge transfer more
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Figure 8. ResNet50 Performance

challenging. This results in favorable outcomes, akin to
the effectiveness observed when transferring knowledge
to EfficientNetB0. However, with MobileNetV2, the
validation accuracy experiences a drastic decline,
underscoring the challenges associated with knowledge
distillation in models with divergent architectures.

Impact of Distillation Parameters. Distillation with a
temperature of 5 and alpha of 0.05 consistently
yields superior performance across experiments. These
carefully chosen parameters, demonstrating their
effectiveness, are adopted for subsequent experiments
to ensure methodological consistency. The influence
of distillation parameters proves to be a critical
factor in achieving optimal results, emphasizing the
need for meticulous parameter selection in distillation
processes.

Enhancement through Distillation. Distillation emerges as
a valuable enhancement strategy, significantly boosting
accuracy in both training and validation datasets. The
substantial improvement from 29% to 61% in training
accuracy and from 20.5% to 42% in validation accuracy
underlines the efficacy of knowledge distillation as a
means of refining model performance. This finding
underscores the potential of distillation to enhance
model capabilities even in scenarios where fine-
tuning all layers might lead to substantial accuracy
degradation.

Fine-tuning Strategies. When all layers are unfrozen for
fine-tuning, a drastic drop in accuracy is observed,
declining from 96.5% and 95.5% in the training and
validation datasets to 54% and 45.5%, respectively.
However, distillation proves instrumental in mitigating
this drop in accuracy, substantially improving it

to 93.5% and 82%. While not reaching the levels
of pre-trained models, this improvement suggests
that with a slightly larger dataset, distillation could
potentially outperform pre-trained frozen models.
This observation underscores the potential robustness
of distillation, particularly in scenarios where fine-
tuning all layers might lead to significant accuracy
degradation.

Given that EfficientNetB0, with transfer learning, has
demonstrated the best performance among the models
considered, further experiments will be conducted to
explore various transfer learning parameters. Initial
focus will be on investigating the impact of the number
of layers to freeze after pre-training the model, with the
subsequent results presented in Table 2.

Table 2. Number of layers unfrozen performance comparision

No of layers unfrozen Train dataset Validation Dataset
5 layers 98.50% 93.00%
10 layers 99.00% 95.5%
15 layers 97.00% 94.00%
20 layers 98.50% 94.50%

Random 10 layers 98.50% 94.50%

Optimal Layer Unfreezing. As indicated by the results
in Table 2 and Figure 9, the model attains its
peak performance when approximately 10 layers are
unfrozen. Below this range, specifically at 5 layers
unfrozen, or beyond, at 15 layers unfrozen, the model’s
accuracy experiences a slight decrease. This observation
suggests that unfreezing 10 layers represents the
optimal number of layers to unfreeze in this particular
scenario, effectively preventing both underfitting and
overfitting of the model. Subsequently, additional
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Figure 9. Models’ performance through number of unfreeze layers.

experiments were conducted with this optimal number
of unfreezed layers. Specifically, a random selection
of 10 layers was unfrozen, and a gradual unfreezing
approach was employed. The corresponding numbers
of unfreezed layers were systematically varied in the
sequence of 2, 3, 3, and 2. The results of these
experiments provide valuable insights into the nuanced
impact of layer unfreezing on model performance and
are presented for further analysis.

Random Selection of Unfrozen Layers. Table 2 also
presents the outcomes of experiments involving the
random selection of 10 layers for unfreezing. The
results indicate a modest decline in performance
compared to exclusively unfreezing the last 10 layers.
After conducting this random selection process 10
times, the highest observed performance stands at
98.50% and 94.50% for the training and validation
datasets, respectively. Notably, the majority of instances
where the highest performance was achieved involved

unfreezing layers from the last half of the model.
This observation underscores a noteworthy trend –
unfreezing layers from the latter portion of the model
tends to yield more favorable results.

This trend aligns with the intrinsic characteristics of
deep neural networks, where later layers often capture
more abstract and complex features. Unfreezing layers
towards the end of the model allows the network to
fine-tune and adapt these high-level features to the
specific task at hand. The substantial performance
improvement in this scenario suggests that the latter
layers encapsulate information crucial for the dataset
under consideration.

Moreover, unfreezing only the last layers, as opposed
to unfreezing too many layers, serves as a strategic
approach to prevent the model from becoming
overly complex and overfitting to the training data.
This carefully maintained balance between model
accuracy and generalization capability is instrumental
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in ensuring the model’s robustness across diverse
datasets. The empirical success of this strategy
reinforces the importance of informed layer selection,
as it not only enhances performance but also guards
against potential overfitting issues.

Gradual Unfreezing Approach. In contrast, Table 3
and Figure 10 illustrates the results of experiments
involving the gradual unfreezing of layers, with
the total number summing up to ten (2, 3, 3, 2).
Comparatively, this approach yields better performance
than simply unfreezing the last 10 layers in a single
step. The results depicted in Figure 10 show a slight
drop in validation accuracy when unfreezing up to
5 layers, followed by a rapid ascent, surpassing the
performance achieved by exclusively unfreezing the
last 10 layers. Although there is a minor fluctuation
when the number of unfreezed layers reaches 10,
the gradual unfreezing strategy ultimately achieves
a peak performance of 99.50% and 97.00% for the
training and validation sets, respectively. This outcome
slightly surpasses the performance achieved by simply
unfreezing the last 10 layers in a single step. The
observed fluctuation emphasizes the dynamic nature
of the training process, while the eventual peak
performance highlights the effectiveness of the gradual
unfreezing strategy in optimizing model accuracy. This
dynamic adaptation process contributes to mitigating
issues of overfitting and further enhances the model’s
ability to yield superior results during training.

Table 3. Gradually unfreezing layers performance

Total layers unfrozen Train dataset Validation Dataset
2 layers 96.00% 94.50%
5 layers 97.00% 90.00%
8 layers 99.00% 93.50%
10 layers 99.50% 97.00%

3.2. Discussion
Results from the experimental evaluation underscore
EfficientNetB0’s consistent superiority over
MobileNetV2 and ResNet50, achieving training
and validation accuracies of 99% and 95.5%,
respectively. This highlights the pivotal role of
model architecture in obtaining robust outcomes.
However, the constraints imposed by the dataset
size pose challenges, particularly for deeper models
such as ResNet50. The intricate architecture of
ResNet50, although powerful, struggles to effectively
generalize the dataset, resulting in lower accuracy on
the validation dataset. Notably, freezing the layers of
complex models like ResNet50 yields benefits in terms
of enhanced generalization, albeit at the potential cost
of lower accuracy on the training dataset. This trade-off

Figure 10. Gradually unfreezing layers performance

significantly improves accuracy on the validation
dataset.

Figure 11. EfficientNetB0 mislabels

The task of categorizing trucks within the dataset
poses a formidable challenge, characterized by a pro-
nounced incidence of mislabeling. This prevalent mis-
classification tendency often results in the erroneous
assignment of instances representing trucks to cate-
gories such as buses or cars, as discerned across vari-
ous models. The manifestation of this misclassification
phenomenon is graphically depicted in the confusion
matrices presented in Figures 6, 7, 8, and ??. Particularly
noteworthy is the elucidation provided by Figure 11,
where a more detailed illustration of the mislabeled
instances is presented. This detailed examination brings
to light the model’s proclivity to misclassify instances,
particularly evident due to the intrinsic similarities
among the labels assigned to trucks, buses, and cars.

The efficacy of knowledge distillation, exemplified
in the transfer from ResNet50 to EfficientNetB0,
showcases the potency of ResNet50 as a teacher model.
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Structural disparities, notably in MobileNetV2, pose
challenges, emphasizing the critical role of model
compatibility and structural similarity in distillation
effectiveness.

Optimal distillation outcomes are achieved with a
temperature of 5 and alpha of 0.05, emphasizing
the importance of fine-tuning these parameters.
Distillation proves valuable, substantially enhancing
accuracy compared to the base model. It mitigates
accuracy drop during fine-tuning, particularly with all
layers unfrozen, showcasing robustness in challenging
scenarios.

EfficientNetB0, utilizing transfer learning, stands out
as the top-performing model. Exploration of transfer
learning parameters identifies approximately 10 layers
as optimal, balancing underfitting and overfitting.
Random layer selection introduces variability, with
a preference for layers from the latter portion.
Gradual unfreezing surpasses single-step unfreezing,
contributing to dynamic adaptation and mitigating
overfitting issues for superior training results.

4. Conclusions
In conclusion, this study not only provides insights into
effective training techniques but also underscores the
impact of dataset constraints on model performance.
The challenges associated with intricate model archi-
tectures and specific class difficulties, such as truck
classification, highlight the need for continuous refine-
ment and adaptation in deep learning approaches. As
the field progresses, addressing these challenges will be
essential for the development of models that perform
optimally within resource-constrained environments,
paving the way for advancements in real-world appli-
cations.
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