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ABSTRACT
Based on Lindley’s recursive equations for G/G/1 systems,
this paper proposes a Fast Discrete Event Simulation (FDES)
model for queueing networks. Equations for multiplexer and
de-multiplexer elements are presented, which allows to sim-
ulate not only tandem but queueing networks with an ar-
bitrary topology. Time savings obtained with FDES could
speed up the analyses of large-scale queueing network sys-
tems. Experimental results show that FDES modeling can
be two orders of magnitude faster than their counterparts
based on the event-scheduling for practical cases.
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1. INTRODUCTION
Discrete Event Simulation (DES) of queueing network sys-

tems with an arbitrary topology is studied in this work.
Simulation based analyses have proved their utility in a
widely range of applications, from design and evaluation
of manufacturing systems and computer networks, to com-
plex stochastic systems [2]. DES obtains performance re-
sults where mathematical analyses are restrictive due to its
complexity. However, DES’s utility may be limited, in turn,
by the time spent in the simulation. Therefore, a fast sim-
ulation that allows the study of a larger and more complex
systems is desirable. Based on Lindley’s recursive equation
for G/G/1 queueing systems [8], a complete set of equations
is proposed. These mathematical statements conforms a fast
simulation model that enables the analysis of queueing net-
work systems with an arbitrary topology. Here, this model
is referred as Fast Discrete Event Simulation (FDES).

2. RELATED WORK
Event scheduling is the main approach used in the litera-

ture for the study of DES [2, 3]. Besides, modern discrete

event simulators such as Matlab Simevents [4], and Om-
net++ [9], employ the event scheduling approach1. How-
ever, in [3, 7, 5] a simulation approach that turns out faster
than event scheduling is reported. Based on Lindley’s recur-
sive equation, Chen [3] presents a fast simulation for single-
servers tandem queueing systems. Then, Krivulin in [7], for-
malizes Chen’s approach using max-plus algebra. Finally,
Kin in [5] generalized this approach to multiple-servers in
tandem. Therefore the set of equations for any topology has
not been complete. In the following section, this approach
is expanded to permit the analysis of queueing network sys-
tems with an arbitrary topology.

3. FDES MODEL
In this section we present the FDES model for a net-

work of single servers with infinite queue lengths. Besides,
a round robin multiplexer and de-multiplexer model are de-
fined, which allows to simulate any network topology.

Table 1: Notation for the Single Server Model.
En nth entity
an arrival epoch for entity En

wn waiting time for entity En; w1 = 0
bn service time for entity En

xn interarrival time; xn = an − an−1

un−1 stability variable; un−1 = bn−1 − xn
υn departure time epoch for entity En

yn interdeparture time; yn = υn − υn−1

λ mean interarrival rate
µ mean service rate

3.1 Single Server Model
The model consist on a G/G/1 single server system with

an infinite buffer, and operates according to the First-In-
First-Out (FIFO) queueing discipline, as is shown in Figure
1. Table 1 presents the notation used for the single server
model. The time diagram shown in figure 2, depicts the be-
havior of the entities as they travel through the queue and
the single server from their arrival time an to their depar-
ture time υn. From figure 2 some important equations are
obtained and summarized in Table 2. These equations rep-
resent the same results as in [3, 7, 5], but in an alternative
representation. Notice that the waiting time is expressed

1A comparison between these environments is presented in
[1]
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Figure 1: Model of a queueing system.

Figure 2: Time diagram for an infinite queueing sys-
tem.

in terms of the stability variable and results in the Lindley
recursion [6, 8], where [x]+ denotes max(0, x).

3.2 Multiplexer and De-multiplexer Models
The main contributions of this paper are the multiplexer

and de-multiplexer models. Due to the lack of space, only
summarized equations are shown. The multiplexer, shown
in figure 3a, consists of M input ports represented by sin-
gle servers. Each single server queue behaves as the model
presented in the previous section. Em,k represents the kth
entity (customer) that arrives to port m. The way in which
the entities from each input port are served depends on the
arbitration policy. For simplicity (but not restricted to this)
we consider a priority round robin arbitration policy.

In the round robin policy used in this work, port 1 is
served first, then port 2 and so on. If port m has the token
to transmit and no entity has arrived and port m + 1 has
entities, then port m + 1 can not serve the entities until
port m transmits an entity. Figure 4 shows a time diagram
of a multiplexer with 3 input ports operating with a round
robin arbitration policy. Table 3 summarizes the equations
in the multiplexer system analysis. For all the presented
equations n = 1, 2, 3, ..., k = 1, 2, 3, ... and 1 ≤ m ≤M . The
multiplexed output is represented by υmux,n, where am,k,
wm,k and bm,k are the arrival epoch, waiting time and service
time, respectively, of the kth entity Em,k for the input port
m, according to the round robin policy (see Figure 4). We
define the index of the input port as m = mod (n−1,M)+
1. The index corresponding to an entity arriving to input
port m is given by k = n+M−m

M
. Besides, expressions for

the waiting time for the kth entity Em,k in queue m are also
presented in table 3 (with w1,1 = 0). Notice that when the
bm,k are the same for all m, we have the case of a multiplexer
with a single server. Also, notice that the stability condition
for this system is λT < µ, where λT = λ1 + λ2 + · · · + λM

and λm is the mean arrival rate to port m.

On the other hand, figure 3b shows a representation for
the de-multiplexer model. The de-multiplexer consists of M
output ports. υn represents the nth entity that arrives to the
input port. The way in which the entities are served depends

Figure 3: a) Multiplexer model b) De-multiplexer
model.

Figure 4: Time diagram of a multiplexer with 3 in-
put ports and operating with a round robin arbitra-
tion policy.

Table 2: FDES equations for the Single Server
Model.

Waiting time wn = [0, wn−1 + un−1]+

Dep. epoch υn = an + wn + bn

Table 3: FDES equations for the round-robin Mul-
tiplexer Model.

Waiting w1,k = [aM,k−1 + wM,k−1 + bM,k−1 − a1,k]+

time wm,k = [am−1,k + wm−1,k + bm−1,k − am,k]+

Dep. epoch υmux,n = am,k + wm,k + bm,k

on the arbitration policy and in general on the routing algo-
rithm. Again, we consider a round robin arbitration policy.
Notice that in this case the departure epochs for port m and
entity k is giving by υm,k = υn, where n = M(k − 1) + m.
The complete set of equations presented in table 3 and table
1 conforms the FDES model. As the next section will show,
FDES model is expected to outperform event scheduling ap-
proaches for the tested cases.

4. RESULTS
In this section we present results for the FDES model.

First, the probability density functions (pdf’s) of the wait-
ing time, for the input queues of the multiplexer model, are
presented. A multiplexer with 3 input ports is considered.
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Figure 5: pdf of the waiting time of input queues
of the multiplexer utilizing FDES and SimEvents.
p1, p2 and p3 represent the input ports of the multi-
plexer.

The arrival process to each input port are Poisson with rates
λ1 = λ2 = λ3 = 2 entities/sec. Entities service times have
an exponential distribution with a mean service rate µ = 10
entities/sec. The number of simulated entities is 105.

Figure 5 shows the pdf of the waiting time for the in-
put queues of port p1, p2 and p3 of the multiplexer. The
curves are labeled as FDES for the FDES model and Sim
for a simulation implemented on SimEvents. The same data
that feed the simulation with SimEvents also feed the FDES
model. We can observe that the curves match exactly. As
can be expected port 1 presents the lower waiting time since
it is first served, and port 3 presents the higher waiting time
since it is the last served according to the round robin police.

In addition, a simple case study for queueing networks
to show a comparison among the FDES model, SimEvents
and Omnet++ in terms of the runtime is presented. A tan-
dem of Diamond networks, as the one shown in figure 6, is
considered. N = {10, 100, 1000} diamonds were evaluated.
The number of simulated entities were 103, 104 and 105 for
each scenario. The mean arrival rate and the mean service
rate were fixed to 0.5 and 1 entities/sec, respectively. An
Intel core i7 2600 @ 3.4 GHz computer with 8 GB of RAM,
running on a 64-bit Windows 7, was used to obtain model
outcomes. Runtimes for SimEvents, Omnet++ and FDES2

models for different scenarios are shown in figure 7. Results
show that Omnet++ and SimEvents runtimes are close to
each other, with Omnet++ slightly faster than SimEvents.
In contrast, FDES outperforms between one and two orders
of magnitude, the aforementioned approaches. Notice that
these results can be improved with parallel implementations
of FDES models.

5. CONCLUSIONS
2Implemented in C++.

Figure 6: Diamond network.
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Figure 7: Runtimes (log scale) comparison for a tan-
dem of diamond networks at different scenarios.

A Fast Discrete Event Simulation (FDES) model for queue-
ing network systems was presented. The proposed repre-
sentation complements the works reported in the literature
since allows to simulate queueing network systems with an
arbitrary topology. Runtime results show that FDES model
outperforms more than one order of magnitude event schedul-
ing approaches for the practical cases evaluated.
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