
Split and Merge Strategies for Solving Uncertain Equations
Using Affine Arithmetic

Oliver Scharf
oliver.scharf@ims.uni-

hannover.de

Markus Olbrich
markus.olbrich@ims.uni-

hannover.de

Erich Barke
erich.barke@ims.uni-

hannover.de
Institute of Microelectronic Systems

Leibniz Universität Hannover, Germany

ABSTRACT
The behaviour of systems is determined by various param-
eters. Due to several reasons like e. g. manufacturing tol-
erances these parameters can have some uncertainties. Cor-
ner Case and Monte Carlo simulations are well known ap-
proaches to handle uncertain systems. They sample the cor-
ners and random points of the parameter space, respectively.
Both require many runs and do not guarantee the inclusion
of the worst case. As alternatives, range based approaches
can be used. They model parameter uncertainties as ranges.
The simulation outputs are ranges which include all possible
results created by the parameter uncertainties. One type
of range arithmetic is the affine arithmetic, which allows
to maintain linear correlations to avoid over-approximation.
An equation solver based on affine arithmetic has been pro-
posed earlier. Unlike many other range based approaches it
can solve implicit non-linear equations. This is necessary for
analog circuit simulation. For large uncertainties the solver
suffers from convergence problems. To overcome these prob-
lems it is possible to split the parameter ranges, calculate
the solutions separately and merge them again. For higher
dimensional systems this leads to excessive runtimes as each
parameter is split. To minimize the additional runtime sev-
eral split and merge strategies are proposed and compared
using two analog circuit examples.

Categories and Subject Descriptors
I.6.8 [Simulation and Modeling]: Type of simulation—
range arithmetic, parametric; G.1.0 [Numerical Analy-
sis]: General—affine arithmetic; G.1.5 [Numerical Anal-
ysis]: Roots of nonlinear equations—iterative methods

General Terms
Algorithms, Performance, Verification

Keywords
split, merge, circuit simulation, implicit equations, uncer-
tain, parametric, non-linear

1. INTRODUCTION
System uncertainties are introduced by different sources,
e.g. manufacturing tolerances, ageing or indirect measure-
ment of system parameters. To verify uncertain systems sev-
eral methods can be used. Well known methods are Monte
Carlo or Corner Case simulations. They choose sets of pa-
rameters and for every set a nominal simulation is performed
as if the parameters were exact. The Monte Carlo method
samples the parameter space randomly, whereas the Cor-
ner Case method takes samples from the corners of the pa-
rameter space. If the relation between the parameters and
the system behaviour is non-monotonic the Corner Case ap-
proach misses the extreme values. The Monte Carlo method
can detect them if enough samples are drawn. However,
both methods do not guarantee the inclusion of the worst
case and require a lot of simulation runs. As they use single
points of the parameter space these methods are called point
arithmetic. Alternatively, methods based on range arith-
metics like interval or affine arithmetic can be used. They al-
low to describe a range in the parameter space and calculate
the corresponding range in the solution space. Arithmetic
operations are defined on ranges so that all values from an
input range are mapped to an output range. This guarantees
the inclusion of the extremal values mathematically. Inter-
val arithmetic suffers from an effect called error explosion.
To avoid this affine arithmetic was proposed [2]. It main-
tains linear correlations during calculations and reduces the
over-approximation in comparison to interval arithmetic. In
literature some approaches exist to use range arithmetic for
verifying uncertain systems. Methods for uncertain linear
systems using affine arithmetic are described in [7], whereas
interval methods for non-linear systems are shown in [5].

Equations of analog or mixed-signal circuits can contain ar-
bitrary non-linear functions and can only be described im-
plicitly:

f(~x, ~p) = 0. (1)

Parameter deviations can be caused by manufacturing tol-
erances or external influences like temperature. With de-
creasing structure sizes in microelectronics the influence of
parameter deviations on the behaviour of analog circuits in-
creases. An algorithm to solve implicit equations using affine
arithmetic was proposed in [3, 4]. This method is limited
in its convergence range. It only converges if the consid-
ered parameter deviations and non-linearities are small. To
simulate larger circuits an extension of the algorithm was
proposed in [6]. It splits the parameter space, calculates the

SIMUTOOLS 2015, August 24-26, Athens, Greece
Copyright © 2015 ICST
DOI 10.4108/eai.24-8-2015.2260594

solution for the split range using affine arithmetic like be-
fore and merges the obtained solutions. The merged solution
solves the original problem. In [6] all parameters are split
and a merge is performed after each split. For higher dimen-
sional systems this results in an explosion of the runtime,
so a better strategy is needed. In this paper selective split
strategies to split only selected parameters are explored. For
transient simulations different merge strategies to postpone
the merge operation are investigated as well.

2. PRELIMINARIES
Affine arithmetic is an enhancement of interval arithmetic.
In contrast to interval arithmetic it preserves linear correla-
tions during the calculation so that over-approximation can
be reduced.

Parameters and variables with deviations can be described
as affine forms. They are denoted in the following with a
hat symbol:

x̂ = x0 +
∑
i∈Nx̂

xiεi. (2)

All deviation symbols εi lie in the interval [−1 . . . 1] and
correspond to a certain source of uncertainty. In this way
the reason for a variation of the circuit’s behaviour can be
tracked. The set Nx̂ contains all indexes of the deviation
symbols which make up the affine form x̂. Vectors whose

components are affine forms are denoted as ~̂x.

The affine form is symmetric to the central value x0. The
sum of the absolute values of all xi denotes the maximal
deviation from the central value and is called radius of the
affine form:

rad(x̂) =
∑
i∈Nx̂

|xi|. (3)

With the minimum and maximum of an affine form it can
be converted to an interval:

min(x̂) = x0 − rad(x̂) (4)

max(x̂) = x0 + rad(x̂). (5)

The arithmetic operations on affine forms are defined in such
a way that they return an affine form. All operations on
affine forms

f̂(p̂) : P(R)→ P(R) (6)

are defined inclusion isotonely concerning the corresponding
point-arithmetic function

f(p) : R→ R. (7)

That means the following holds:

∀(q ∈ R, q̂ ∈ P(R), q ∈ q̂) :
(
f(q) ∈ f̂(q̂)

)
(8)

∀(r̂, ŝ ∈ P(R), r̂ ⊆ ŝ) :
(
f̂(r̂) ⊆ f̂(ŝ)

)
. (9)

All points within the input range are mapped on points of
the output range. Functions can be classified in affine and
non-affine functions. The result of an affine function can
be exactly described as an affine form. Addition, subtrac-
tion and multiplication with a scalar constant belong to this
class:

c(x̂± ŷ) = c(x0 ± y0) +
∑

i∈(Nx̂∪Nŷ)

c(xi ± yi)εi. (10)

All other operations are non-affine. To represent their re-
sults as an affine form a first order Taylor approximation
with a Lagrangian remainder around the central value x0 is
performed:

f̃(x̂) = x0 + f ′(x0)(x̂− x0) +
f ′′(ξ)

2
(x̂− x0)2. (11)

The term x0 + f ′(x0)(x̂ − x0) can be written as an affine
form. The approximation error is enclosed by an additional
deviation term yn+1εn+1 which holds the maximal approx-
imation error in ξ ∈ [min(x̂),max(x̂)]. So the result of a
non-affine form can be written as:

ŷ = fnon-affin(x̂) = y0 +
∑
i∈Nx̂

(yiεi) + yn+1εn+1. (12)

The additional deviation symbol εn+1 is uncorrelated to all
previously used symbols. With each evaluation of a non-
affine function an additional deviation symbol is generated.
These will be called NLPD symbols (non-linear partial devi-
ation) in the following. The second derivatives of most ele-
mentary functions are monotone. In these cases no search for
the extremal values has to be performed to find the maximal
approximation error. Functions composed from several ele-
mentary functions have non-monotone deviations in general.
To avoid a computationally intensive search for the extremal
values the optimal minimal inclusion is set aside. Instead,
composed functions are decomposed into a sequence of el-
ementary functions which is processed step by step. This
results in an output range which overestimates the mini-
mal range but guarantees to include it. This is one reason
for over-approximation, the difference between the optimal
and the calculated affine solution. Other sources of over-
approximation are the solving algorithm itself and the merge
operation. This will be discussed below.

An algorithm to solve implicit equations with uncertain pa-
rameters using affine arithmetic was described in [3, 4]. In
Fig. 1 it is shown together with the extension from [6]. It de-
termines the nominal solution first and then adds deviation
symbols. The deviations are calculated from the linearisa-
tion of the parameter dependencies. Due to the linearisation
error the inclusion is not guaranteed. To maintain inclusion
additional uncorrelated deviation symbols are added to each
variable. Their size is adjusted by an iterative method. The
nominal solution is calculated by the function solveNominal
using the Newton-Raphson method. The affine parameters
~̂p are replaced by the nominal central values ~p0. The solu-
tions ~x0 are used as the central values of the affine solutions
~̂x. As a first approximation of the deviation symbols xi the
linearised equation system is used:

f(x, p) ≈ df

dx

∣∣∣∣
x0,p0

· xPPD +
df

dp

∣∣∣∣
x0,p0

· pPPD = 0. (13)

These deviation symbols have the same indexes as the pa-
rameter deviations and describe the same source of uncer-
tainty. They are called PPD symbols (parameter partial
deviation).

Due to the linearisation error the solution

~̂x = ~x0 +
∑
i∈N~̂p

~xiεi (14)

solveAffine(~̂p)
1: ~x0 = solveNominal(f(~x0, ~p0) = 0)

2: ~xPPD = dp
df

∣∣∣
x0,p0

− ~pPPD · df
dp

∣∣∣
x0,p0

3: ~̂x = ~x0 + ~xPPD · εPPD + ~xEPD · εEPD

4: repeat

5: ~̂r = f(~̂x, ~̂p)

6: ~̂t = M−1 · ~xEPD

7: for all ti do
8: if ti,0 > 0 then
9: si = max(t̂i)

10: else
11: si = −min(t̂i)
12: end if
13: end for
14: ~xEPD = ~s · ~xEPD

15: ~̂x = ~x0 + ~xPPD · εPPD + ~xEPD · εEPD

16: if splitNeeded() then

17: (~̂p′i, ~̂p
′′
i) = splitParameters(~̂p)

18: ~̂x′i = solveAffine(~̂p′i)

19: ~̂x′′i = solveAffine(~̂p′′i)

20: ~̂x = mergeSolutions(~̂x′, ~̂x′′)

21: return ~̂x
22: end if
23: until (∀i : |si| ≈ 1 ∨ xEPD,i ≈ 0)

24: return ~̂x

Figure 1: Affine solving algorithm with splitting

computed up to now does not preserve inclusion. This is why
additional uncorrelated deviation symbols called EPD sym-
bols (enhanced partial deviation) are added to each variable.
Their size can only be determined iteratively. According to
[3] the start value xEPD = 0.1 · rad(x̂) is chosen. Its value
will be improved in the repeat until loop (Lines 4 to 23).

With the current estimation ~̂x the residuum of f(~̂x) is cal-
culated. This is used to calculate a refinement of the EPD
symbols. These steps are repeated until the scaling factor si
for every variable x̂i reaches one or the xEPD,i disappears.
This guarantees that the solution

~̂x = ~x0 +
∑
i∈N~̂p

(~xiεi) + ~xEPDεEPD (15)

includes the minimal solution area under all combinations
of parameter variations in ~̂p.

This algorithm can be used for all simulation types like AC,
DC, transient (TR) and reachability analyses. In this paper
we focus on DC and transient analysis.

The original algorithm suffers from some convergence prob-
lems. If the parameter deviations are too large or the equa-
tions are strongly non-linear the algorithm does not con-
verge. To overcome these problems the parameter range
can be split if necessary. For each part the affine solution is
computed as before. Afterwards the solutions are merged to
form an inclusion isotone solution of the original problem.

The split of a single parameter p̂i into two parts p̂′i and p̂′′i

is performed as follows:

p̂′i = p0 −
pi
2

+
pi
2
εi (16)

p̂′′i = p0 +
pi
2

+
pi
2
εi. (17)

However, the split into more than two parts can be per-
formed in a similar way. It cannot be determined a pri-
ori if it is necessary to perform a split to achieve conver-
gence. In practice there are some critical operating points,
but most operating points can be solved without splitting.
Three criteria to automate the decision when to split have
been proposed and compared in [6]. A split is performed
if the algorithm does not converge in nmax steps (Criterion
1). If the considered system is solvable the scaling factor
s over the number of iterations falls monotonically and ap-
proaches 1 asymptotically. Strongly increasing values (Cri-
terion 2) or local maxima (Criterion 3) can be additional
indicators for a non-converging system. After a split the
function solveAffine is called recursively with the split pa-

rameters ~̂p′ and ~̂p′′. The solutions ~̂x′ and ~̂x′′ obtained from

these calls are merged. The merged solution ~̂x solves the

circuit’s equations for both ~̂p′ and ~̂p′′ as well as the original

set of parameters ~̂p inclusion isotonely. The merge algorithm
used in [6] is shown in Fig. 2. To obtain the results of this
paper an improved version of the merge operation shown in
Fig. 3 was used. It gives the same result as the original ver-
sion in Fig. 2 for non-overlapping affine forms, but it avoids

over-approximation if the split solutions ~̂x′ and ~̂x′′ have a
large overlap or are nearly identical (see Fig. 4). This hap-
pens at points with large non-linearities. Nevertheless, the
inclusion of the solution is maintained.

3. SPLIT STRATEGIES
One possibility to overcome the limitation of the affine solv-
ing algorithm is to split the parameter ranges. The smaller
the ranges are the better the algorithm converges. As we
have an implicit equation system it is not possible to split
in state space as proposed e. g. in [1, 5]. We have to split
the parameter range and calculate the state space solution
for that split. Splitting all parameters like proposed in [6]
leads to a large computational effort for high-dimensional
systems as 2n parts have to be calculated separately. 2n is
the number for splitting n parameter in halves, the number
of parts for splitting in more parts is calculated analogically.
To avoid this effort we propose to select one parameter to
split. The selection is done for every split operation so differ-
ent parameters can be chosen in subsequent split operations.
After nmax splits using the selected split strategy were per-
formed, the algorithm falls back to split all parameters to
avoid endless loops if the current split strategy selects a pa-
rameter which does not improve convergence (see Fig. 5).

mergeSolutions(~̂x′, ~̂x′′)

1: top = max(max(~̂x′),max(~̂x′′))

2: bottom = min(min(~̂x′),min(~̂x′′))

3: ~̂x.center = bottom+top
2

4: ~̂x.deviations =
∑

i∈Nx̂′
x′iεi +

∑
i∈Nx̂′′

x′′i εi

Figure 2: Merge operation from [6]

mergeSolutions(~̂x′, ~̂x′′)

1: top = max(max(~̂x′),max(~̂x′′))

2: bottom = min(min(~̂x′),min(~̂x′′))

3: ~̂x.center = bottom+top
2

4: ~̂x.deviations =
∑

i∈Nx̂′
x′iεi +

∑
i∈Nx̂′′

x′′i εi

5: neededRadius = top−bottom
2

6: scalingFactor = neededRadius
x. rad()

7: ~̂x.deviations = scalingFactor · ~̂x.deviations

Figure 3: Improved merge operation

a) b)

x̂′′

x̂′ x̂

Figure 4: Merge with overlapping range, a) merge
(Fig. 2), b) improved merge (Fig. 3)

As the relation between parameters and the result space is
non-linear in general, the optimal parameter to split can
not be obtained directly. Several strategies are described
and compared here. They use the helper function findMax
which returns the column index of the largest element ai,j
in the matrix A. The strategy “select by deviation” selects
the parameter with the largest deviation:

selectByDeviation
1: deviationMatrix = [p1.deviation() . . . pn.deviation()]
2: return findMax(deviationMatrix).

The strategy “select by sensitivity” selects the parameter
with the largest sensitivity according to the largest entry in
the sensitivity matrix df

dp
:

selectBySensitivity

1: return findMax
(

df
dp

)
.

Using the strategy “select by sensitivity and deviation” the
sensitivity is scaled by the corresponding parameter devia-
tions. The operator � means element-wise multiplication.
The parameter with the largest entry in the scaled sensitiv-
ity matrix A is selected:

selectBySensitivityAndDeviation

1: devMatrix =

 p1.deviation() · · · pn.deviation()
...

...
...

p1.deviation() · · · pn.deviation()


2: A = devMatrix� df

dp

3: return findMax(A).

The algorithms “select by EPD and PPD” and “select by
EPD and sensitivity” use the size of the EPD symbol which
is adjusted during solving. Both select the equation with the
largest EPD symbol. As this equation can depend on mul-

selectParameters
1: n = n+ 1
2: if n < nmax then
3: return selectByX()
4: else
5: return All
6: end if

Figure 5: Selection of parameter to split, select-
ByX with X ∈ {Deviation, Sensitivity, Sensitivity-
AndDeviation, EPDAndPPD, EPDAndSensitivity}

solveAffine(solutionTree, parameterTree)
1: for all nodes n ∈ parameterTree do
2: n.isSolved = false
3: end for
4: for all leaves l ∈ parameterTree && l.isSolved do

5: ~̂p = l
6: replaceDerivatives()

...
7: if splitNeeded() then
8: i = selectParameters()
9: subTree = splitParameters(l, i)

10: addSubTree(parameterTree, l, subTree)
11: continue
12: else

...
13: l.isSolved = true
14: solutionTree(l) = ~̂x
15: end if
16: end for

Figure 6: Affine solving algorithm using trees to
store results and parameters

tiple parameters two ways of selecting the parameter to be
split from the selected equation are considered. The strat-
egy “select by EPD and PPD” selects the parameter with
the largest PPD:

selectByEPDAndPPD
1: EPDMatrix = [x1,EPD . . . xn,EPD]
2: index = findMax(EPDMatrix)
3: PPDMatrix = [xindex,PPD0 . . . xindex,PPDnp

]

4: return findMax(PPDMatrix).

In contrast, “select by EPD and sensitivity” selects the pa-
rameter with the largest sensitivity:

selectByEPDAndSensitivity
1: EPDMatrix = [x1,EPD . . . xn,EPD]
2: index = findMax(EPDMatrix)

3: B =
[
dfindex

dp1
. . . dfindex

dpnp

]
4: return findMax(B).

4. MERGE STRATEGIES
The algorithm in Fig. 1 always performs a merge opera-
tion after a split. For transient simulations other strategies
are possible and are investigated in the following. For this
purpose the solveAffine method has been modified. The pa-

1: prevSolution = ~0

2: prevParameter = ~̂p
3: for all tn ∈ [0 . . . tend] do
4: (solutionTree, parameterTree) =

solveAffine(prevSolution, prevParameter)
5: (prevSolution, prevParameter) =

mergeTree(solutionTree, parameterTree)

6:
»

solution.append(prevSolution)
7: end for
8: plot(

»

solution)

Figure 7: Affine transient simulation with merge
strategy “Merge each”

rameters and the solutions are stored in trees (see Fig. 9).
Each node of the parameter tree represents a combination
of parameters. The flag isSolved indicates that this com-
bination has been solved successfully. The result for this
combination is stored in the corresponding node of the so-
lution tree. The extended solving algorithm in Fig. 6 resets
the isSolved flag for all nodes (Line 1) of the parameter tree
at first. Then it iterates over all leaves not yet solved (Line
4). With the parameter set stored in the current leaf the cal-
culations according to Fig. 1 are performed. The function
replaceDerivatives replaces the derivatives with the back-
ward Euler formula. The values of the previous variables
are taken from the corresponding node of the solution tree
of the previous time step tn−1. If an additional split op-
eration is necessary in the current time step tn which has
not been calculated in the previous time step tn−1 the result
from the corresponding parent node is taken (see Fig. 10).
This introduces over-approximation as the split parameter
range gives tighter inclusions in general but maintains the
inclusion of the result. Otherwise it would be necessary to
go back in time and recalculate all splits additionally used in
the current time step for all previous time steps. If the solu-
tion step was successful the node is marked as solved and the
result is stored in the solution tree (Lines 13 f.). If a split is
needed then one or all parameters are selected and a split is
performed. The resulting subtree is attached to the current
leaf l and the iteration over all leaves of the parameter tree
is restarted (Line 9 - 11). After solving the equations with
the split parameter a merge operation is performed to get a
single affine result for plotting.

For transient simulations there are several options when the
merge operation can be performed. It can be performed af-
ter each time step. This strategy is called “merge each step”
(see Fig. 7). This way only time steps which require split-
ting according to the used splitting criteria are split. On
the other hand, it is necessary to redetermine the required
split parameter set for each time step. This requires lots of
iterations of the affine solving algorithm as an a priori deter-
mination is not possible. As the merge operation introduces
additional over-approximation, this method provides a more
pessimistic inclusion. The error propagates from time step
to time step via the backward Euler formula. The opposed
strategy to keep the split parameter for all remaining time
steps (“do not merge”, Fig. 8) gives tighter inclusion as the
corresponding node from the previous solution tree is used
for integration. Some compromises between both extremes

1: prevSolutionTree.root = ~0

2: prevParameterTree.root = ~̂p
3: for all tn ∈ [0 . . . tend] do
4: (prevSolutionTree, prevParameterTree) =

solveAffine(prevSolutionTree, prevParameterTree)

5:
»

solutionTree.append(prevSolutionTree)
6: end for
7:

»

solution = mergeTree(
»

solutionTree)

8: plot(
»

solution)

Figure 8: Affine transient simulation with merge
strategy “Do not merge”

x̂

x̂
′′

x̂
′

x̂
′′,′′x̂

′′,′

p̂

p̂
′′

p̂
′

p̂
′′,′′p̂

′′,′

parameter tree solution tree

Figure 9: Parameter and solution tree built by
algorithm in Fig. 6

are considered, too. The strategy “merge every nth step”
keeps the splits from previous steps and only merges after n
steps where n can be set by the user. Another strategy tries
to solve without splits first and only if this fails it reconsid-
ers the splits from the previous time step (strategy “try root
first”).

5. RESULTS
The affine solving algorithm and the proposed split and
merge strategies were implemented in MATLAB. To com-
pare their performances two exemplary circuits were inves-
tigated. The first one is the inverter circuit using a bipolar
transistor depicted in Fig. 11. Its parameters and their un-
certainties are given in Table 1. It was chosen because of its
non-linear behaviour when sweeping the operating ranges of

x̂

x̂
′′

x̂
′

x̂
′′,′′x̂

′′,′

x̂

x̂
′′

x̂
′

Timestep tn−1 Timestep tn

Figure 10: Solution tree for two time steps of a
transient simulation, the dotted arrows show the
source node for the backward Euler formula

T1

RB

Uin

Uout

RL

Ucc

Figure 11: BJT inverter circuit

Table 1: Parameters for BJT inverter in Fig. 11

Symbol Central value Deviation

RB 5 kΩ ±450 Ω

RL 10 kΩ ±50 Ω

the transistor which is a challenge for the affine solving al-
gorithm. The other circuit is an active bandpass with an
ideal op-amp, shown in Fig. 12. It was chosen as it has a
larger number of parameters with uncertainties which makes
the selection of the right parameter to split more important.
The parameters and their uncertainties are given in Table 2.
To determine if splitting is necessary a maximum number of
30 iterations (Criterion 1) was used, unless noted otherwise.

The simulation setups used for these examples are summa-
rized in Table 3. The over-approximation and the runtimes
for setup S1 with different numbers of splits (forced inde-
pendently of split criterion) is shown in Fig. 13. This setup
cannot be solved without splitting. The over-estimation de-
creases with the number of splits but the runtime increases
exponentially. The number of splits and with it the runtime
needed to solve the system equations increase with the size
of the deviations (see Fig. 14). The time needed to solve
using the same number of splits and the same size of de-
viations, can be reduced by using the different split strate-
gies (see Table 4). For comparison the results of splitting
a random parameter and splitting all parameters are also
given. The results in Fig. 13 and Table 4 show the be-
haviour of the split strategies by an artificial enforcement
of a given number of splits. The runtimes for the different

R1
C1

−

+

OP

R2

R4

R5

Uout
R3C2Uin

Figure 12: Bandpass circuit

Table 2: Parameters for bandpass circuit in Fig.
12

Symbol Central value Deviation

R1 15.9 kΩ ±1.125 kΩ

R2 15.9 kΩ ±1.11 kΩ

R3 31.8 kΩ ±3.01 kΩ

R4 20 kΩ ±3 kΩ

R5 20 kΩ ±3 kΩ

C1 10 nF ±0.2 nF

C2 10 nF ±0.2 nF

Table 3: Simulation setups used for BJT Inverter
(Inv.) in Fig. 11 and Bandpass (BP) in Fig. 12

N
a
m

e

C
ir

cu
it

T
y
p

e

t e
n
d
/
m

s

U
in
/
V

S1 Inv. DC - 0.489

S2 Inv. TR 0.025 2.5+2.5·sin(2π·0.5 kHz·(t+1.29 ms))

S3 BP TR 0.75 2 · sin(2π · 0.5 kHz · (t− 1 ms)) + 2 ·
sin(2π · 2.5 kHz · (t− 5 ms))

0 1 2 3 4 5 6
1

1.05

1.1

splits

O
v
er

-a
p
p
ro

x
im

a
ti

o
n

0 2 4 6
0

0.28

0.55

0.83

1.1

·104

ru
n
ti

m
e

in
se

co
n
d
s

Over-approximation

runtime

Figure 13: Over-approximation and runtime versus
number of splits for S1, split strategy = All

0.25 0.75 1.25 1.75 2.25 2.75 3.25
0

5

10

15

20

25

30

v

#
n
ec

es
sa

ry
sp

li
ts

0.25 0.75 1.25 1.75 2.25 2.75 3.25
0

100

200

300

400

500

600

ru
n
ti

m
e

in
se

co
n
d
s

splits

runtime

Figure 14: Number of splits and runtime versus
deviation for S1, parameter deviations given in
Table 1 are scaled with factor v, split strategy =
All

Table 4: Simulation runtime in seconds for dif-
ferent number of splits (forced independently of
splitting criterion) and different split strategies for
S1, means that convergence was not achieved in
30 iterations

splits

split strategy 0 1 2 3 4 5

All 12.4 33.6 165.2 640.6 2353.5
Deviation 10.5 18.3 52.0 179.5 691.2
Sensitivity 29.3 41.3 80.9 216.9 766.3
Sens. and deviation 20.6 39.8 80.7 204.9 779.5
EPD and PPD 26.5 57.3 78.9 218.5 781.6
EPD and sensitivity 26.8 40.0 79.3 204.2 771.9
Random 34.5 31.0 54.6 204.8 765.1

BJT Inverter Bandpass
0

0.5

1

1.5

N
o
rm

a
li
ze

d
ru

n
ti

m
e

Deviation Sensitivity

Sensitivity and deviation Random

EPD and PPD EPD and sensitivity

All

Figure 15: Simulation runtime for different split
strategies

BJT Inverter Bandpass
0

0.2

0.4

0.6

0.8

1

N
o
rm

a
li
ze

d
ru

n
ti

m
e

Do not merge

Merge each step

Merge every nth step

Try root first

Figure 16: Simulation runtime for different merge
strategies

strategies using Criterion 1 to determine if splitting is nec-
essary are shown in Fig. 15. They are evaluated using DC
simulations for the inverter (S1) and transient simulations
for the bandpass circuit (S3) as no splitting was necessary
for DC. The runtimes are normalized to the case when all
parameters are split. For both circuits the strategy “select
by deviation” is the fastest. The benefit is a lot larger for the
bandpass (3 % of the runtime necessary) as for the inverter
(74 %) as it has more uncertain parameters. For the BJT in-
verter the strategies “sensitivity”, “sensitivity and deviation”
and “random” are even slower than splitting all parameters.
For the evaluation of the merge strategies transient simu-
lations using the setups S2 and S3 were performed. The
split strategy was set to split all parameters in each split
operation. As a compromise for both circuits n = 4 was
selected. The runtimes for the different merge strategies are
shown in Fig. 16. They are given normalized to the strat-
egy with the largest runtime which was “do not merge” for
both circuits. The fastest merge strategy for the inverter
was “merge every nth time step” whereas for the bandpass
“merge each step” was the fastest. A comparison of the over-
approximation for the different merge strategies is shown in
Fig. 17. The over-approximation was calculated as mean
relative over-approximation mOA:

mOA =
1

n

xn∑
x=0

dA(x)

dMC(x)
. (18)

dA and dMC denote the interval width determined from
the affine and the minimum/maximum of 1000 Monte-Carlo
runs, respectively. For the bandpass the over-approximation
for all strategies is larger than for the BJT inverter as there
are more uncertain parameters and more split operations are
performed. The “do not merge” strategy causes the small-
est over-approximation for both circuits. For the BJT in-
verter the benefit is small compared to the other three strate-
gies which are almost equal in terms of over-approximation.
By choosing the slowest strategy “do not merge” the over-
approximation can be reduced most efficiently.

6. CONCLUSION
The convergence range of the original affine solving algo-
rithm is limited to small deviations. If the parameters are
split it is possible to perform simulations on circuits with un-
certain parameters which are not possible without splitting.

BJT Inverter Bandpass
0

1

2

3

4

O
v
er

-a
p
p
ro

x
im

a
ti

o
n

Do not merge

Merge each step

Merge every nth step

Try root first

Figure 17: Over-approximation mOA for different
merge strategies

Additionally, the over-approximation can be reduced by em-
ploying more splits. For higher dimensional systems split-
ting all parameters leads to excessive runtimes as the num-
ber of parts to calculate increases exponentially. To avoid
this drawback different strategies for splitting and merging
were presented and compared. The split strategies select
one parameter to split by different criteria. The best split
strategy in terms of runtime is “select by deviation” which
selects the parameter with the largest deviation for split-
ting. This reduces the runtime to 3 % of the time needed
to split all parameters for the bandpass example. For tran-
sient simulations different merge strategies were proposed.
The fastest merge strategy depends on the circuit. For the
BJT inverter the strategy “merge every nth step” and for the
bandpass “merge each step” was the fastest. Comparing the
merge with the split strategies it can be observed that the
latter provide higher benefits in terms of runtime. Neverthe-
less, merge strategies are crucial as they influence the over-
approximation via the backward Euler formula and by that
the solvability of transient simulations. The merge strat-
egy “do not merge” caused the smallest over-approximation

but needs the largest runtime. The other merge strategies
are faster but cause larger over-approximation which is al-
most equal among themselves. By choosing a merge strategy
runtime can be traded for over-approximation depending on
which effect is more critical in the current application.

7. REFERENCES
[1] M. Althoff, O. Stursberg, and M. Buss. Reachability

analysis of nonlinear systems with uncertain param-
eters using conservative linearization. In 47th IEEE
Conference on Decision and Control, pages 4042–4048,
Dec 2008.

[2] L. H. de Figueiredo and J. Stolfi. Self-Validated Nu-
merical Methods and Applications. Brazilian Math-
ematics Colloquium Monographs. IMPA, 1997.

[3] D. Grabowski. Gebietsarithmetische Verfahren zur Si-
mulation analoger Schaltungen mit Parameterunsicher-
heiten. PhD thesis, Leibniz Universität Hannover - In-
stitute of Microelectronic Systems, 2009. In German.

[4] D. Grabowski, M. Olbrich, and E. Barke. Analog cir-
cuit simulation using range arithmetics. In Proceedings
of the ASP-DAC 2008, pages 762–767.

[5] I. Krasnochtanova, A. Rauh, M. Kletting, H. Asche-
mann, E. P. Hofer, and K.-M. Schoop. Interval meth-
ods as a simulation tool for the dynamics of biological
wastewater treatment processes with parameter uncer-
tainties. Applied Mathematical Modelling, 34(3):744 –
762, 2010.

[6] O. Scharf, M. Olbrich, and E. Barke. Lösungsverfahren
für nichtlineare implizite Gleichungssysteme unter Ver-
wendung von Affiner Arithmetik und Gebietsaufteilun-
gen. In ANALOG 2013. In German.

[7] I. Skalna. Direct method for solving parametric in-
terval linear systems with non-affine dependencies.
In R. Wyrzykowski, J. Dongarra, K. Karczewski, and
J. Wasniewski, editors, Parallel Processing and Applied
Mathematics, volume 6068 of Lecture Notes in Com-
puter Science, pages 485–494. Springer, 2010.

